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Abstract: Nanoscale multilayer coating (NMC) based on Zr/Nb layers (100/100 nm) before and
after H+ irradiation was investigated by combining experimental techniques with first-principles
calculations. Detailed studies of structural and phase state and defect structure of Zr/Nb NMC
were performed using methods of transmission electron microscopy, X-ray structural analysis, glow
discharge optical emission spectrometry, and the Doppler broadening spectroscopy using variable
energy positron beam. The first-principles calculations of binding energies for hydrogen in metal
Zr/Nb layers was carried out by the pseudopotential method within the density functional theory
framework. First-principles calculations and experimental data indicate the presence of macro-
and microstrains predominantly in the zirconium layers of Zr/Nb NMC. The main feature of the
studied Zr/Nb NMC is the predominant hydrogen localization in Zr layers near the interfaces. The
annihilation of positrons is shown to occur mainly in the Zr layers in the vicinity of the interface.

Keywords: nanoscale multilayer coatings; H+ irradiation; density functional theory; positron annihilation

1. Introduction

Nanoscale multilayer coatings (NMC) are increasingly used in power engineering,
electronics, mechanical engineering, optics, biotechnology, and other industries [1–6]. It is
caused by the possibility of significant modification of physical-mechanical properties and
corrosion resistance of structural materials. The layers’ thickness and composition varia-
tions can achieve higher strength, hardness, and form nanocomposite with a wide range of
functional purposes [7–11]. FCC/BCC metals are widely approved as radiation-resistant
NMC due to the high density of interfacial dislocations [7]. The recombination of vacancies
and interstitial atoms takes place during irradiation in the incoherent interfaces [12,13].
Some examples of such systems are Cu/Nb [10], V/Ag [9], Cu/W [8], Zr/Nb [14–17], etc.
For example, Cu/Nb nanolayers show very high stability under helium ion irradiation [18].
The Cu/V system might have a self-healing effect on radiation defects. The number of he-
lium bubbles in the ion deposition zone decreases with an increasing number of incoherent
Cu/V interfaces upon irradiation with He ions [19–21]. All these indicate that multilayer
coatings can be used as an advanced nuclear and aerospace material.

The largest structural discrepancy of crystal lattices has hexagonal-cubic systems
(hcp/bcc and hcp/fcc). Moreover, hcp/bcc systems have excellent potential for creating
radiation-resistant composites since a high discrepancy of crystal lattices is present. The
large discrepancy allows the incoherent and semi-coherent interfaces of hcp/bcc systems
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to be an effective sink for radiation defects and a barrier to dislocation propagation during
deformation, as shown in recent studies [22–27]. However, incoherent and semi-coherent
interfaces with distinctive crystallographic orientations, compositions, and structures
will likely have different sink efficiencies. Specifically, the radiation resistance of Zr/Nb
NMCs is actively investigated. Research of irradiation of NMC Zr/Nb by Si+ [26], C+ [28],
Cu+ [29], and H+ [15] ions also shows high radiation resistance of such nanocomposites.
Thus, irradiation by H+ ions largely imitates neutron irradiation making nanocomposite
NMS Zr/Nb potential material of active zones of nuclear reactors. In the Zr/Nb system, it
is possible to interface reconstruction (coherent⇔ semi-coherent⇔ incoherent) depending
on individual layer structure and irradiation conditions. However, most of the research is
focused on experimental studies of the microstructure and properties of nanoscale multilay-
ers systems. In contrast, only a few studies have discussed the first-principles calculations
of irradiated Zr/Nb NMCs. Density functional theory (DFT) calculation can help analyze
damaging mechanisms and strain distribution across Zr/Nb layers [15]. The incoherent
Zr/Nb interfaces have been considered in [22,29], but there are no such calculations for
the semi-coherent and coherent Zr/Nb interfaces. Establishing the relationship between
the type of interface, diffusion, and localization characteristics of ions and defects is an
intricate problem that requires concerted theoretical studies and experiments.

The purpose of this work is to perform the theoretical calculations and its comparison
with experimental study of the effect of H+ irradiation on the structural, phase state, and
defect structure of Zr/Nb NMC.

2. Materials and Methods
2.1. Sample Preparation

Polished monocrystal Si (111) plates with a thickness of 0.5 mm and a roughness of
<0.015 µm were used as a substrate. The Zr/Nb multilayers were deposited by magnetron
sputtering using two independent cathodes on a specialized facility developed at the
Weinberg Research Center of the School of Nuclear Science and Engineering TPU. The
individual layer thickness was 100 ± 20 nm, and the total coating thickness is 1.1 ± 0.1 µm.

The Zr/Nb NMC were irradiated with 900 keV H+-ions using an ESG-2.5 MeV elec-
trostatic generator (Research Institute of Nuclear Physics TPU, Tomsk, Russia) in TPU with
a beam current of 2 µA for 30 min (0.07 dpa according to “The Stopping and Range of Ions
in Matter” (SRIM) [30]). The stability of the beam current and energy is 0.02%. To obtain
a specified ion implantation profile in the Zr/Nb NMC multilayers, according to SRIM
calculations, an aluminum degrader with a thickness of 11 µm was used.

2.2. Experimental Methods

The structural and phase state was investigated by X-ray diffraction analysis (XRD)
on a Shimadzu XRD-7000S diffractometer (Shimadzu, Kyoto, Japan) in Bragg-Brentano
geometry with Cu Kα radiation (λ = 0.154 nm) [31]. The diffraction analysis was performed
at scan speed of 5.0◦/min and sampling pitch of 0.0143◦ with an exposure time of 42.97 s. To
obtain the structural parameters of the Zr/Nb NMC, XRD patterns were studied by Rietveld
analysis, where accuracy factors were ~8 for Rp and ~11 for Rwp. For microstrain and
coherent domain size calculation, the Williamson–Hall technique was used. Instrumental
broadening of 0.14◦ was taken into account. All calculations were performed in POWDER
CELL program [32]. The samples’ cross-sectional structure was studied by transmission
electron microscopy on a JEM-2100F (JEOL, Tokyo, Japan) transmission electron microscope
with a sample preparation system [33]. The samples were prepared by ion milling using an
EM-09100IS Ion Slicer (JEOL, Akishima, Tokyo, Japan). Argon was used as the working
gas, the accelerating voltage was 8 kV, and the etching angle was 1.5–4◦.

The layer-by-layer distribution of the Zr, Nb, and H was investigated using glow
discharge optical emission spectrometry (GD-OES) on a GD-Profiler 2 spectrometer (Horiba
Scientific, France) [34,35]. A two-method approach was used to correct the GD-OES spectra:
an initial instrumental selection of the sputtering parameters and a subsequent correction
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of the spectrum by exponential dependence approximation [36]. NMC Zr/Nb’s study was
carried out at the following parameters using a radio-frequency source: pressure 650 Pa,
power 40 W, frequency 1 kHz, duty cycle 25%.

The Doppler broadening spectroscopy using variable energy positron beam (DBS-
VEP) was conducted in the Dzhelepov Laboratory of Nuclear Problems, JINR in Dubna,
Russia [37,38]. The samples were measured in initial and irradiation state without any
additional preparation at room temperature. The obtained spectras include around 250k
counts. Positrons with energies varying from 0.1 to 30 keV were used, which correspond to
mean implantation depth from around 10 nm to 1 um, respectively. In the experiment, a
broadening of the annihilation line caused by the Doppler effect was monitored and the
line shape changes described by three commonly used parameters: S, standing for positron
annihilation with low energy, valence electrons; W, responsible for annihilation with core
electrons; and the R parameter for the graphical presentation of S = f(W) function [39–43].
The S parameter was calculated as the area below the central part of the annihilation line
to the total area below 511 keV line. Similarly, the W parameter was obtained as the area
of the wing part of 511 keV line divided by the total number of counts in the annihilation
line. The S and W parameters and their errors were obtained using an SP program using
the Gauss fitting option after background subtraction. These parameters change when the
positron is trapped in defect, and are also sensitive to the different chemical surroundings
of annihilation sites. For example, when a positron is trapped in a vacancy where there
is lower probability of annihilation with a high momentum electron, the S parameter
increases and W decreases. All measurements were performed using HPGe detector
model GEM25P4-70 (AMETEK ORTEC, Oak Ridge, TN, USA) with 1.20 keV resolution at
0.511 MeV line.

2.3. Ab Initio Calculations

Ab initio calculations were carried out within density functional theory using the
optimized norm-conserving Vanderbilt pseudopotential method [44], as implemented in
the ABINIT code [45,46]. The generalized gradient approximation (GGA) in the form of
Perdew, Burke, and Ernzerhof [47] was used to describe the exchange and correlation
effects. The cutoff energy for the plane wave basis was set to 15 Ha in the structural
optimization. The atoms in the system were assumed to be in the equilibrium configuration
when the force on each atom was below 10−3 Ha/bohr.

The present calculations were performed for pure Zr and Nb, Zr36H and Nb36H solid
solutions with hydrogen in tetrahedral or octahedral interstitial sites (Figure 1), Zr63Nb40,
and Zr63Nb40H slabs (Figure 2). The interface in Zr63Nb40 slab was formed by Zr (002) and
Nb (111) surfaces. The Zr and Nb slabs consist of 7 and 10 atom monolayers, respectively.
In Zr36H, Nb36H, and Zr63Nb40H systems H atom is located in the either tetrahedral (T) or
octahedral (O) interstitial sites. For a more convenient discussion of results, the T and O
sites in Figure 2b,c are enumerated. To carry out the structural optimization and relaxation
of the system considered, a cell with 36 Zr or 36 Nb atoms was adopted, and the k meshes
were chosen to be 3 × 3 × 3 for the hcp and bcc structures. For multilayer structures
Zr63Nb40, k meshes were chosen 3 × 3 × 1.
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To analyze the structural stability of the systems under consideration, the binding
energy of hydrogen in metals was calculated:

Eb = E(Zr36) + 1/2 × E(H2) − E(Zr36H), (1)

Eb = E(Nb36) + 1/2 × E(H2) − E(Nb36H), (2)

Eb = E(Zr63Nb40) + 1/2 × E(H2) − E(Zr63Nb40H). (3)

Here E(Zr36) and E(Nb36) are the energy of pure zirconium and niobium in the presence
of 36 zirconium/niobium atoms in the supercell; E(H2) is the energy of the hydrogen
molecule; E(Zr63Nb40) is the energy of the multilayer structure; E(Zr36) and E(Zr36H)are
the energies of the zirconium lattice without and with hydrogen atoms, respectively;
E(Nb36) and E(Nb36H) are the energies of the niobium lattice without and with hydrogen
atoms, respectively; and E(Zr63Nb40H) is the energy of the multilayer structure when there
is a hydrogen atom in it.

3. Results and Discussion
3.1. Microstructure of As-Deposited Zr/Nb Multilayer Coatings

Figure 3a demonstrates a STEM image of as-deposited Nb/Zr NMC cross-section.
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Figure 3. Cross-section STEM image (a) and EDS-mapping of Zr (yellow) (b) and Nb (pink) (c) layers of the as-deposited
Zr/Nb NMC.

It is clearly seen that a structure with alternating layers with a thickness of 100 ± 20 nm
was obtained as a result of deposition. According to EDS data, the formed structure is
represented by layers of zirconium and niobium with clearly distinguishable boundaries
(Figure 3b,c). A more detailed study of the transverse sections of the as-deposited Zr/Nb
NMC was carried out using transmission electron microscopy (Figure 4).

The corresponding selected area electron diffraction patterns (SAED) (Figure 4b)
show an appreciable number of reflections distributed over a circle. The SAED patterns
contain reflections from the different planes of the α phase of Zr and reflections of the
Nb(211)β plane. The microstructure of each Zr and Nb layer is represented by nanoscale
columnar grains, the average size of which varies from 20 to 50 nm. Grains in layers grow
perpendicular to the substrate (Figure 4a). High-resolution TEM micrographs show an
incoherent interface between Zr and Nb (Figure 5).
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Figure 6 presents the diffraction patterns for as-deposited and irradiated Zr/Nb NMC
obtained for samples’ surface.
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Diffraction analysis showed that Zr layers are more susceptible to the formation
of macro- and microstrains during deposition and irradiation. It can be seen from the
pattern that the diffraction peaks are considerably broad, and values of full width on half
maxima (FWHM) for Zr(100) and Zr(002) peaks are larger than for Nb (110), 0.9◦ and
0.67◦ against 0.58◦. Peak broadening is usually attributed to large microstrain and small
coherent diffraction domain size. For as-deposited Zr layers, the calculated microstrain
and coherent diffraction domain sizes were 0.0073 and 9.9 ± 2.5 nm. Due to the high
(110) texture of Nb layers, it is impossible to separate the contribution of microstrain and
coherent diffraction domain size to peak broadening. Structural analysis from diffraction
data revealed the presence of distortions in the crystal lattice, indicating macrostrains in
as-deposited and irradiated Zr/Nb NMC. Macrostrains are especially pronounced for
Zr layers; the hexagonal lattice parameters for as-deposited NMC were the following:
a = 3.162 Å, c = 5.129 Å, which is 2.2% and 0.4% lesser than ideal lattice parameters for bulk
Zr (a = 3.232 Å, c = 5.147 Å) [48]. For Nb layers, cubic a parameter was 3.278 Å (0.9% lesser
than ideal a = 3.306 Å [49]). After 30 min of irradiation, minor changes in the diffraction
pattern were noticed. A slight decrease in the lattice parameters was observed for the Zr
and Nb layers, the values of which are as follows: a = 3.158 Å and c = 5.126 Å for Zr, and
a = 3.276 Å for Nb. Additionally, an increase in FWHM value was noticed for Zr(100) to
1.07◦, for Zr(002) to 0.7◦, and for Nb(110) to 0.6◦. Thus, for irradiated Zr layers, microstrain
increased to 0.008, and coherent diffraction domain size decreased to 9.1 ± 2.4 nm.

3.2. First-Principles Calculations of Zr/Nb Multilayer Coatings

The calculated lattice parameters of pure Zr and Nb, Zr36H, and Nb36H solid solutions
are presented in Table 1. These theoretical results are in good agreement with the results
of experiments and previous theoretical works [22,23]. To form the supercell of Zr63Nb40
slab, we decreased the theoretical lattice parameters of pure Nb and increased the lattice
parameters of pure Zr until the total supercell energy became minimal. As a result, the
supercell Zr slab have parameters a = 3.165 Å and c = 5.160 Å, and the Nb slab have
parameter a = 3.341 Å. The distance between the Zr (002) and Nb (111) atomic layers in the
interface was optimized. The equilibrium distance is equal to 2.215 Å, which is slightly
lower than the result obtained in the previous theoretical work [24]. Finally, the atom
positions in the three Zr and five Nb atomic layers nearest to the interface were relaxed. It
was found that the Zr atom shifts near the interface are significantly higher than the Nb
atom shifts. For example, the maximum atom shifts in the first Zr and Nb atomic layers
are 1.090 Å and 0.348Å, respectively. In the second Zr and Nb atomic layers, these shifts
reach 0.869 Å and 0.229Å, respectively. The Zr and Nb atom shift values in other relaxed
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atomic layers are close to each otherand do not exceed 0.2 Å. This fact partially explains
microstrain studies’ results: the Zr layer’s deformation is noticeably higher than that of
the Nb.

Table 1. The theoretical lattice parameters of pure Zr and Nb, Zr36H and Nb36H solid solutions.

System
Lattice Parameters, (Å)

Actual Work Other Calculations

Zr
a = 3.228 a = 3.213 [22]

c = 5.195 c = 5.157 [22]

Zr36H
(H atom in T site)

a = 3.229 a = 3.245 [22]

c = 5.203 c = 5.218 [22]

Zr36H
(H atom in O site)

a = 3.228 a = 3.240 [22]

c = 5.199 c = 5.203 [22]

Nb a = 3.292 a = 3.32 [23]

Nb36H
(H atom in T site) a = 3.294 –

Nb36H
(H atom in O site) a = 3.294 –

The results of the hydrogen binding energy calculation in solid solutions and slab
are presented in Table 2. The calculated hydrogen binding energy in zirconium is in good
agreement with the results of previous theoretical work [22].

Table 2. The hydrogen binding energy in Zr36H and Nb36H solid solutions, Zr63Nb40H slab.

Site Eb, (eV) Site Eb, (eV) Site Eb, (eV) Site Eb, (eV)

Zr36H Solid Solution Nb36H Solid Solution

T 0.459
0.45 [22] O 0.409

0.35 [22] T 0.380 O 0.160

Zr63Nb40H slab

O1 0.970 O4 0.765 O7 0.731 T21 0.768

O2 0.758 O5 0.769 O8 0.748 T22 0.713

O3 0.800 O6 0.762 O9 0.672 T23 0.511

T1 1.007 T8 0.786 T14 0.760 T24 0.554

T2 0.822 T9 0.809 T15 0.697 T25 0.498

T3 0.656 T10 0.551 T16 0.649 T26 0.349

T4 0.816 T11 0.963 T17 0.513 T27 0.517

T5 0.788 T12 0.832 T18 0.752 T28 0.477

T6 1.035 T13 0.655 T19 0.644 T29 0.486

T7 0.653 - - T20 0.618 T30 0.488

The maximum binding energy corresponds to the tetrahedral coordination of a hydro-
gen atom in both metals. It should be noted that in the case when the hydrogen atom is
located in the O site of niobium, even its small displacements from the center of this site
lead to the appearance of force that shifts the H atom to the nearest T site. This indicates
the instability of this hydrogen position in niobium. As a result, in the Zr63Nb40H slab,
we considered the location of an H atom in T and O sites of the Zr layer and in T sites of
the Nb layer. The maximal value of hydrogen binding energy is observed in the T6 site
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in the first Zr atomic layers (see Figure 2c). It should be noted that the binding energy
values are varied in a wide range for each metal atomic layer. In the first Zr atomic layers,
this range is from 0.653 to 1.035 eV for tetrahedral coordination and from 0.758 to 0.970 eV
for octahedral coordination of hydrogen atoms. However, the average value of hydrogen
binding energy per metal atomic layer is decreased with an increase in distance between
the atomic layer and interface (Figure 7). In the Zr layer, this decrease is slower than in the
Nb layers.
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3.3. Depth Profiling and Defect Characterization of Zr/Nb Nanoscale Multilayers after
H+ Irradiation

Figure 8 presents the element distribution profiles for as-deposited and irradiated
Zr/Nb NMC.
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Figure 8 shows a GD-OES profile of the Zr/Nb multilayer system consisting of five
Zr-layers approximately 80 ± 10 nm thick and five Nb-layers with 100 ± 10 nm thickness,
which agrees well with the STEM results (Figure 3). The transient areas between layers
present in the GD-OES profiles are related to the crater effect [36,50,51]. The Zr/Nb
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interface near the Si substrate was not considered. Trace amounts of hydrogen are present
in the unirradiated material, and hydrogen is mainly localized in the Nb/Zr interface area.
The main changes in the relative GD-OES curves are associated with the accumulation
of hydrogen ions. The hydrogen concentration maximum occurs at a depth of ~800 nm,
which corresponds to the Bragg peak for H+ ions, according to SRIM calculations [15].
The hydrogen distribution has a multimodal character, with local maxima of hydrogen
concentration observed at the Nb/Zr interfaces, while the accumulation on Zr/Nb is much
lower. The intensity ratio of the H line for the Nb/Zr and Zr/Nb interfaces is approximately
1:2, and the hydrogen concentration at the Zr/Nb interface is almost equal to the hydrogen
concentration in the bulk of niobium. Moreover, hydrogen predominantly localizes in the
zirconium layers, which agrees well with the first-principles calculations (Figure 7), which
showed that near the Zr/Nb interface, the hydrogen binding energy in the zirconium
atomic layers is significantly higher than in the niobium atomic layers.

The DBS-VEP analysis of the annihilation line in Zr/Nb NMCs is shown in Figure 9.
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annihilation with low momentum electrons (it increases with defects concentration and is higher for Zr than Nb), and W is
responsible for positron annihilation with high momentum electrons.

Because the depth of positron implantation nonlinearly changes with increasing
energy, only the first layers (from the top surface) of niobium and zirconium have been
entirely examined. The S parameter for niobium is about 0.507 ± 0.004 and increases
when positrons annihilate in Zr. In unirradiated samples at positron energies from 4 to
26 keV, the S parameter value is about 0.525 ± 0.005. The W parameter also changes
weakly in this energy range, which shows that positrons beginning from energy 4 keV
start annihilate in the zirconium area. The dependence S = f(W), shown in Figure 10, also
confirms this assumption.

The number of positron annihilation in Zr may be higher due to the selective positron
trapping [52] in the multilayer system caused by the positron affinity of zirconium which
is 26% bigger than for niobium [53]. However, suppose the thickness of individual layers
is about 100 ± 20 nm, and the average positron diffusion length is comparable with
nanocrystallites’ size-32 ± 15 nm. In that case, it is unlikely that all positrons annihilate
only in Zr. Therefore, the obtained value of 0.525 ± 0.005 should be assigned to the mixed
state of the S parameter value of pure Zr and Nb, which is closer to pure Zr value due to
lower Nb positron affinity.
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To reveal the influence of the Zr/Nb interface on peculiarities of the distribution of
positron annihilation, a comparative analysis of the electron density distribution in the
interface vicinity of Zr63Nb40 slabs was performed. Figure 11 shows that the electron
density distribution near the interface is not homogeneous on both the Zr and Nb layers.

There are areas of a reduced electron density (*) in the Zr atomic layers near the
interface. With increasing distance from the interface, the number of these areas increases,
but their size decreases. The niobium atomic layers are almost entirely devoid of such
areas. The appearance of such areas in the Zr atomic layers is due to high Zr atom shifts
to the interface. In the fourth Zr atomic layer, where atoms are located at the ideal hcp
lattice site, such areas are not observed. Thus, positron annihilation near the interfaces will
mainly occur in the zirconium area. A detailed study of reduced electron density areas
requires a positron lifetime spectroscopy analysis.

After irradiation with H+ ions for 30 min in Zr/Nb NMC, a slight decrease in the
S parameter and W parameter growth in the Zr and Nb first layers are observed. That
indicates a reduction of free volume in these layers. Moreover, in the Zr layer, these changes
are more pronounced. A further increase in the positron implantation depth does not lead
to significant variations in the DBS parameters. The indicated relative changes in DBS
parameters (S↑W↓) are observed during hydrogen-vacancy complexes formation in hcp
materials [54,55]. However, in this case, S0 < SH < SVAC, where S0 corresponds to the initial
material, SH to the hydrogenated material, and SVAC to the material with vacancies. It is
also shown in [55] that the S parameter decreases and W increases compared to the initial
value is possible with H accumulation in the material.

In order to reveal the influence of hydrogen on the interaction between zirconium and
niobium atoms in the interface, a comparative analysis of the electron density distribution
in the interface vicinity of Zr63Nb40H slabs with H atom in the most energetically favorable
octahedral (O1) and tetrahedral (T6) positions was performed (Figures 12 and 13).
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Figure 11. Electron density distribution in the interface vicinity of Zr63Nb40 slab (a) and in the first Zr (b) and Nb (c)
atomic layers. The blue and gray isosurfaces in panel (a) correspond to a charge density of 0.02 and 0.05 electrons/Bohr3,
respectively. The areas of a reduced electron density in the Zr (b) and Nb (c) atomic layers are marked with (*). Color
gradation scale in the (b,c) panels is given in electrons/Bohr3 units.
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Figure 12. Electron density distribution in the interface vicinity of Zr63Nb40H slab with H atom in tetrahedral (T6) site (a)
and in the first Zr (b) and Nb (c) atomic layers. The blue and gray isosurfaces in panel (a) correspond to a charge density of
0.02 and 0.05 electrons/Bohr3, respectively. The areas of a reduced electron density in the Zr (b) and Nb (c) atomic layers
are marked with (*). Color gradation scale in the (b,c) panels is given in electrons/Bohr3 units.

Hydrogen placed at the favorable T6 (Figure 12) or O1 (Figure 13) positions has a
minor effect on the electron density distribution near the Zr/Nb interface. The reduced
electron density area configuration is changed. The presence of hydrogen atoms in O1 or
T6 position increases the electron density by ~5–10% of this area in the Zr and Nb atomic
layers nearest to the interface and slightly reduces the size of these areas in the second and
third Zr atomic layers. Such variations will not significantly affect the positron annihilation
parameters shown in Figures 9 and 10. All experimental points on the S = f(W) dependence
before and after irradiation are on the same straight line, indicating one prevailing type of
positron trapping—the free volume near the interface in the vicinity of zirconium.
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4. Conclusions

In this work, a Zr/Nb nanoscale multilayer system before and after H+ irradiation
was investigated by combining different experimental techniques with first-principles
calculations. A multilayer Zr/Nb system with individual layer thicknesses of 80 ± 10 nm
and 100 ± 10 nm for Zr and Nb, respectively, was formed using magnetron sputtering.
Microstructures are characterized by nanoscale columnar grains with an average size
from 20 to 50 nm. XRD analyses revealed the presence of macro-and microstrains in the
Zr/Nb NMC. These strains are noticeably higher for Zr layers because, according to the
first-principles calculations, the Zr atom shifts from the ideal lattice site near the interface
are significantly higher than Nb atom shifts. Irradiation with 900 keV H+ ions for 30 min
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leads to an intense accumulation of H in the metal atomic layer near the Nb/Zr interfaces
due to the highest hydrogen binding energy. The decrease in the average hydrogen binding
energy per metal atomic layer with an increase in distance between the atomic layer
and interface is slower in the Zr layer than in the Nb layer. That clearly explains the
predominant hydrogen localization in Zr layers and increasing microstrains observed by
GD-OES and XRD methods. The DBS-VEP analysis results do not indicate an increase in
defect concentration after H+ irradiation across the coating thickness. Before and after
irradiation, positrons annihilate near the interfaces, mainly in the Zr vicinity, due to high
positron affinity and the presence of reduced electron density area due to high Zr atom
shifts to the interface.
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