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1. Introduction 

 

Recent activities in the hydrogen bond ( -bond) 

research indicates unabated interest on this type of interactions 

having a key role in many physical or chemical and 

biochemical processes, crystal engineering, technologically 

relevant materials, etc [1-4]. Because of its abundance and 

importance in the molecular world and beyond there is 

continual debate on definition of the term " -bond" in general 

[5,6]. Quantitave estimations of its strength, subtle influence 

of media to it, cooperativity and proton/deuteron transfer 

effects [7-9] are in focus of investigations too. Really boosting 

interest is observed in short strong -bonds [10,11]. The 

detailed understanding of short and very short -bonds with 

large-amplitude proton dynamics is challenging task that 

requires joint efforts of the best available experimental 

techniques and the most advanced theoretical treatments [12-

15]. Pyridine -oxide ( ) or its derivatives [16] in the 

complexes with various acids can be used as very convenient 

model systems to improve the understanding of the nontrivial 

physical features of short -bonding [10,17,18]. Such systems 

exhibit in many cases very asymmetric and rather flat -bond 

potentials, which allow large-amplitude proton motion with 

the possible proton transfer through such linkages [10,11]. The 

pyridine -oxide/trichloroacetic acid ( ) complex 

has been chosen for studies in the present work for several 

reasons. Firstly, high-quality neutron- and X-ray diffraction, 

as well as some basic vibrational spectroscopy using inelastic 

neutron scattering [10 and the Refs therein] and infrared 

absorption [18] data are available for this system. Secondly, 

the results of several DFT computational models covering 

range from the isolated gas phase clusters to periodic 

boundary conditions, viz. CPMD, CRYSTAL and VASP. 

Thirdly, using B3LYP and PBE0 functional with the 

polarizable continuum model (PCM) to model bulk effects of 

the acetonitrile solvent have been published [10,18,19]. 

However, in all these cases the vibrational frequencies were 

calculated in harmonic approximation. 

The literature sources on computations of the IR 

spectra even for the simplest complexes with a hydrogen bond 

using the anharmonic approximation are just a few available. 

Analyzing the spectral region of  stretching vibrations 

in the complexes [20]  and 

, the authors have restricted themselves to 

computations of the cubic force constants and demonstrated a 

good correlation with the experiment. Such good correlation 

can be explained by the fact that a hydrogen bond in such a 

system is weak - the absorption band of  stretch in these 

complexes in gaseous samples [21] is located close to 

. Based on analysis of the in- and out-of-plane 

hydroxyl group bending vibrations in monomeric and dimeric 

benzoic acid, the authors [22] have indicated that the 

anharmonic approximation fails in computations of the 

frequencies for out-of-plane vibrations. They necessitate the 

computation of the 1D and 2D potential surfaces, associated 

with these vibration, by means of numerical solution of 

Schrödinger equation. Similar 3D computations have been 

performed for analysis of the  bond stretching vibrations 

in the cyclic dimer of formic acid [23]. The potential surface 

exhibits two minima separated by the potential barrier. 

Presence of the barrier is reason for various peculiarities of IR 

and Raman spectra of such complexes. It is to be noted that 

detailed comparison of computational results in harmonic and 

anharmonic approximations does not exist till now. The 

situation is even more complicated in the case of complexes, 

where the intermolecular hydrogen bonds are short or very 

short. As it is noted in [10], INS and IR spectra of the complex 

under study and DFT computations of the vibrational spectra 
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in the harmonic approximation provide no conclusive 

information concerning the stretching vibration of a hydroxyl 

group. According to [24], shortening of the distance between 

 atoms in the chain  is accompanied by shift of a 

hydrogen atom towards the half distance between  atoms. 

From the results of  computations [24], just 

this symmetric position is occupied by a proton in complexes 

of the type ,  and , where 

the distance  is less than . Owing to a simplified 

form of the potential, the harmonic approximation gives quite 

adequate predictions for frequencies of stretching vibrations of 

the hydroxyl group [24]. It is expected that the most serious 

difficulties in vibrational analysis of a hydroxyl group may 

arise in complexes with medium and short lengths of the 

hydrogen bridge . The complex studied is 

compound of such a type. It is important to compare the 

computational results for the hydroxyl group vibrational 

frequencies in harmonic and anharmonic approximations with 

the data obtained using 1D, 2D computations of the potential 

surfaces as well as to combine the advantages of both 

methods. 

 

2. Computational methods 

 

Computations of the spectral and structural 

characteristics of  and  were performed using 

the package GAUSSIAN 09 [25] in the approximation 

.  is one of the approaches in a 

density functional theory (DFT) designed to include the 

exchange and electron correlation effects. This approach is a 

well known and widely used as a hybrid method combining 

five functionals: Three of them take into account the exchange 

effects (Becke + Slater + HF) and two of them (B3LYP + 

VWN5) take into account electron correlation [26-28]. A 

series of the correlation-coordinated and valence-split sets of 

the Dunning basis functions [29] having the general form 

, where  and so on, consistently 

approach a complete set of basis functions. As shown by our 

previous studies, computations in the approximations 

 and  reproduce well 

frequencies of the harmonic vibrations and the shape of the 

potential-surfaces for some organic molecules [30,31]. In the 

process of optimization of the geometry for these compounds, 

the fact that minima on the potential surface were reached has 

been supported by the absence of imaginary frequencies in 

vibrational spectra. IR spectra of these compounds were 

computed in the harmonic and anharmonic approximations. In 

case of the latter the frequency shifts of the fundamental 

vibrations due to Fermi and Darling-Dennison resonances 

were included as well. The potential energy distribution (PED) 

of the normal modes were calculated using standard options of 

GAUSSIAN 09 package [25]. The equilibrium configuration 

of the complex, atomic numbers, and positions of the 

Cartesian axes are shown in Figure 1.  

As seen in Figure 1,  axis is practically parallel to 

the hydroxyl bond lying in the plane . It is clear that 

motion of the hydrogen atom along the axis  may be 

associated with the stretching vibration, whereas its motion 

along the axis  may be associated with the in-plane and 

along the axis  -- out-of-plane bending vibrations of the 

hydroxyl group. During the computations it was assumed that 

motion of a hydrogen atom is independent of other atoms in 

the molecule within the potential field formed between two 

oxygen atoms. We have computed the complex energies at 

more than 300 points by positioning the atom  at the 

certain nodes of 1D and 2D meshes, without geometrical 

optimization of the complex for the remaining geometrical 

parameters. 

 

3. Results of harmonic and anharmonic computations of 

IR spectra for PyO.TCA complex 

 

As evidenced by the computations, the eight 

membered cycle of the complex is not flat. The dihedral angle 

between the plane of a pyridine ring and the plane, where the 

atoms , , , , and  are located is . The 

distance between the oxygen atoms is short - . Proton 

is far from the middle of the distance between oxygen atoms 

(bond length of a hydroxyl group is  and length of the 

hydrogen bond - . The computed angle of 

 comes to . In order to find in the 

 approximation, the value for the red shift of the 

stretching vibration of the hydroxyl group when the complex 

is formed, geometrical optimization was performed and the 

fundamental vibration frequencies were computed in the 

harmonic and anharmonic approximations for a molecule of 

trichloroacetic acid (see Figure 1, atoms 13 - 20). Values of 

the vibrational frequencies of a hydroxyl bond for  

molecule and  complex are listed in Table 1. 

According to the computations, more than 99% of the 

PED of the sixth mode with the frequency  is 

related to the hydroxyl group stretching vibration. In this way 

in the harmonic approximation the vibration is highly 

localized, i.e. it is not mixed with the other normal modes. 

Bending vibrations of the hydroxyl group in the complex take 

part in several normal modes. The principal contributions into 

PED of in-plane and out-of-plane bending vibrations of  

group are associated with the normal vibrations at the 

frequencies  and  which are as large as 

70% and 65%, respectively. As seen from Table 1, when the 

complex is formed, , is subjected to a significant 

bathochromic shift ( ), being indicative of the 

hydrogen bond strength. Both in the acid monomer and in the 

complex this vibration is anharmonic but a degree of 

anharmonicity in the complex is considerably higher (the ratio 

 in trichloroacetic acid is 5.3% for the acid while it is 

21.9% for the complex). Analysis of the anharmonic constants 

 allows us to conclude that the major factor determining 

 
 

Figure 1. Pyridine and trichloroacetic acid complex with 

indication of atomic numbers and Cartesian axes directions. 
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considerably lower frequencies of the fundamental stretching 

vibration of  bond as compared to the harmonic value is 

anharmonicity of this vibration per se. Indeed, the value 

 is much higher than all other 

anharmonicity constants. Besides, there is an anharmonic 

force interaction of the modes associated with stretching and 

bending vibrations of a hydroxyl group. But in the case of 

interaction with the in-plane bending vibration the frequencies 

of both vibrations are lowered ( ), while 

the interaction with an out-of-plane bending vibration leads to 

an increase in the frequencies of both vibrations (

). So, a partial compensation for the interaction 

effects on the frequency of the  stretching vibration 

takes place. One should remember that non-diagonal 

anharmonicity constants have the weighting factor  

relative to the diagonal constants during computations of 

frequencies for fundamental vibrations [32]:  

 

                                        (1) 

 

where  - harmonic frequency of the -th fundamental 

vibration. Anharmonicity of the out-of-plane bending 

vibrations associated with acid is greater than that of the 

complex: the value of  for the acid comes to 11.9% and for 

the complex - to 4.4%. The latter is due to the fact, that the 

formation of the hydrogen bond results in a higher barrier of 

the internal rotation of a hydroxyl group about  bond. As 

 and , 

anharmonicity of the potential curve along the axis  should 

be lower than that along the axis . The anharmonic 

interaction of the modes of bending vibrations is low (

). Thus, a frequency decrease of the in-plane 

bending vibration is primarily caused by the anharmonic 

interaction with the stretching vibration of a hydroxyl group. 

At the same time, red shift of the out-of-plane bending 

vibration could be greater, but for the force anharmonic 

interaction of this mode with . 

 

4. 1D potential curves 

 

The motion of the hydrogen atom between the 

oxygen atoms may be described in different ways. Firstly, one 

can use the normal modes as coordinates [22]. In this case the 

motion of the  atom may be accompanied by motions of 

other atoms and entire fragments of the complex. The reduced 

mass and potential energy are calculated at the mesh for 

various mode amplitudes. Secondly [33], the complex 

geometry may be optimized at every displacement step of H 

along one of the axes ,  or . In this case the moving proton 

follows the path of minimal energy and its motion may also be 

accompanied by the motion of other atoms in the complex. 

Thirdly [34,35], it is supposed that the motion of the hydroxyl 

hydrogen atom does not contribute to other fundamental  

vibrations and hence the potential energy of the complex at the 

mesh of the displaced positions of  may be computed 

without the geometry optimization. When used for different 

molecular complexes, all these three approaches exhibit good 

agreement with the experiment. Because of this, selection 

must be performed with due regard for the features of a 

problem at hand. As noted in [33], the second approach may 

be associated with a problem of inertia of the molecular 

fragments. As a consequence, this approach is more 

appropriate for light carboxylic acid studied in [33] than for 

the complex under study in this work. Since the normal mode 

for the stretching vibration of a hydroxyl group is by 99% 

attributed to changes in the length of  bond, the first and 

second approaches in essence become similar. Considering 

that the modes of bending vibrations of a hydroxyl group are 

mainly attributed to changes in the corresponding valence and 

dihedral angles, the authors have chosen the third approach to 

describe the motion of the hydroxyl group in the studied 

complex. As already mentioned, the stretching vibration of the 

hydroxyl group was associated with the motion of a hydrogen 

atom along the axis .  

The energies were computed in the approximation 

 for the displacements by  in the 

direction of the valence-bonded oxygen and by  in the 

direction of the acceptor oxygen. In between the energy was 

computed at the points having a spacing of . Along the 

axes  and  the amplitude of displacements was , 

again with the spacing . Positions of all the atoms, 

excluding the hydroxyl hydrogen atom, were consistent with 

the optimized configuration. Figure 2 shows the potential 

energy of the complex as a function of the hydrogen atom 

displacement along the axis . As seen from Figure 2, there is 

single minimum at the equilibrium position. The curve is 

highly asymmetric, but asymmetry of the potential being not 

so significant at the energies within the interval from  to 

. Within the energy interval from  to 

 a slope of the cure at the left is drastically 

 

Table 1. Frequencies of harmonic and fundamental vibrations and of the first overtones for a hydroxyl group in TCA molecule and 

PyO.TCA complex. 

 

Vibra- 

tion 

modes 

TCA PyO.TCA 

Harmonic 

frequency 

Fundamental 

frequency 

Overtone 

frequency 
Number of 

fundamental 

vibrationa 

Harmonic 

frequency 

Fundamental 

frequency 

Overtone 

frequency 

 ( ) ( ) ( ) ( ) ( ) ( ) 

   
3748.3 3548.6 6922.5 6 2822.4 2203.6 3783.0 

  
1361.4 1345.6 2240.1 12 1488.5 1417.6 2833.0 

  
549.3 484.1 927.4 23 1003.3 959.4 1839.0 

    aNumber of fundamental vibration in complex, involving hydroxyl group 
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diminished, that in this case should lead to convergence of the 

stationary energy levels. Then a slope of the function at the 

left is raised again and hence we could expect an increase in 

the spacing between the energy levels above . The 

relationship between the potential energy of the complex and 

the hydrogen atom displacement along the axes  and  is 

shown in Figure 3.  

It can be seen in Figure 3 that the potential functions 

are much more symmetric having nearly parabolic shape. The 

later is especially true for the  function. Based on the 

energy values computed at the nodes, the potential function 

was approximated using Mathematica package [36] by the 

fourteenth-degree (  coordinate) and eighth-degree (  and  

coordinates) polynomials expressed as . A 

search for the stationary energy states in the case of 1D 

potential wells was realized in two ways. The first approach is 

described in [37] and used for the 1D case only. The 

Schödinger equation takes the form:  

 

                          (2) 

 

Here and hereinafter  is assumed as any of the 

dimensionless variables , ,  defined as ; . 

And the constant  is given as . 

Using (2), we can express the second derivative of the wave 

function as follows:  

 

                                        (3) 

 

where  and the derived polynomial 

presentation of the potential function is used as . The 

variability domain of  ( ) was divided into 

equal segments  to meet , where  and 

. Specifying the first-segment-beginning coordinate , 

for the coordinate of the -th segment ending we have 

, where  takes the numerical values from  to . 

Then the initial values of  and  are given. The 

value of  is computed from (3). Next, the values of the 

wave function and its first derivative are computed at the end 

of the first segment using the following formulas:  

 

 

  

 

The process is repeated until  becomes greater than 

. To capture and to find a position of the stationary energy 

level, we use the fact that the wave function is divergent in 

different directions beyond the boundary of a potential well 

for the energies over and below the stationary level energy. 

Zeros checking embedded into the algorithm for the wave 

function allows one to exclude the omission of some 

stationary state. Written in the Fortran, this program was 

tested for the harmonic oscillator and the oscillator with Morse 

and Slater potentials having an analytical solution. The 

computed energies of stationary states and the frequencies of 

some transitions for three potential wells are listed in Table 2.  

Note that the level arrangement at the potential well 

associated with the motion along the axis  (see Table 2) is in 

a complete agreement with the foregoing quantitative 

considerations based on the potential curve form. 

Now we proceed to the second approach to solution 

of the type (2) Schrödinger equation. The previously derived 

polynomial representation of the potential energy function was 

used for the Fourier-series expansion of the following form:  

 

                          (6) 

 

where  is still the variability domain of  coordinate but the 

value of  is different from that used in the first approach. 

Here the initial and the final value of x was selected 

proceeding from the requirement for approximate equality of 

the energies at these points and for the energy value sufficient 

to determine reliably the energies associated with several most 

deeply-lying stationary states. From Figures 2 and 3 the initial 

and the final values of  were determined as  and ; 

 and ;  and  for , , and . The wave 

function is derived as:  

 

          

                          (7) 

 

 
 

Figure 2. Potential energy of the complex as a function of the 

hydrogen atom displacement along  axis. 

 

 
 

Figure 3. Potential energy of the complex as a function of the 

hydrogen atom displacement along Y, Z axis. 
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Substituting (6) and (7) into (2), we can form the 

nominally infinite Hamiltonian matrix that must be truncated 

for some finite value of  in (7), sufficient for stabilization of 

some smallest eigenvalues. This solution is given in greater 

detail in [38]. Table 3 presents the stationary level energies 

and the frequencies of some transitions for three potential 

wells computed by this method using the Mathematica 

package [36]. Based on comparison of the data in Tables 2 and 

3, we can state that as a whole there is a good agreement 

between the computational results of two approaches. This is 

especially true for the fundamental vibrational frequencies. 

The best correlation of the energy level positions is observed 

for the most symmetric potential well associated with the 

motion of a hydrogen atom along the axis . For two 

remaining potential wells we can observe the tendency for the 

increasing divergence in the computational results in two 

approximations with the growing energy of the levels. This 

may be attributed to a significant asymmetry of these potential 

wells. Consequently, representation of the potential energy as 

a Fourier series becomes complicated, Gibbs beats occur to 

increase the computational errors. As a whole, the first 

approach is preferable as an asymmetric aperiodic potential 

may be better approximated both at the specified points and 

between the points with the use of power polynomials. 

Comparing the results in Tables 1-3, as a whole, we can point 

to a satisfactory agreement between the fundamental vibration 

frequencies of a hydroxyl group and their overtones, computed 

in the anharmonic approximation, and the frequencies for the 

corresponding vibrations, computed using the two numerical 

methods.  

 

5. 2D potential surfaces 

 

The potential energy values in the plane , where 

 is understood as any of the planes ,  or , 

were computed at the nodes of a 2D mesh with a spacing of 

 for each of the coordinates. The computational area was 

represented by a rectangle the boundaries of which were 

determined by the requirement to embrace the contour with a 

specified energy sufficient for finding the positions of some 

deepest-lying stationary levels. For every plane, the energy 

was computed at more than 100 points. Further computations 

were performed using the Mathematica package [36]. First, 

the potential surface was approximated by a power polynomial 

of the form:  

 

                                                      (8) 

 

where  and  were derived proceeding from the requirement 

for minimization of the root-mean-square discrepancies in the 

energy at the mesh nodes, not exceeding a maximum degree of 

the polynomials found in the process of 1D computations for 

every coordinate. With the use of the analytical expression 

thus obtained for the 2D potential energy (8), the mesh at the 

initial rectangles was congested. Using (8), we have computed 

the energy at the points between the nodes so as to provide for 

each of the axes a spacing less than . These points, along 

with the initial ones, were used to approximate the potential 

surface with the help of 2D Fourier series of the following 

form:  

 

                

                                                                                                (9) 

where  and  - lengths of the rectangle sides along the axis 

 and , respectively. The form of the computed 2D potential 

surfaces is demonstrated in Figure 4.  

As seen in Figure 4, complexity of the potential 

surfaces is growing as follows: . The 

wave function takes the form:  

 

          (10) 

 

A Schrödinger equation is of the following form:  

 

 

                                                                                 (11) 

 

Substituting (9) and (10) into (11), we can construct a 

Hamiltonian matrix and then use the solution presented in 

[38]. The resultant frequencies for fundamental vibrations of a 

hydroxyl group are listed in Table 4.  

 

Table 2. Computed energies of the stationary states and frequencies for some transitions caused by the hydroxyl group vibrations (first 

approach).  

 

The energies of the stationary states Frequencies of transitions 

Level 

number 
 

( ) 

 

( ) 

 

( )  

Transitions  

( ) 

 

( ) 

 

( ) 

  1306.6   705.7   504.1      2269.3   1415.9   1034.4  

  3575.9   2121.6   1538.5      1697.8   1428.3   1082.9  

  5273.7   3549.9   2621.4      1432.4   1436.3   1119.7  

  6706.1   4986.2   3741.1      1606.1   1439.7   1146.0  

  8313.1   6425.9   4887.1      1794.5   --   --  

  10107.7   --   --      1955.7   --   --  

  12063.4   --   --      3967.1   2844.2   2117.3  
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 Based on analysis of the data in Tables 2-4, we can 

conclude that, despite the absence of the kinematic interaction, 

there is a force interaction for the two-dimensional motion of a 

hydroxyl hydrogen atom. In Figure 4(b,d,f) the profile for the 

constant energy of zero vibration is black and the profiles for 

fundamental vibrations with lower and higher frequency are 

blue and red, respectively. Most simple profiles elliptic in 

form are characteristic for vibrations within the plane  

(Figure 4f). The forms of profiles within the planes  and 

 (Figure 4(b,d)) point to a higher vibration amplitude. 

This is supported by the wave functions associated with the 

 group fundamental vibrations (Figure 5). As seen from 

Figure 5(a,b), two maxima of the square wave function for the 

 group bending vibrations are positioned along the axes 

 and , symmetrically about the origin of coordinates. In the 

case of the hydroxyl group stretching vibration, two maxima 

of the  are non-equivalent. Coordinates of the global 

maximum  within the planes  and  are as follows: 

( ). There is a non-zero probability that a proton 

may be found for the values of  up to . Coordinates of 

the second maximum within these planes are ( ), 

and the probability of finding a proton for  is zero.  

Besides,  in  the  case  of    there is a  non-zero  probability 

 
 

a b 

  

c d 

  

e f 

 

 

Figure  4. 3D and 2D potential surfaces associated with the motion of a hydroxyl hydrogen atom within the planes XOY (a,b), XOZ (c,d), 

and YOZ (e,f).  
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of finding a proton for significant nonzero values of  and 

especially of  (Figure 5(c,d)). 

 

6. Results and Discussion 

 

Earlier we have compared the frequencies obtained 

for fundamental vibrations of a hydroxyl group in the 

anharmonic approximation to the results of 1D computations, 

though such a direct comparison is somewhat incorrect. It 

seems better to compare the 1D computational results with the 

value predicted by the anharmonic approximation for a single 

coordinate:  

 

                                                    (12) 

 

Considering that , 

, , and 

, , 

, with the use of (12) we derive the following 

frequencies: , 

, . Comparison of the 

latter three values with the data in Tables 2 and 3 (transition 

) reveals that the anharmonic approximation 

underestimates the frequencies of stretching and out-of-plane 

bending vibrations of a hydroxyl group and overestimates the 

frequencies of an in-plane bending vibration. Values of the 

frequencies  and  are decreased on going from 1D , 

1D  to 2D  computations approximately by  and 

, respectively.  

Qualitatively, such a behavior corresponds to the 

value , according to which the 

anharmonic interaction of these modes should lead to lowering 

of the vibration frequencies by . As 

, in the anharmonic approximation the interaction 

of deformation modes is insignificant and should result in the 

lowered frequencies of both modes - by . From 

comparison of the results for 1D , 1D , and 2D  

computations it is found that the interaction of these modes is 

minor but values of the frequencies for both vibrations are 

increased by about  rather than decreased. The 

situation is different for the coordinates  and . Since 

, the anharmonic interaction of the modes 

should lead to the frequencies of both stretching and out-of-

plane bending vibrations of  group growing by 

. However, comparison of 1D , 1D , and 2D 

 computations points to the fact that  is actually 

growing by , whereas  is decreased by 

. As seen from (1), the interaction of two normal 

modes in the anharmonic approximation shifts their 

frequencies in the same direction by the same quantity. But 2D 

computations demonstrate that the forms of 2D potential 

surfaces are very different, and actually the anharmonic 

interaction of two modes can result in different frequency 

shifts of their vibrations, both in quantity and in direction. 

Assuming that 1D and 2D computations more accurately 

account for anharmonicity of the modes , ,  

themselves and for their anharmonic interaction (while the 

interaction of these modes with other small-amplitude modes 

is adequately considered within the scope of the anharmonic 

approximation), we can combine the advantages of these two 

approaches. It is thought that the frequencies determined by 

1D computations satisfy relation (12). Then, comparing the 

results of 1D , 1D , and 2D  computations, we can 

determine the values of  and  on the assumption that 

 

Table 4. The vibration frequencies of a hydroxyl group obtained using 2D approach. 

 

Vibration 

modes 

Fundamental frequency ( ) Overtone frequency ( ) Combination frequency ( ) 

         

 2244.0 2337.9  3903.1 4425.6  3606.3 2718.5  

 1380.7  1426.0 2725.6  2835.3 3606.3  2486.5 

  962.0 1045.2  1852.6 2037.7  2718.5 2486.5 

 

 

 

Table 3. Computed stationary state energies and frequencies of some transitions due to the hydroxyl group vibrations (second approach). 

 

The energies of the stationary states Frequencies of transitions 

Level 

number 
 

( ) 

 

( ) 

 

( )  

Transitions  

( ) 

 

( ) 

 

( ) 

  1287.3   705.5   504.7      2262.7   1416.4   1040.0  

  3550.0   2121.9   1544.7      1654.4   1428.2   1101.4  

  5204.4   3550.1   2646.0      1363.3   1437.3   1171.3  

  6567.6   4987.4   3817.4      1566.6   1442.4   1263.8  

  8134.2   6429.8   5081.2      1760.7   1447.5   --  

  9894.9   7877.4   --      1923.5   --   --  

  11818.4   --   --      3917.0   2844.6   2141.4  
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they may be noncoincident according to the following 

expression:  

 

                                                    (13) 

 

With the use of (13) and of the data  and  

listed in Tables 2 and 4, we can find that 

; ; ; 

; ; 

. Next we find the frequencies of fundamental 

vibrations using the following expression:  

 

 

                         

                                                                                              (14) 

 

where , ,  - , ,  and . With the use of 

the anharmonicity matrix elements, it is found that 

, , 

 ( ). Then from (14) we can derive the 

frequencies of fundamental vibrations: , 

, . Table 1 lists the 

frequencies of fundamental vibrations of a hydroxyl group 

with regard to Fermi and Darling-Dennison resonances. For 

the final comparison, it is expedient to cite the resonance-

unperturbed frequencies of fundamental vibrations in the 

anharmonic approximation: , 

, . Note that the difference 

in frequencies of bending vibrations in part may be associated 

with mixing of these modes with other normal modes. This 

aspect is included in computations realized in the anharmonic 

approximation, whereas in 1D and 2D computations the 

harmonic mode interaction is not taken into account. But the 

differences in frequencies for stretching vibrations of  

group (  and ) may be due to the selected 

approach to representation of the potential energy. As the 

accuracy of its presentation is much higher in the case of 1D 

and 2D approaches, it is assumed that in the anharmonic 

approximation a value of the frequency  is underestimated 

by more than . The final estimation of the 

possibilities offered by different approaches must be given by 

the experiment. As demonstrated by our recent studies 

forming the basis for a new publication, in the anharmonic 

approximation  for the complex under study in acetonitrile 

comes to , whereas in 1D approach the frequency 

of this vibration is equal to . In an IR absorption 

  
a b 

  
c d 

 

 

Figure 5. Squares of the wave functions for fundamental vibrations of a hydroxyl group. 
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spectrum of the complex in acetonitrile a maximum of a wide 

high-intensity band is found at the frequency . 

This makes it possible to assume that the results obtained 

using 1D and 2D approaches are quite adequate, being even 

better for overtones and combined frequencies of these 

vibrations. 

 

7. Conclusions 

 

The frequencies of stretching and bending vibrations 

of a hydroxyl group in  complex were computed in 

the harmonic and anharmonic approximations as well as with 

the help of 1D and 2D computations for the potential surfaces 

associated with the motion of a hydroxyl hydrogen atom. In 

the latter case the vibration frequencies of  bond were 

determined by a numerical solution of the Schrödinger 

equation, using two different numerical methods for 1D 

approaches. An intricate form of the potential curves and 

surfaces necessitates the use of higher degree polynomials for 

their adequate approximation. The potential surface formed in 

the plane  is especially intricate. There are several 

directions along which the energy is growing slowly, leading 

to an increase in the amplitude of vibrations and to the force 

interaction of stretching and out-of-plane bending vibrations 

of a hydroxyl group. Owing to combination of the advantages 

offered by the anharmonic approximation and 1D or 2D 

approaches, all the vibrational degrees of freedom and the 

potential surfaces of a more complex form associated with the 

motion of a hydroxyl hydrogen atom have been included.  
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