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Abstract 

 

Based on the numeric solution of a nonstationary Schrödinger equation, features of the coherent 

wavepacket tunneling dynamics in the n-fold (n = 2, 3, 4, 5, and 6) periodic potential were analyzed.  
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1. Introduction 

 

Tunneling between potential energy 

minima is a well-known quantum mechanical 

phenomenon. Its demonstrations have been 

observed in molecular spectroscopy [1], 

semiconductor physics [2], etc. Details of the 

tunneling process are also of particular interest 

due to the possibility of observing the parity 

violation for optical isomers of chiral molecules 

[3–5].  

Dynamics of wavepackets tunneling 

through potential barriers, interaction of the 

packets with external fields, the influence 

exerted by symmetry of the potential function on 

the formation and structure of molecular spectra 

have been studied in the last few years in several 

works (e.g. [6–14]). However, the majority of 

these works [6, 8, 10–14] are devoted to the 

problem of tunneling in the non-periodic 

potential, an excellent example of which is 

provided by the inversion potential in a molecule 

of ammonia. Provided minima of the potential 

energy function are equivalent, a potential turns 

to be symmetric, and coherent tunneling between 

these minima is caused by the ―interaction‖ 

between potential wells [11, 15]. A wavepacket 

initially localized at one of the minima of this 

non-periodic potential further will be moving in 

a certain direction, tunneling to the neighboring 

minimum, as its propagation in the opposite 

direction is hindered by an infinitely growing 

potential wall. In the process the packet form 

determined by the power function of potential 

energy is approximately described by Gaussian 

function.  

Specificity of tunneling in the periodic 

symmetric double-well (n = 2) potential that 

typically shows itself as an internal rotation in 

non-rigid molecules containing in their structure 

a hydroxyl group (phenol C6H5–OH [16], 

hydrogen peroxide HO–OH [1, 17]) is associated 

with identification of the potential function 

boundary points. According to the principles of 

quantum mechanics, a particle originally 

localized in one of the minima of a symmetric 

periodic potential is tunneling in two directions 

corresponding to two possible rotation senses of 

a molecular fragment. Obviously, the 

probabilities of tunneling through the left and 

right barriers are identical for equivalent barriers, 

being distinct for the nonequivalent ones [18]. 

And the form of a wavepacket determined by the 

periodic potential function may be greatly 

different from Gaussian function. Localization of 

the particle at the second minimum results from 

tunneling through both barriers but a 

hypothetical attempt at determining the tunneling 

direction is similar to trying to find the number 

of a slit through which a photon or electron is 

transmitted in a double-slit interference 

experiment [19], involving elimination of the 

superposition state and the violated conditions of 

coherent tunneling.  

The principal features of the 

wavepacket tunneling dynamics in a double-well 

potential are characteristic for the potential of 

any multiplicity, whereas just for the multiple 

well (n ≥ 3) potential functions, tunneling of a 

molecular fragment in both senses of rotation is 

exhibited most markedly. In this case the 

presence of several minima in the limited angular 

interval (from 0 to 2π rad) dictates a small width 

for each of the potential barriers and is liable to 

result in the initial non-equivalent delocalization 

of a wavepacket and in its specific dynamics 

(wave traveling in a particular direction).  

This paper presents a study into 

dynamics of the non-Gaussian form wavepacket 

tunneling in the n-fold (n ≥ 2) symmetric 
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periodic potential simulating the potential energy 

function of internal rotation for a non-rigid 

molecule.  

Three-well potentials (n = 3) are 

characteristic for molecular systems whose 

structure includes an internal top with a 3-fold 

symmetry axis (methyl group). Most typical 

representative of such a type non-rigid molecules 

is ethane CH3–CH3 [20]. It seems that four- 

(n = 4) and five-fold (n = 5) periodic potentials 

may be found only in the molecular clusters, for 

instance formed by a fragment of fullerene or by 

a molecule including four- (cyclobutane) or five-

membered ring (cyclopentane), or else by a 

water molecule. One of the OH-bonds of a water 

molecule is oriented to the ring center and the 

second — to one of the atoms in the ring or to 

the center of the bond connecting two atoms in 

the ring. The existence of the like clusters is 

considered in [21, 22] taking the benzene – water 

structure as an example. Rotation of a water 

molecule over the surface of benzene ring in the 

cluster is accompanied by the origination of a 

six-fold (n = 6) periodic potential. Note that the 

presence of one or several heteroatoms in the 

ring structure leads to the origination of an 

asymmetric periodic potential. As distinct from 

four- or five-fold periodic functions, the six-fold 

periodic potential is characteristic not only for 

weak-bonded molecular clusters but also for 

some molecular systems, where the top with a 3-

fold symmetry axis is involved in hindered 

internal rotation about the frame with a 

symmetry plane (nitromethane molecule CH3–

NO2 [23]).  

 

2. Computation method 

 

It is assumed that a molecular system is 

in the ground rovibronic state with a single 

degree of freedom — internal rotation of the 

molecular top about the frame. Then the 

associated one-dimensional Hamiltonian (in   

cm
–1

) is of the form [1] 

 
1 1 1
4 2 4ˆ ˆ ˆ ( )H J B J VB B B , (1) 

 

where  — internal rotation angle; Ĵ i ; 

B  — (4,4)-element of the matrix inverse to that 

of the molecular inertia tensor; B — determinant 

of the inverse inertia-tensor matrix; V( ) — 

potential energy function of internal rotation.   

Hamiltonian (1) is reduced to the 

following form: 
2

eff2

( )ˆ ( ) ( )
B

H B V , (2) 

where B = B  and the effective potential 

energy function Veff( ) includes small terms 

dependent on the inertia parameters B , B and 

their derivatives with respect to the torsional 

variable. In what follows the subscript «eff» is 

omitted.  

The periodic n-fold potential function of 

internal rotation V( ) in the symmetric case is 

represented as a simplest-form Fourier expansion  

 
1

02
( ) (1 cos )V V n , 

 

where the value V0 gives the heights of potential 

barriers. 

A function of the inertia parameter B(γ) 

is assumed to be even and periodic, representing 

the Fourier expansion  

 

0

1

( ) cosk

k

B B B k , 

 

Time evolution of a molecular system 

was found on the basis of a numeric solution for 

the time-dependent Schrödinger equation with 

Hamiltonian (2) 

 

( , ) ˆ ( , )
t

i H t
t

, 

 

The initial wavepacket (at t = 0) was 

formed from the stationary wave functions of the 

ground state with regard to torsional splitting  

 

1

1
( ,0) ( )

n

j

jn
, (3) 

 

where spatial parts of the stationary wave 

functions Ψj(γ) represent linear combinations of 

the wave functions for the free rotator 

 

( )
j ik

j k
k

C e ,     
*j j

k kC C . (4) 

 

Eigenfunctions (4) and energies of the 

corresponding stationary states were found by 

the matrix diagonalization of Hamiltonian (2). 

The initial form of a wavepacket is 

dictated by the potential function multiplicity. 

For two- and three-fold potentials (n = 2 and 3) a 

practically complete compensation of positive 

and negative contributions from the parts of 

wavepacket (3) takes place in different potential 

wells as the wave functions of distinct states in 

neighboring wells are actually distinguished by 

the phase only. This in turn is responsible for 

localization of the initial packet at one minimum 
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of the potential energy. In the case of 

comparatively narrow potential barriers (at 

n > 3) the eigenfunctions involved in the 

wavepacket at different minima are distinguished 

not only by the phase but also, to a great degree, 

by the form, preventing the formation of the 

initial packet localized in one of the potential 

wells.  

System’s dynamics was studied by the 

construction of the finite-difference 

approximation of coupled equations for the real 

(γ, t) and imaginary (γ, t) parts in the 

stationary-state complex wave function 

(γ, t) = (γ, t) + i (γ, t). The numeric 

computations were performed with the use of the 

absolutely stable two-step (three-layer) explicit 

method [24] enabling one to follow the evolution 

of a wave packet over considerable time 

intervals.  

 

3. Results and Discussion 

 

3.1. Double-well potential (n = 2) 
In the case of a double-well symmetric 

potential its tunneling dynamics in greatly 

determined by the ground-state torsional splitting 

ΔE21 = E2 – E1 [18]. For such a potential the 

probability density function | ( , t)|
2
, due to 

tunneling of the wavepacket, oscillates between 

minima of the potential function at the frequency 

21 that is equal (in units of ħ) to the quantity 

ΔE21 and has the period T21 = 2 / 21. The 

quantity τ21 = / 21 (time interval between the 

neighboring probability maxima) in this case 

may be termed the ―tunneling time‖ because this 

interval is associated with transition of a 

wavepacket completely from one minimum of 

the potential curve to another, whereas the form 

of this wavepacket becomes recovered. In time 

21 the wave packet is ―spreading‖ in opposite 

directions, being partially reflected from the 

potential function boundaries and partially 

penetrating (tunneling) into the adjacent 

minimum from both sides of the potential barrier 

to come finally to the center of each minimum of 

the potential function.  

The form of a wavepacket during time 

2τ21 is shown in Figure 1, а. Figure 1, b for the 

same time interval gives the temporal 

dependences of the probabilities 

2

1

0

( ) | ( , ) |P t t d  and 
2

2

2 ( ) | ( , ) |P t t d  

associated with localization of the wavepacket at 

the left and at the right minimum, respectively, 

of the π-periodic potential for a molecule of 

phenol. During computations the experimental 

parameters of a phenol molecule were used [16]: 

V0 = 1215 cm
–1

, B0 = 22.617, B1 = 0, B2 = 0.005 

cm
–1

. The computed time characteristics of 

tunneling dynamics are given in centimeters. To 

go to time in seconds, one should use the factor 

1/c, where c — speed of light in free space given 

as cm/s. The above-mentioned parameters B0 and 

V0 for phenol are in line with E21 = 0.0016 cm
–1

 

and τ21 = 1921.8 cm. 

 

3.2. Three-well potential (n = 3) 
In the case of three-well symmetric 

potential with equivalent barriers the situation 

becomes more complicated because of the 

internal top has a 3-fold symmetry axis. In 

consequence, splitting of energy levels results in 

two rather than three sublevels, one of the levels 

(upper for the ground torsional state) being 

doubly degenerate [25]. As energies of two states 

are coincident (E2 = E3), similar to the double-

well potential case, there is a single non-zero 

quantity ΔE31 = ΔE21 = E2 – E1 = E3 – E1 

associated with the frequency 31, period T31, 

and time interval τ31. But the quantity τ31 no 

longer   may   be   called   the   ―tunneling time‖,  

  

 
 

Figure 1. Tunneling of a wavepacket in a symmetric two-well periodic potential: form of the wavepacket (a); 

time dependences of the probabilities P1 (1) and P2 (2) (b). 
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because the computations performed 

demonstrate that the wavepacket initially 

localized at one of the minima (e.g., central) 

subsequently is enable to leave it completely.   

The form of a wavepacket in time 4τ31 

is shown in Figure 2, а. Figure 2, b for the same 

time interval gives the time dependences of the 

probabilities P1, P2, and P3 associated with 

localization of the wavepacket at the left, central 

or right minimum, respectively, of the 2π/3-

periodic potential for a ethane molecule [20]: V0 

= 1005 cm
–1

, B( ) = const = B0 = 10.68 cm
–1

. The 

indicated values of the parameters B0 and V0 for 

ethane correspond to E31 = 0.006 cm
–1

 and 

τ31 = 522.8 cm. 

As demonstrated by the computation 

results, in the case under study the quantity τ31 is 

still associated with a time interval between the 

neighboring maxima of the probability, whereas 

recovery of the wavepacket form takes place 

only after the period of time T31 = 2τ31 and 

exactly in the same potential well, where the 

initial wavepacket was localized. During time 

2τ31 the wavepacket is symmetrically spreading 

to the side potential wells to ―come together‖ 

finally in the central one. In the process the 

probability of its detection at the central 

minimum in these time intervals never goes to 

zero. A minimal value of the probability of 

detecting a wavepacket at the central minimum is 

independent of the parameters V0 and B0, being 

equal to 0.1111.  

 

3.3. Four-well potential (n = 4) 
In the case of a four-well symmetric 

potential with equivalent barriers energy levels 

are splitting into three sublevels, one of them 

(second) being doubly degenerate. As the 

energies of two states are coincident (E2 = E3), 

two splitting values (two frequencies) are the 

case: ΔE31 = ΔE21 = E2 – E1 = E3 – E1 = Ω31 and 

ΔE43 = ΔE42 = E4 – E3 = E4 – E2 = Ω43 

corresponding to the time intervals τ31, τ43 and to 

the periods T31 =2τ31 , T43 =2τ43. The overall 

splitting of the ground state ΔE41 = E4 – E1 

associated with the frequency Ω4 leads to the 

third, ―reduced‖, time interval 

τ41 = τ31τ43/(τ31 + τ43) and to the ―reduced‖ period 

T41 =2τ41. As compared to the three-fold 

potential, barriers become narrower causing a 

greater torsional splitting of energy levels and 

hence reduced (by several orders) times τ. 

The form of a wavepacket and time 

dependences for the probabilities P1, P2, P3 и P4 

of its localization in one of four potential wells 

are presented in Figure 3. The computations 

were performed using the simulation parameters: 

V0 = 1000 cm
–1

, B( ) = const = B0 = 22.60 cm
–1

. 

The indicated potential barrier height is rather 

typical for non-rigid molecules. A value of the 

inertia parameter corresponds to the moment of 

inertia for hydroxyl group OH. These values of 

the parameters V0 and B0 are associated with the 

frequencies Ω31 = 2.677 cm
–1

, Ω43 = 2.775 cm
–1

, 

Ω41 = 5.452 cm
–1

 and with the time intervals 

τ31 = 1.174 cm, τ43 = 1.132 cm, τ41 = 0.576 cm.  

As distinct from double- and three-well 

potentials, for the probability density function in 

the case under consideration there occurs some 

kind of a traveling wave whose propagation 

direction is determined by the initial phases of 

eigenfunctions (4) forming the initial 

wavepacket. Each of the Fourier spectra for all 

the four probabilities P1, P2, P3, and P4 involves 

three frequencies: Ω31, Ω43, and Ω41. According 

to data in Figure 3, а, one half of the ―reduced‖ 

period τ41 = T41/2 corresponds to a time interval 

between neighboring maxima of the probability 

density. Since τ31 and τ43 are not integers, the 

initial form of a wavepacket may be completely 

recovered only after several thousands of such 

time intervals. Nevertheless, as seen from data in 

Figure 3, b, in the period T = 64.265 cm the 

probability distribution of the wavepacket 

localization in a certain potential well takes the 

form close to the initial one. This period is 

 
 

Figure 2. Tunneling of a wavepacket in a symmetric three-well periodic potential: form of the wavepacket (a); 

time dependences of the probabilities P1 (1), P2 (2) and P3 (3) (b). 
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associated with the difference frequency 

ΔΩ = Ω43 – Ω31 = 0.098 cm
–1

 that is exhibited as 

an envelope of the probability curve in each of 

the potential wells.  

 

3.4. Five-well potential (n = 5) 
Splitting of energy levels for the five-

well symmetric potential with equivalent barriers 

also gives three sub-levels two of which (second 

and third) are doubly degenerate. Despite the 

presence of three periods only (τ31, τ53, and 

―reduced‖ τ51), however, dynamics of tunneling 

is more complex in its character. The 

computations were performed with the same 

values of the parameters V0 and B0 as for a four-

well potential. In this case we have: Ω31 = 7.032 

cm
–1

, Ω53 = 12.519 cm
–1

, Ω51 = 19.551 cm
–1

, 

τ31 = 0.447 cm, τ53 = 0.251 cm, τ51 = 0.161 cm.  

Also, Fourier spectra for the 

probabilities P1, P2, P4, and P5 have three 

frequencies (Ω31, Ω53, Ω51) each. A Fourier 

spectrum for the probability P3 has a single 

frequency (Ω31) because the probability density 

of the wavepacket localization is changed, with a 

well defined period (T31 = 2τ31), only in the 

central (third) well, see Figure 4, а. And the 

probability of the wavepacket localization in the 

third well comes to 0.4 (Figure 4, b).  

In the first and fifth potential wells the 

probability density functions are in opposite 

phases — a maximum of the function |Ψ(γ, t)|
2
 in 

the first well is corresponding to a minimum in 

the fifth well. A similar situation is observed for 

the second and fourth potential maxima too. 

Maximal values of the probabilities for the 

wavepacket localization in the first and fifth 

wells are above 0.8, while in the second and 

fourth wells they are hardly approaching 0.3. For 

other values of the parameters V0 and B0 the 

above-mentioned probabilities are comparable. 

As a rule, the overall probability maxima for 

localization of a wavepacket in the first and fifth 

(second and fourth) wells fall at minima 

(maxima) of the third (Figure 4, b). 

Unlike a four-well potential, in the case 

considered the difference frequency ΔΩ = Ω53 –

 Ω31 = 5.487 cm
–1

 and the period 

T = 2π/ΔΩ = 1.154 cm are of the same order of 

magnitude, with the frequencies Ω53, Ω31 and 

periods T53, T31 respectively. Because of this, the 

envelope of these probabilities, being no 

pronounced in character, is still traced in Figure 

4, b.  

 

3.5. Six-well potential (n = 6) 
For a six-well symmetric potential with 

equivalent barriers energy levels are splitting 

into four sub-levels two of which (second and 

third) are doubly degenerate. In this case there 

are three non-zero values of ΔE (ΔE31, ΔE53, 

ΔE65) associated with three time intervals τ (τ31, 

τ53, τ65), whereas the overall splittings ΔE51, 

ΔE63, ΔE61 are associated with the ―reduced‖ 

periods τ51, τ63, τ61. The described computations 

have been performed with the same values of the 

parameters V0 and B0 as in the case of the four-

 
 

Figure 3. Tunneling of a wavepacket in a symmetric four-well periodic potential: form of the wavepacket in 

the time interval 4τ41 (a); time dependences of the probabilities P1 (1), P2 (2), P3 (3) and P4 (4) in the time 

interval T = 64.265 cm (b). 



JOURNAL OF SPECTROSCOPY AND DYNAMICS  

 

6 
 

J. Spectrosc. Dyn. 2011, 1: 5 
 www.simplex-academic-publishers.com 

© 2011 Simplex Academic Publishers. All rights reserved. 

 

fold potential. Then we have: Ω31 = 11.725 cm
–1

, 

Ω53 = 27.098 cm
–1

, Ω65 = 16.117 cm
–1

, 

Ω51 = 38.823 cm
–1

, Ω63 = 43.215 cm
–1

, 

Ω61 = 54.940 cm
–1

, τ31 = 0.268 cm, τ53 = 0.116 

cm, τ65 = 0.195 cm, τ51 = 0.081 cm, τ63 = 0.073 

cm, τ61 = 0.057 cm. The computation results are 

given in Figure 5. 

Fourier spectra for the probabilities P1, 

P3, P4, and P6 involve all the six frequencies 

mentioned above. Fourier spectra for the 

probabilities P2 and P5 have only three 

frequencies (Ω31, Ω63, Ω61) each. A great number 

of the fundamental and sum Ω as well as 

difference ΔΩ frequencies in the case of a six-

well potential results in a more and more 

complex tunneling dynamics compared to the 

five-well case (Figure 5, а). Note that most 

characteristics for a six-well potential is the 

greatest delocalization degree of a wavepacket.  

Figure 5, b demonstrates the 

probabilities P1 and P3 for the wavepacket 

localization in the first and third wells in the time 

interval T = 8.582 cm during which the form of a 

wavepacket in these wells is recovered with a 

sufficient degree of accuracy. Recovery of the 

wavepacket form for the fourth and sixth 

potential wells (Figure 5, d) occurs during the 

same time interval T for which the approximate 

 
 

Figure 4. Tunneling of a wavepacket in a symmetric five-well periodic potential: form of the wavepacket in 

the time interval 4τ31 (a); time dependences of the probabilities P1 (1), P2 (2), P3 (3), P4 (4) and P5 (5) in the 

time interval 8τ31 (b). 

  
 

Figure 5. Tunneling of a wavepacket in a symmetric six-well periodic potential: form of the wavepacket in the 

time interval 4τ65 (a); time dependences of the probabilities P1 (1) and P3 (3) (b), P2 (2) and P5 (5) (c), P4 (4) 

and P6 (6) (d) in the time interval 8.582 cm. 
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equalities T ≈ 21T1 ≈ 15T2 ≈ 6T3 are true, and the 

periods T1 = 2π/ΔΩ1, T2 = 2π/ΔΩ2, T3 = 2π/ΔΩ3 

are determined by the difference frequencies 

ΔΩ1 = Ω53 – Ω31, ΔΩ2 = Ω53 – Ω65, ΔΩ3 = Ω65 –

 Ω31. In the second and fifth potential wells 

(Figure 5, c) the form of a wavepacket is 

recovered much faster during the time period T' 

that is equal to 1.597 cm, for which the 

approximate equalities T' ≈ 8T4 ≈ 11T63 ≈ 14T61 

are also true, where T4 = 2π/ΔΩ4 = 2π/(Ω63 –

 Ω31). In this way several difference frequencies 

influence greatly the tunneling dynamics of a 

wavepacket in multiple well periodic potentials.  

The probabilities for the wavepacket 

localization in the first and third wells are in 

opposite phases. A similar situation is observed 

for the second and fifth as well as for the fourth 

and sixth wells. Maximal values of the 

probabilities in the first, third, fifth, and sixth 

well are over 0.61, whereas in the second and 

fourth wells they only approximate 0.42. For 

other values of the parameters V0 and B0 the 

indicated probabilities are comparable.  

 

4. Conclusions 

 

Tunneling of a wavepacket in two 

directions associated with two possible rotation 

senses of a quantum system fragment is the 

principal feature of the coherent tunneling 

dynamics in a periodic potential. Multiplicity of 

a potential in the tunneling process is responsible 

for its character. In a two-fold potential the 

wavepacket initially localized in one of the 

minima of the potential function goes completely 

to the neighboring minimum. In the case of a 

three-fold potential the wavepacket initially 

localized at a central maximum is symmetrically 

tunneling to side minima and then returns back, 

making the probability of its localization at a 

central minimum always other than zero. In the 

case of a four-fold potential the time dependence 

of the probability density function appears as a 

traveling wave. And the form of this distribution 

is determined by values of the ―reduced‖ period 

(overall state splitting) and of the period 

associated with the difference frequency. 

Dynamics of tunneling for the potentials of great 

multiplicity is less systematic in character due to 

numerous fundamental, sum, and difference 

frequencies.  

A dynamic description of the torsional 

tunneling process makes it possible to follow the 

evolution of the fragments in a non-rigid 

molecular system in detail and to establish the 

conditions for realization of the tunneling 

transitions between its equilibrium 

configurations, directly influencing the formation 

of a fine torsion-rotation structure in molecular 

spectra. 
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