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Abstract  In the approximation B3LYP/cc-pVTZ, the geometry of a methanol molecule surrounded by eight argon atoms 
has been optimized. By the independent rotation of the methyl and the hydroxyl groups at the fixed position of the C-O bond 
relative to the argon atoms there was obtained the two-dimensional grid of values of the internal-overall rotation energy. 
Despite the fact that, initially the energy was calculated for 65 points in the square 2 2π π× , the presence of 2 / 3π period 
for methyl group rotation has allowed to increase the number of points up to 195. The analytical approximation for internal 
rotation energy was found. Two dimensional Schrödinger equation for internal rotation – overall rotation of rotator with fixed 
axis was solved, energy levels, wave functions and transition probabilities were found. According to the results of these 
computations, degeneracy of the Е-type states is relieved with increase in splitting of the ground torsional state. 
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1. Introduction 
It is known that low-temperature IR spectra of molecules 

in the matrix isolation characterized by narrow absorption 
bands due to the absence of intermolecular interactions and 
the rotational structure. However, matrix effects do exist[1- 
3] and they are often able to significantly complicate the 
interpretation of the spectra. These effects are mainly 
determined by stacking order of the matrix atoms around the 
trapped molecule. Therefore, modelling of the matrix 
structure and its influence on the vibrational spectra of the 
trapped molecules is an interesting and important task.  

Theoretical study of the matrix influence on the trapped 
molecules began only two decades after the first 
experimental works. Effective interaction potentials were 
studied f irs t  using semi-empir ical  and ab ini t io 
calculations[4,5]. Later the supermolecule approach was 
applied to examine the effects on the structure and spectra of 
the ammonia-hydrogen halide complexes of adding 3 Ne or 3 
Ar atoms[6,7]. Significant effects were calculated, 
particularly for the HBr complex. Latajka[8] examined the 
e f fec t s  o f  add ing up  to  4  N 2  mo lecu le s  to  the 
ammonia-hydrogen chloride complex and found that 3 N2 
molecules gave similar results to a cavity model in a medium 
with a relative permittivity of 1.5. Matrix effects on proton 
transfer in hydrogen – bonded molecular complexes were 
studied by Barnes[9]. As demonstrated by the recent studies  
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[10-12], the matrix affects to the values of the internal 
rotation barriers in a methanol molecule, that is reflected by 
changes in splitting of the torsional states if compare with 
gas phase. Previously[13], in FTIR spectra of methanol 
recorded at a temperature of 10 K in the argon matrix such an 
effect has been considered as one of the possible 
mechanisms responsible for the appearance of a multiplet 
structure of some absorption bands, in particular a doublet of 
the bands at 1033.25 and 1036.5 cm-1 caused by the valence 
vibration of С–О bond. As far as we know, at the moment 
there are no theoretical works that investigate the influence 
of the matrix environment on the torsional motion in 
methanol molecule. In[14] a geometric model of a methanol 
molecule in the environment of eight argon atoms was 
proposed and approximately, using a one-dimensional 
approach, the problem of finding the torsional energy levels 
was solved. According to the computational results obtained, 
splitting of the ground torsional state is somewhat increased. 
Besides, splitting of the Е-type degenerate states occurs due 
to the relieved degeneracy. However, the more accurate 
two-dimensional solution is possible and is presented in this 
paper. 

2. Computation Method 
In approximation B3LYP/cc-pVTZ a configuration of the 

complex including a molecule of methanol and eight argon 
atoms was optimized using the package GAMESS[15]. The 
gradient convergence tolerance parameter OPTTOL was set 
to 10–5. No imaginary frequencies were found for optimized 
configuration. Positions of Ar, C and O atoms were fixed and 
independent rotation of O-H and CH3 groups with respect to 
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the argon atoms was performed. Zero values for OHϕ  and 

3CHϕ  were taken for optimized configuration. As it was 
found that the internal forces in a methanol molecule were 
greater than the interacting forces with the matrix, on 
optimization for all the parameters characterizing a position 
of СН3ОН molecule in the matrix, the methyl group rotation 
relative to the argon atoms was accompanied by the hydroxyl 
group rotation, and vice versa. Because of this, in the case of 
a methyl group rotation by steps of 50º the hydroxyl group 
position was additionally fixed relative to the matrix, and 
vice versa – for rotation of a hydroxyl group the position of a 
methyl group was fixed. Besides, all other internal 
parameters of СН3ОН were optimized. Then for every value 
of ϕOH = 0º, 50º, 100º, 150º, 200º, 250º, 300º, 350º relative 
argon atoms the value of 

3CHϕ = 0º, 50º, 100º, 150º, 200º, 
250º, 300º, 350º relative argon atoms too were taken. 

As an approximation in the process of the subsequent 
computations, the geometric parameters of methyl and 
hydroxyl tops were considered to be constant. According 
to[14], the moments of inertia are as follows: 

IOH =1.38866 10-47 kg·m2 ; 
3CHI =5.26205 10-47 kg·m2 

Because of 120º period for rotation of a methyl group, 
cloning of the points was performed using the following 
relation for the internal rotation energy: 

( )3 3

0 0, ( 120 ) mod360 ( , )OH CH OH CHU m Uϕ ϕ ϕ ϕ′ ′+ =
 

here m=1,2. 
As a result, the total number of points on the potential 

surface, where the energy values have been computed, 
amounted to 195. A change in the internal energy due to 
changing of the coordinates OHϕ  and 

3CHϕ  is defined as 

3 3
( , ) ( , ) (0,0)OH CH OH CHU U Uϕ ϕ ϕ ϕ′ ′= − . 

Using the package Mathematica[16], an analytical 
expression for the potential energy of internal rotation was 
derived in the following form: 

3
3

( 3 )
,

,
( , ) OH CHi k l

OH CH k l
k l

U u e ϕ ϕϕ ϕ +
=∑ , 

where ,k l Z∈ ; , 3k l ≤ .                  (1) 

New coordinates describing internal and external rotations 
of a methanol molecule were introduced by 

3CH OHs ϕ ϕ= − ; 

3

3

3 3

CH OH
CH OH

CH OH CH OH

I It
I I I I

ϕ ϕ= +
+ +

 (2) 

Substituting (2) into (1), we obtain the analytical 
expression of the internal rotation energy for methanol in the 
argon matrix by setting the coordinates s, t: 

3

3

3
( 3 )

,
,

( , )

OH CH

OH CH

lI kI
i s k l t

I I
k l

k l
U s t u e

 −
 + +
 + =∑ , 

where ,k l Z∈ ;  , 3k l ≤ .              (3) 

The functions 
3

( , )OH CHU ϕ ϕ  and U(s,t) are shown in 
Fig. 1 

 

 
Figure 1.  Potential energy of internal-overall rotation of an methanol 
molecule in the argon matrix when setting the coordinates 

3
,OH CHϕ ϕ  (on 

the left) and s, t (on the right) 

According to (3), ( , ) ( , 2 )U s t U s t mπ= + , but in 
expression (3) the coefficient of s is not a rational number 
and internal rotation of a methanol molecule in the argon 
matrix is aperiodic. At the same time, as seen from Fig. 1, the 
principal change in the internal energy of the molecule is 
caused by changing of an internal rotation angle for s. 

3. No Rotation of Methanol Molecule as 
a Whole with Respect to ArgonMatrix 

Experimental spectra for methanol in the argon matrix 
demonstrate the absence of the rotational structure of 
vibrational absorption bands as actually there is no rotation 
of the molecule as a whole, yet exhibiting the bands due to 
torsional motion in СН3ОН. Because of this, it is desirable to 
consider the case of pure internal rotation in this molecule. 
According to the computational results, a minimum on the 
potential surface 

3
( , )OH CHU ϕ ϕ  is attained at the point 

with the coordinates 
3

0OH CHϕ ϕ= =  and, with regard to 

(2), on the surface ( , )U s t  it is also attained at the point 
with the coordinates s = t = 0. When there is no rotation of 
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the molecule as a whole, an internal rotation is realized along 
the axis s. We can derive the form of a curve for the internal 
rotation potential energy from U(s,t) setting t equal to zero. 
The curve for U(s,0), its periodic part and perturbation, is 
given in Fig. 2. A Schrödinger equation for internal rotation 
takes the form 

2

2 ( ,0) 0s
s s sC U s E

s
∂ Ψ

− Ψ + Ψ =
∂

,    (4) 

where 
2 reduce

C
I

=


; 3

3
( )

OH CH
reduce

CH OH

I I
I

I I
=

+
.  (5) 

 
Figure 2.  Potential energy as a function of internal rotation angle s (green), 
its periodic component (blue), and matrix perturbation (red) 

In (4) the function U(s,0) has more than 30 terms. As a 
perturbation potential we will take all terms in U(s,0) apart 
from two periodic ones, which are represented by the 
function US(s): 

( ) 183.9cos(3 ) 3.5sin(3 )sU s s s= − + .   (6) 
Equation (4) assumes the form 

2 (0)
(0) (0) (0)

2 ( ) 0s
s s s sC U s E

s
∂ Ψ

− Ψ + Ψ =
∂

.    (7) 

In this case finding of eigenvalues and eigenfunctions in 
the zeroth approximation is completely equivalent to[14]. 
Then we calculate the Hamiltonian matrix with the elements 
of the following form 

( ) ( )
2

0 0 *
, , ,

0
k l s k s lH H ds

π

= Ψ Ψ∫


,          (8) 

where 
2

2 ( ,0)H C U s
s
∂

= −
∂



.         (9) 

By diagonalization of the Hamiltonian matrix, we have 
found the energies and wave functions for torsional states of 
a methanol molecule in the argon matrix. The energy values 
are listed in Tab. 1; their positions with respect to the 
potential curve are given in Fig. 3 together with some wave 
functions. 

It is obvious that a change in the molecular dipole moment 
is due to rotation of a hydroxyl group. As the dipole moment 
projection onto the С-О axis is invariable with rotation of 
this group, changing of its components occurs in the plane 
perpendicular to the rotation axis only. We designate this 
plane as xOy. Let us consider . Then 

, where p0 is a constant insignificant for 

further computations. Next we introduce . 

Then from the second equation of (2) for t = 0 we obtain 

. Substituting this expression into the 

first equation of (2), we get . In this way we 

have . Matrix elements of the dipole matrix 
operators were computed by the formula 

. 

The squared matrix elements are listed in Tab. 2. Fig. 4 
presents a theoretical IR absorption spectrum computed in 
the case of internal rotation in the methanol molecule 
surrounded by 8 argon atoms at a temperature of 0 К, based 
on the data in Tabs. 1 and 2. 

Table 1.  Energies of torsional states for methanol molecule in argon matrix 

Energy level number 1 2 3 4 5 6 7 8 9 
Energy value (cm-1) 152.48 165.05 182.16 357.30 370.24 440.54 499.47 642.24 643.45 
Energy level number 10 11 12 13 14 15 16 17 18 
Energy value (cm-1) 866.52 867.40 1144.20 1145.21 1474.10 1474.91 1855.40 1856.43 2288.51 

Table 2.  Squared matrix elements of the dipole moment operator 

Transition 
1 ⇒ k 

Wave 
number ν 

(cm-1) 

Dipole matrix 

element  
Transition 1 

⇒ k 

Wave 
number ν 

(cm-1) 

Dipole matrix 

element  
Transition 

1 ⇒ k 

Wave 
number ν 

(cm-1) 

Dipole matrix 

element  

k = 2 12.57 0.125 k = 5 217.76 0.038 k = 8 489.76 0.010 
k = 3 29.68 0.023 k = 6 288.06 0.078 k = 9 490.97 0.032 
k = 4 204.82 0.246 k = 7 346.98 0.007 k = 10 714.04 0.016 
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Figure 3.  Torsional wave functions of CH3OH in the argon matrix in the ground state (upper left plot) and in the three excited torsional state 

 
Figure 4.  Computed torsional IR spectrum for СН3ОН in the argon matrix 

4. Rotation of Methanol Molecule in 
Argon Matrix with Respect to С-О 
Axis 

If we assume that there is no internal rotation in methanol, 
but there is rotation of the molecule as whole with respect to 
the axis coincident with С-О bond, then such a rotation is no 
longer free in the surroundings of argon atoms. A function 
for the molecular rotation potential energy may be derived 
from U(s,t) provided s is zero. The curve for U(0,t) is shown 

in Fig. 5. 
To find the energy levels, we solve a Schrödinger equation 

of the following form: 
2

2 ( (0, ) ) 0t
t tD U t E

t
∂ Ψ

+ − Ψ =
∂

,     (10) 

where 
3

2( )CH OH

D
I I

=
+


. 
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Because U(0,t) is a periodic function, (10) is solved as a 
linear combination of the eigenfunctions for a free top with 
the fixed rotation axis 

( ) ikt
t k

k
t R e

∞

−∞=
Ψ = ∑ .           (11) 

Potential energy is then of the following form: 
2

2
(0, ) ilt

l
l

U t u e
−=

= ∑ .            (12) 

Solution of (10–12) is similar to that of equations (6,7). 

Eigenvalues of the energy for pure rotational levels are listed 
in Tab. 3. Positions of energy levels and some squared wave 
functions are demonstrated in Fig. 6 

As seen, positions of pure rotational levels are 
significantly differing from those in the case of free rotation 
of the fixed-axis rotator for which the following is valid: 

Ek = Dk2.              (13) 
Using (13) and considering that D = 4.209 cm-1, one can 

easily find the energies of rotational levels for the fixed-axis 
rotator. 

 
Figure 5.  Potential energy of interaction between methanol molecule and argon matrix as a function of rotation angle t 

 

 
Figure 6.  Rotational wave functions of CH3OH in argon matrix in the ground state (upper left plot), in the three excited rotational states 
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Table 3.  Energies of rotational states for СН3ОН with an external decelerating potential 

Energy  
level number 1 2 3 4 5 6 7 8 9 

Energy 
value (cm-1) 12.76 34.89 46.52 52.53 57.84 74.52 75.46 103.58 103.70 

Energy 
level number 10 11 12 13 14 15 16 17 18 

Energy 
value (cm-1) 141.12 141.18 187.23 187.24 241.28 241.28 304.88 304.88 376.37 

5. The Case of Motion of Two Types 
The results presented in Sections 3 and 4 show that the potential barriers of internal rotation are considerably higher than 

those associated with rotation of the methanol molecule as a whole relative to С-О bond, in the surroundings of argon atoms. 
In principle, there are no factors capable to strictly forbid both types of motion simultaneously. Because of this, we must 
consider this case as well. As the potential energy is a periodic function for both the coordinates OHϕ  and 

3CHϕ  

3 3

2( , ) 2 ,
3OH CH OH CHU U m kϕ ϕ ϕ π ϕ π = + + 

 
, a problem of two-dimensional large-amplitude motion is readily 

solved with the use of precisely these coordinates. A Schrödinger equation in this case takes the form: 

3 3

3 3 3

3

2 2

2 2

( , ) ( , )
( , ) ( , ) ( , )OH CH OH CH

OH CH OH CH OH CH
OH CH

A B U E
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

∂ Ψ ∂ Ψ
− − + Ψ = Ψ

∂ ∂
,   (14) 

where  
2 OH

A
I

=


; 
3

2 CH

B
I

=


. 

Let the potential energy be given in the more general form then (1): 

3

3

,
( 3 )

, ,
( , ) OH CH

a b
i k l

OH CH kl
k l a b

U u e ϕ ϕϕ ϕ +

=− −

= ∑ ;  ,a b∈ .                         (15) 

Then a wave function is derived as: 

3

3

( 3 )

,
( , ) OH CHi n m

OH CH nm
n m

b e ϕ ϕϕ ϕ
∞

+

=−∞

Ψ = ∑ .                             (16) 

Substituting (15) and (16) into (14), we obtain: 

3 3

,
( 3 ) (( ) 3( ) )2 2

, , , ,
( 9 ) 0OH CH OH CH

a b
i n m i n k m l

nm kl nm
n m n m k l a b

n A m B E b e u b eϕ ϕ ϕ ϕ
∞ ∞

+ + + +

=−∞ =−∞ =− −

+ − + =∑ ∑ ∑ .  (17) 

Next we define coefficients for the exponential 3( 3 )OH CHi n me ϕ ϕ′ ′+
. In the second term the following condition must be 

fulfilled: 
n k n k n n′ ′+ = ⇒ = − ;   m l m l m m′ ′+ = ⇒ = − .                    (18) 

Instead of (17), we have: 

3 3

,
( 3 ) ( 3 )2 2

,
, , ,

( 9 ) 0OH CH OH CH
a b

i n m i n m
n m n n m m nm

n m n n m m a b
n A m B E b e u b eϕ ϕ ϕ ϕ

∞
′ ′ ′ ′+ +

′ ′ ′ ′− −
′ ′=−∞ − − =− −

′ ′+ − + =∑ ∑ .     (19) 

Then we construct the finite matrix with the dimensions 2 2(2 1) (2 1)c c+ × + ; c∈ . This means that n and m are 
varying within the limits from –c to c per unity. From (19) we derive: 

3 3

,
( 3 ) ( 3 )2 2

,
, , ,

( 9 ) 0OH CH OH CH
a bc

i n m i n m
n m n n m m nm

n m c n n m m a b
n A m B E b e u b eϕ ϕ ϕ ϕ′ ′ ′ ′+ +

′ ′ ′ ′− −
′ ′=− − − =− −

′ ′+ − + =∑ ∑ .   (20) 

Now we take (20) as a matrix equation of the form ij j j jH b E b=  , where jb  – column vector that, according to 

(16), gives the wave function corresponding to the energy Ej. It is clear that a pair of the indices ( , )n m′ ′  numbers rows of 
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the Hamiltonian matrix and a pair of the indices (n,m) – its columns. Next, to derive the Hamiltonian matrix from (20), first 
we have to fix an order of the coefficients bn,m in the column vector of the wave function defined by equation (16). For 
example, if c =  1, the transposed column vector may be of the form: 

1, 1 1,0 1,1 0, 1 0,0 0,1 1, 1 1,0 1,1; ; ; ; ; ; ; ;b b b b b b b b b b− − − − − −= .                      (21) 

Let us assume that in the same order from top to bottom there is a change in the index pair ( , )n m′ ′  numbering rows of the 
Hamiltonian matrix. Then a matrix element of H is numbered by two index pairs, ( , ),( , )n m n mH ′ ′ . Considering that usually 

,c a b , for the diagonal element ( , ) ( , )n m n m′ ′=  we can write: 
2 2

( , ),( , ) 009n m n mH n A m B u E′ ′ ′ ′ ′ ′= + + −                           (22) 

and for nondiagional elements we can write: 

( , ),( , ) , if andn m n m n n m mH u n n a m m b′ ′ ′ ′− − ′ ′= − ≤ − ≤ ,               (23) 

( , ),( , ) 0 if orn m n mH n n a m m b′ ′ ′ ′= − > − > .                  (24) 
Numbering matrix elements of H by the ordinary indices (i,j) each of which is varying from 1 to (2c+1)2, we should 

establish for each of them a one-to-one correspondence to a pair of numbers by the principle: ( , )i ii n m′ ′⇔ ; 

( , )j jj n m⇔ . Specifically, in the case given by (21) for i = 3 we have 3 0n′ = ; 3 1m′ = − ; and for j = 6 we have 6 1n = ; 

6 1m = − . The formation of the matrix H takes the following form:  
2 2

009ii i iH n A m B u E′ ′= + + − ,                                (25) 

, if and
i j i jij n n m m i j i jH u n n a m m b′ ′− − ′ ′= − ≤ − ≤ ,                (26) 

0 if orij i j i jH n n a m m b′ ′= − > − > .                     (27) 

Let us write the Hamiltonian matrix in the explicit form with the use of (25–27) for c = 1. Besides, we assume that the index 
order is determined by the relation of (21), and a = b = 1. Then we have: 

0, 1 1,0 1, 100

0,1 0, 1 1,1 1,0 1, 100

0,1 1,1 1,000

1,0 1, 1 0, 1 1,0 1, 100

1,1 1,0 1, 1 0,1 0, 1 1,1 1,0 1, 100

1,1 1,0 0,1 1,1 1,000

1

9 0 0 0 0 0
0 0 0

90 0 0 0 0
90 0 0

90 0 0
0 0 0

u u uA B u
u u u u uA u

u u uA B u
u u u u uB u
u u u u u u u uu

u u u u uB u
u

− − − −

− − − − −

− −

− − − − −

− − − − − −

− −

+ +

+

+ +

+

+

,0 1, 1 0, 100

1,1 1,0 1, 1 0,1 0, 100

1,1 1,0 0,1 00

90 0
0 0 0

90 0 0 0 0

u uA B u
u u u u uA u

u u u A B u

− −

− −

+ +

+

+ +

 

As a result of the Hamiltonian matrix diagonalization according to (25–27), the energies and wave functions characterizing 
torsional-rotational states of a methanol molecule surrounded by argon atoms have been computed. The energy levels are 
presented in Tab. 4; some wave functions are shown in Fig. 7. 

Matrix elements of the dipole moment components can be computed with the use of . The following 
expression is used: 

3 3

2 2

, ,
0 0

( ) ( )OHi
nm n OH CH m OH CHp e dsdt

π π
ϕϕ ϕ ϕ ϕ± ∗= Ψ Ψ∫ ∫  . 

The squared matrix elements of the dipole moment operator are given in Tab. 5. Fig. 8 shows the computed IR absorption 
spectrum. 

0
OHip p e ϕ±± =
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Figure 7.  Torsional-rotational wave functions of CH3OH in argon matrix 

Table 4.  Energies of torsional-rotational states for СН3 ОН in argon matrix 

Energy level number 1 2 3 4 5 6 7 8 9 

Energy value (cm-1) 137.40 160.75 168.83 178.33 183.35 198.12 199.53 222.53 225.34 

Energy level number 10 11 12 13 14 15 16 17 18 

Energy value (cm-1) 266.90 267.39 315.37 315.46 350.61 353.28 363.16 363.20 377.30 

Table 5.  Squared matrix elements of the dipole moment operator 

Transition 
1 ⇒ k 

Wave 
number 
ν (cm-1) 

Dipole matrix 

element 
2
1 kp ⇒  

Transition 
1 ⇒ k 

Wave 
number 
ν (cm-1) 

Dipole matrix 

element 
2
1 kp ⇒  

Transition 
1 ⇒ k 

Wave 
number 
ν (cm-1) 

Dipole matrix 

element 
2
1 kp ⇒  

k = 2 23.34 0.182821 k = 11 130.00 0.000000 k = 20 283.67 0.001590 

k = 3 31.43 0.037687 k = 12 177.98 0.000000 k = 21 283.99 0.000720 

k = 4 40.93 0.000667 k = 13 178.06 0.000000 k = 22 287.89 0.000000 

k = 5 45.95 0.003261 k = 14 213.21 0.036043 k = 23 287.89 0.000000 

k = 6 60.73 0.000140 k = 15 215.88 0.009690 k = 24 296.43 0.003341 

k = 7 62.13 0.000592 k = 16 225.76 0.000031 k = 25 320.56 0.000042 

k = 8 85.14 0.000111 k = 17 225.81 0.000000 k = 26 321.08 0.000017 

k = 9 87.94 0.000030 k = 18 239.91 0.001261 k = 27 353.62 0.001134 

k = 10 129.51 0.000011 k = 19 240.92 0.004182 k = 28 357.46 0.000064 
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Figure 8.  Computed IR torsional-rotational spectrum for СН3ОН in argon matrix 

6. Discussion 
Despite the fact that in the case of torsional-rotational 

motion there is a greater number of the computed vibrational 
frequencies over the spectral region 0–500 cm-1 compared to 
the case of pure torsional motion, with due regard for the 
dipole moment matrix elements, the spectra shown in Figs. 4 
and 8 are found very similar. Inclusion of the rotation leads 
to a blue shift of the absorption bands doublet in the region 
0–50 cm-1 and to a considerable increase of its relative 
intensity. A similar blue shift is also observed for the doublet 
of absorption bands in the interval 200–250 cm-1. The 
presence of a high-intensity absorption band in the spectral 
region 275–300 cm-1 seems to be the principal feature 
distinguishing the torsional spectrum as compared to the 
torsional-rotational IR spectrum. With inclusion of a rotation 
motion, in this interval a low-intensity doublet of absorption 
bands is observed. Though the proposed model including the 
argon matrix effect on a torsional-rotational spectrum for a 
methanol molecule is far from being perfect, it is interesting 
to correlate the computational results and experimental data. 
Unfortunately, in[13] IR spectra for a methanol molecule in 
the argon matrix have been recorded over the region 
400–4000 cm-1. In[17] the spectrum given for methanol in 
the argon matrix exhibits an absorption band at 271.5 cm-1 
and reveals a growth of the intensity in the region of 213 cm-1, 
where recording of this spectrum comes abruptly to an end. 
As a result, computations of normal vibrations were 
performed considering the only band at 271.5 cm-1. In[18] an 
IR spectrum for a methanol molecule in the argon matrix is 
given in the region 40–4000 cm-1. Taking into account 
limitations of the model and the assumptions made in the 
process of computations, a similarity of the computational 
results and experimental spectra is remarkable. Some of the 
absorption bands in the interval 40–120 cm-1 are assigned by 

the authors as phonon bands. In the spectral region 40–400 
cm-1, apart from these bands, two more absorption bands are 
observed at 223 and 272 cm-1, the first of them having a 
higher intensity. Besides, a half-width of the band at 223 
cm-1 is no less than 10 cm-1, and this is not typical for spectra 
for the isolated matrix which are recorded at 10 К. The band 
profile seems to be indicative of a doublet of the overlapping 
absorption bands. As an intensity of the absorption band at 
272 cm-1 is rather high the computed torsional spectrum for a 
methanol molecule seems to be closer to the experimental 
one. Thus, the band at 272 cm-1 may be correlated to the 
computed absorption band at 288.06 cm-1, and a wide 
high-intensity band at 223 cm-1 – to a doublet of the 
computed bands at 204.82 and 217.76 cm-1. It is possible to 
assume that a good agreement between the theoretical and 
experimental spectra is due to the fact that in all the cases we 
deal with practically undisturbed torsional motion in a 
molecule of methanol. But, according to[14,19–22], a pure 
torsional spectrum of a methanol molecule recorded  at a 
temperature below 10 К and constructed on the basis of the 
selection rules ( A A⇔ , E E⇔ ) in the spectral interval 
0–400 cm-1 should be represented by two absorption bands 
with the frequencies 294.5 and 353.2 cm-1. In the case of an 
insignificant population of the first degenerate torsional state 
of the E-type there is a possibility for observation of a 
low-intensity absorption band with the frequency 199.8 cm-1. 
It is clear that the matrix effect leads both to the frequency 
shift and to a significant changing of the transition 
probability, and this is supported by the presence of two 
high-intensity absorption bands in an IR spectrum of 
methanol in the argon matrix over the region  200–300 cm-1. 

7. Conclusions 
In the case when a molecule of methanol is surrounded by 
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eight argon atoms the authors have considered internal 
rotation and rotation of the molecule as a whole with respect 
to the С-О bond, and also their joint motion. Splitting of the 
deepest double-degenerate torsional state was found to be 
29.7 cm-1. Rotation of the methanol molecule as a whole with 
respect to С-О bond takes place in a small decelerating 
potential, height of the barrier being no more than 60 cm-1. 
Because of the elongated form, rotation of a methanol 
molecule with respect to the axes perpendicular to С-О bond 
is unlikely. The computations carried out point to the fact 
that a methanol molecule may be considered as a probe in 
analysis of the matrix properties. By simulation of the 
positions of argon atoms surrounding a molecule of 
methanol we can vary a two-dimensional potential surface 
and hence a theoretical IR spectrum of the molecule in the 
matrix. Correlation with the experiment is still required to 
reveal which of the types of the argon atoms surroundings is 
most probable. 
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