ФОРМИРОВАНИЕ И СТРУКТУРА Сг-ДНА/ZrN ПОКРЫТИЯ НА ТВЕРДОМ СПЛАВЕ

В.В. Чаевский, В.В. Жилинский Белорусский государственный технологический университет, ул. Свердлова 13а, 220006 Минск, Беларусь, chayeuski@belstu.by, zhilinski@yandex.ru

В данной работе проводились исследования структуры сформированного электрохимическим осаждением и методом КИБ на подложку карбида вольфрама (WC – 3% Co) комбинированного Cr- детанационные наноалмазы (ДHA) / ZrN покрытия. Были изучены микроструктура и фазовый состав Cr-ДHA/ZrN покрытия. Покрытие состоит из отдельных фаз α -Ni, α -Cr, α -Cu, Ni₃P, наноалмазов и имеет слоистую структуру. Между верхним Cr-ДHA и нижним ZrN слоями присутствует промежуточные слои меди α -Cu и никеля α -Ni, наличие которых необходимо для получения высокой адгезии металл-алмазного КЭП к WC-Co основе. Cr-ДHA слой и промежуточные слои меди и никеля не перемешиваются друг с другом и ZrN покрытием, которое не перемешивается с твердосплавной основой. В ZrN и Ni слоях присутствует кобальт.

Ключевые слова: покрытие; наноалмазы; карбид вольфрама; нитрид циркония; хром.

FORMATION AND STRUCTURE OF THE Cr-DND/ZrN COATING ON HARD ALLOY

Vadzim Chayeuski, Valery Zhylinski

Belarusian State Technology University, 13a Sverdlova Str., 220006 Minsk, Belarus, chayeuski@belstu.by, zhilinski@yandex.ru

In the present work, researches of the features of the structure of combined Cr- detonatoin nanodiamonds (DND)/ZrN coating synthesized on cemented tungsten carbide (WC – 3% Co) by electroplating and Arc-PVD techniques were accomplished. The microstructure and phase composition of the Cr-DND/ZrN coating were studied. The coating consists of separate phases of α -Ni, α -Cr, α -Cu, Ni₃P, nanodiamonds and its has a layered structure. There are an intermediate copper α -Cu and nickel α -Ni layers between Cr-DND top and ZrN bottom layers. The presence of copper and nickel layers is necessary to obtain high adhesion of metal-diamond CEC for WC-Co substrate. The Cr-DND layer as well as the intermediate copper and nickel layers are not mixed with each other and the ZrN coating that is not mixed with a hard alloy substrate. Cobalt is present in the ZrN and Ni layers.

Keywords: coating; nanodiamonds; tungsten carbide; zirconium nitride; chromium.

Введение

В настоящее время в деревообработке широко используются резцы фрезерного инструменты из цементированного карбида вольфрама WC-Co. Хотя они обеспечивают хорошее соотношение твердости и трещиностойкости [1], однако полностью соответствовать необходимым требованиям современной обработки древесины, связанной с использованием высоких скоростей резания, такие инструменты не могут [2]. Создание многослойных покрытий на поверхности твердосплавных лезвий ножей фрезерного инструмента, состоящих из чередующихся слоев различного состава, полученных методом конденсации с ионноплазменной бомбардировкой (КИБ), с помощью которого сформированные покрытия на базе нитридов или карбидов тугоплавких металлов (Ti, Mo, Zr, Cr и др.) существенно увеличивают период стойкости инструмента при обработке древесины [3, 4], и композиционных электрохимических покрытий (КЭП), содержащих наноалмазы детонационного синтеза (ДНА), показывающих высокие физико-механические свойства [5], способствует повышению надежности режущих инструментов. Хромирование занимает особое место в ряду методов инженерии поверхности благодаря широким функциональным возможностям наносимых покрытий (износостойкость, коррозионная стойкость и др.). Модифицирование хромовых покрытий ДНА улучшает их

¹⁴⁻я Международная конференция «Взаимодействие излучений с твердым телом», 21-24 сентября 2021 г., Минск, Беларусь 14th International Conference "Interaction of Radiation with Solids", September 21-24, 2021, Minsk, Belarus

триботехнические свойства, снижая для условий трения без смазки коэффициент трения в 1.8-2.9 раза и интенсивность изнашивания в 6-10 раз [6].

В связи с этим целью данной работы было сформировать методами КИБ и электрохимического осаждения на поверхности лезвий ножей из твердого сплава WC–Со дереворежущего инструмента комбинированные Cr-ДНА/ZrN покрытия и исследовать их структуру и элементный состав.

Результаты и их обсуждение

ZrN покрытия осаждались методом КИБ на поверхность лезвий ножей хвостовых фрез на установке ВУ-1Б «Булат» по стандартной методике: с предварительной обработкой подложки ионами циркония в вакууме 10⁻³ Па при потенциале подложки -1 кВ и последующим нанесением покрытия при опорном напряжении -100 В и токах горения дуги катода 100-120 А в атмосфере азота при давлении 10⁻¹ Па. Температура при осаждении соответствовала 700-800°С.

Получение высокой адгезии металлалмазного КЭП к нитридной керамике ZrN, твердосплавным основам (в т. ч. WC-Со) является серьезной проблемой. Поэтополучения целью адгезионно-MV с прочного Cr-ДНА КЭП с ZrN покрытием предварительно на поверхность ZrN покрытия осаждались химическим способом при высокой температуре (96°С) слои никеля из раствора на основе гипофосфита натрия следующего состава: NiSO4 · 7H2O (200.0 г/л), NaCl (20.0 г/л), H₃BO₃ (20.0 г/л), Na₂H₂PO₂ (25.0 г/л). С целью недопущения пассивации Ni-слоя и дополнительного улучшения адгезии Cr-ДНА КЭП с ZrN покрытием и основой производилось нанесение промежуточного слоя меди электрохимическим способом из сернокислого электролита. Cr-ДНА КЭП осаждались в гальваностатическом режиме электролиза при средней катодной плотности тока 50 А/дм² из стандартного электролита хромирования при содержании CrO₃ – 250 г/л, H₂SO₄ – 2.5 г/л с добавлением ДНА марки

"УДА-ВК" – 4.9-5.1 г/л производства ЗАО «Синта» [7]. Процесс осаждения КЭП проводили при температуре 40-50°С и постоянном перемешивании электролитасуспензии.

Фазовый состав полученных соединений исследовался методом рентгеноструктурного анализа (PCA) при помощи дифрактометра Ultima IV (Rugaku) в Си-К_а излучении.

Фрактографические исследования образцов проводилось методом сканирующей электронной микроскопии (СЭМ) с использованием микроскопа Hitachi S-4800, который применялся для определения элементного состава образцов методами СЭМ и рентгеноспектрального микроанализа (РСМА).

В результате проведенных исследований было показано, что морфология поверхности Cr-ДНА/ZrN КЭП имеет глобулярные образования в виде частиц, создающих связанные агломераты, характерные кластерам наноалмазов, размером от 204 нм в КЭП до 4.53 мкм в электролитах хромирования [8]. Кластеры наноалмазов в этом случае являются центрами осаждения ионов хрома.

На основании PCA рентгенограммы (рис. 1), сформированного комбинированного Cr-ДНА/ZrN КЭП, можно утверждать о формировании отдельных фаз никеля α-Ni, хрома α-Cr, меди α-Cu, фазы Ni₃P и наноалмазов.

Рис. 1. Рентгенограмма Cr-ДНА/ZrN покрытия Fig. 1. XRD pattern for the Cr-DND/ZrN coating

СЭМ-снимки поперечного излома (рис. 2) образца показывают, что Cr-ДНА/ZrN покрытие имеет слоистую структуру.

¹⁴⁻я Международная конференция «Взаимодействие излучений с твердым телом», 21-24 сентября 2021 г., Минск, Беларусь 14th International Conference "Interaction of Radiation with Solids", September 21-24, 2021, Minsk, Belarus

Рис. 2. Микроструктура перечного излома образца: (а) СЭМ-снимок WC-Со основы с Cr-ДНА/ZrN покрытием, (б) РСМА в характеристическом рентгеновском излучении Zr, Cu, Co, C, W, (в) РСМА в характеристическом рентгеновском излучении Cr, Cu, Ni, W

Fig. 2. Microstructure of the fracture of cross-section of the sample: (a) SEM-image of the coated Cr-DND/ZrN substrate WC-Co, (b) EDX mapping image of Zr, Cu, Co, C, W, (c) EDX mapping image of Cr, Cu, Ni, W

Толщина верхнего Cr-ДНА слоя составляет ~88 нм, нижнего ZrN слоя – 1.04 мкм (рис. 2а). На рис. 2а видно также присутствие промежуточного слоя толщиной 816 нм между Cr-ДНА и ZrN слоями. Рис. 26, в показывают, что этот промежуточный слой представляет собой металлические медь α-Си и никель α-Ni. Твердосплавная основа образца имеет мелкокристаллическую структуру (рис. 2а). Методом РСМА был

определен состав твердого сплава: WC – 3 вес.% Со.

Рисунки 26, в показывают присутствие кобальта в ZrN-покрытии и в Ni-слое, а также подтверждают факт того, что Cr-ДНА слой и промежуточные слои (меди, никеля) не перемешиваются друг с другом и ZrNпокрытием, которое не перемешивается с твердосплавной WC-Co основой.

СЭМ-снимки поперечного излома образца также показывают (рис. 26, в), что в ZrN- и Ni-слоях присутствует кобальт. На этапе ионной очистки поверхности подложки при синтезе покрытий методом КИБ температура достигает значения 1300°С. Такая температура способствует выделению кобальта из зерен твердого сплава WC-Co и формированию на поверхности твердого сплава металлической фазы кобальта α-Со в результате его термической диффузии [9]. Ионно-плазменные покрытия, сформированные методом КИБ, имеют пористую структуру [10]. Поэтому кобальт диффундирует по порам в ZrN-покрытии. Дальнейшее проникновение кобальта в Ni-слой обусловлено наличием микротрещин в покрытиях на основе Ni-P, т. к. получаемые из исходного раствора химического никелирования Ni-P покрытия характеризуются высокими внутренними напряжениями растяжения, которые тем выше, чем содержание фосфора в покрытиях [11], что вызывает образование микротрещин в покрытиях.

Заключение

На твердосплавной основе WC – 3 вес.% Со синтезировано методами электрохимического осаждения и КИБ комбинированное покрытие, состоящее из Cr-ДНА и ZrN. Показано, что Cr-ДНА/ZrN покрытие имеет слоистую структуру. Установлено, что верхний Cr-ДНА слой имеет малую толщину (~88 нм) по сравнению с толщиной ZrN покрытия (~1.0 мкм). Между Cr-ДНА и ZrN слоями присутствует промежуточные слои меди α-Си и никеля α-Ni толщиной 816 нм, наличие которых необходимо для получения высокой адгезии металл-алмазного КЭП к WC-

¹⁴⁻я Международная конференция «Взаимодействие излучений с твердым телом», 21-24 сентября 2021 г., Минск, Беларусь 14th International Conference "Interaction of Radiation with Solids", September 21-24, 2021, Minsk, Belarus

Со основе. Сг-ДНА слой и промежуточные слои меди и никеля не перемешиваются друг с другом и ZrN-покрытием, которое не перемешивается с твердосплавной основой. В ZrN и Ni-слоях присутствует кобальт в результате его термической диффузии из зерен твердого сплава WC-Co основы.

Библиографические ссылки

- 1. Guo X., Ekevad M., Grönlund A., Marklund B., Cao P. Tool wear and machined surface roughness during wood flour/polyethylene composite peripheral upmilling using cemented tungsten carbide tools. *Bioresources* 2014; 9 (3): 3779-3791.
- 2. Sommer F., Kern F., Gadow R. Injection molding of ceramic cutting tools for wood-based materials. *Journal of the European Ceramic Society* 2013; 33: 3115-3122.
- 3. Kuleshov A.K., Uglov V.V., Rusalsky D.P., Grishkevich A.A., Chayeuski V.V., Haranin V.N. Effect of ZrN and Mo–N coatings and sulfacyanization on wear of wood-cutting knives. *Journal of Friction and Wear* 2014; 35 (3): 201-209.
- 4. Gilewicz A., Warcholinski B. Deposition and characterisation of Mo₂N/CrN multilayer coatings prepared by cathodic arc evaporation. *Surface and Coatings Technology* 2015; 279: 126-133.
- 5. Долматов В.Ю. Ультрадисперсные алмазы детанационного синтеза: свойства и применение. *Успехи химии* 2001; 70 (7): 687-708.
- Витязь П.А. Модифицирование материалов и покрытий наноразмерными алмазосодержащими добавками. Минск: Беларус. навука; 2011. 527 с.
- Кононов А.Г., Сачивко Я.С., Корженевский А.П., Штемплюк Р.Г. Термическая стабильность хромовых покрытий, модифицированных наноразмерными углеродсодержащими добавками. Актуальные вопросы машиноведения 2015; (4): 353-357.
- 8. Tseluikin V.N. On the Structure and Properties of Composite Electrochemical Coatings. A Review. *Protection of Metals and Physical Chemistry of Surfaces* 2016; 52(2): 254-266.
- Линник С.А., Гайдайчук А.В., Охотников В.В. Влияние кобальта на адгезионную прочность поликристаллических алмазных покрытий на твердых сплавах WC-Co. *ЖТФ* 2018; 88 (2): 214-218.
- Kuleshov A.K., Uglov V.V., Chaevski V.V., Anishcik V.M. Properties of coatings based on Cr, Ti, Mo nitrides with embedded metals deposited on cutting tools. *Journal of Friction and Wear* 2011; 32 (3): 192-198.
- 11. Кузнецов В.В., Петухов И.В., Кузнецова Е.В. Морфология и структура электроосажденных пленок Ni-P. *Металлы* 1987; (5): 186-188.

References

- 1. Guo X., Ekevad M., Grönlund A., Marklund B., Cao P. Tool wear and machined surface roughness during wood flour/polyethylene composite peripheral upmilling using cemented tungsten carbide tools. *Bioresources* 2014; 9 (3): 3779-3791.
- 2. Sommer F., Kern F., Gadow R. Injection molding of ceramic cutting tools for wood-based materials. *Journal of the European Ceramic Society* 2013; 33: 3115-3122.
- 3. Kuleshov A.K., Uglov V.V., Rusalsky D.P., Grishkevich A.A., Chayeuski V.V., Haranin V.N. Effect of ZrN and Mo–N coatings and sulfacyanization on wear of wood-cutting knives. *Journal of Friction and Wear* 2014; 35 (3): 201-209.
- 4. Gilewicz A., Warcholinski B. Deposition and characterisation of Mo₂N/CrN multilayer coatings prepared by cathodic arc evaporation. *Surface and Coatings Technology* 2015; 279: 126-133.
- 5. Dolmatov V.Yu. Ul'tradispersnye almazy detonatsionnogo sinteza: svoystva i primenenie. [Detonation synthesis of ultradispersed diamonds: properties and application]. *Uspekhi khimii* 2001; 70(7): 687-708. (In Russian).
- 6. Vityaz' P.A. Modifitsirovanie materialov i pokrytiy nanorazmernymi almazosoderzhashchimi dobavkami [Modification of materials and coatings with nano-sized diamond-containing additives]. Minsk: Belarusskaya navuka; 2011. 527 p. (In Russian).
- 7. Kononov A.G., Sachivko Ya.S., Korzhenevskiy A.P., Shtemplyuk R.G. Termicheskaya stabil'nost' khromovykh pokrytiy, modifitsirovannykh nanorazmernymi uglerodsoderzhashchimi dobavkami [Thermal stability of chromium coatings modified with nanosized carbon-containing additives]. *Aktual'nye voprosy mashinovedeniya* 2015; (4): 353-357. (In Russian).
- Tseluikin V.N. On the Structure and Properties of Composite Electrochemical Coatings. A Review. *Protection of Metals and Physical Chemistry of Surfaces* 2016; 52(2): 254-266.
- 9. Linnik S.A., Gaydaychuk A.V., Okhotnikov V.V. Vliyanie kobal'ta na adgezionnuyu prochnost' polikristallicheskikh almaznykh pokrytiy na tverdykh splavakh WC–Co [Effect of cobalt on the adhesion strength of polycrystalline diamond coatings on WC-Co hard alloys]. *Zhurnal tekhnicheskoy fiziki* 2018; 88 (2): 214-218. (In Russian).
- 10. Kuleshov A.K., Uglov V.V., Chaevski V.V., Anishcik V.M. Properties of coatings based on Cr, Ti, Mo nitrides with embedded metals deposited on cutting tools. *Journal of Friction and Wear* 2011; 32 (3): 192-198.
- 11. Kuznetsov V.V., Petukhov I.V., Kuznetsova E.V. Morfologiya i struktura elektroosazhdennykh plenok Ni-P [Morphology and structure of electrodeposited Ni-P films]. *Metally* 1987; (5): 186-188. (In Russian).

¹⁴⁻я Международная конференция «Взаимодействие излучений с твердым телом», 21-24 сентября 2021 г., Минск, Беларусь 14th International Conference "Interaction of Radiation with Solids", September 21-24, 2021, Minsk, Belarus