Литература

1. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника (1987).

ОБ УРАВНЕНИЯХ ВОЛЬТЕРРА—ФРЕДГОЛЬМА С ЧАСТНЫМИ ИНТЕГРАЛАМИ И L^p —НЕПРЕРЫВНЫМИ И L^p —ОГРАНИЧЕННЫМИ ЯДРАМИ Е. В. Фролова, С. А. Фролов (Липецк, Россия)

Различные задачи математической физики, механики сплошных сред, теории упругости приводятся к уравнениям с частными интегралами

$$x = Kx + f$$

где K=L+M+N — оператор Вольтерра-Фредгольма с частными интегралами, операторы $L,\,M,\,N$ определяются равенствами

$$(Lx)(t,s) = \int_a^t l(t,s,\tau)x(\tau,s) d\tau, \ (Mx)(t,s) = \int_c^{+\infty} m(t,s,\sigma)x(t,\sigma) d\sigma,$$
$$(Nx)(t,s) = \int_a^t \int_c^{+\infty} n(t,s,\tau,\sigma)x(\tau,\sigma) d\sigma d\tau;$$

 $t, \tau \in [a, +\infty), s, \sigma \in [c, +\infty), l, m, n$ — заданные измеримые функции, а интегралы понимаются в смысле Лебега.

Пусть $\Omega \in \{[a,+\infty),[c,+\infty),D=[a,+\infty)\times[c,+\infty)\}$ и $\omega \in \{\tau,\sigma,(\tau,\sigma)\}$. Измеримая на $D\times\Omega$ функция $u(t,s,\omega)$ называется L^p -непрерывной, если для любого $\varepsilon>0$ существует $\delta>0$ такое, что $\|u(t_1,s_1,\cdot)-u(t_2,s_2,\cdot)\|_{L^p(\Omega)}<\varepsilon$ при $|t_1-t_2|<\delta,\,|s_1-s_2|<\delta,$ и L^p - ограниченной, если $\|u(t,s,\cdot)\|_{L^p(\Omega)}\leq U<\infty$.

Теорема. Оператор K с L^p — непрерывными и L^p — ограниченными ядрами l,m,n действует и непрерывен в пространстве $C(L^p(D))$ равномерно непрерывных и ограниченных на D функций со значениями в $L^p(D)$. Если дополнительно существуют такие числа q,v, что при t>q,s>v $\|l(t,s,\cdot)\|_{L^p([a,\infty))}\leq \varepsilon,$ $\|n(t,s,\cdot,\cdot)\|_{L^p(D)}\leq \varepsilon,$ где $\varepsilon<1,$ а оператор I-M имеет обратный вида

$$(I-M)^{-1}x(t,s) = x(t,s) + \int_{c}^{+\infty} r_m(t,s,\sigma)x(t,\sigma) d\sigma,$$

где r_m — резольвентное ядро оператора M, определяемое аналогично [1], то уравнение x = Kx + f равносильно в C(D) уравнению

$$x(t,s) = g(t,s) + \int_{0}^{t} \int_{0}^{+\infty} h(t,s,\tau,\sigma) x(\tau,\sigma) d\sigma d\tau,$$

где $h(t, s, \tau, \sigma) - L^p$ -непрерывное и L^p -ограниченное ядро оператора $H = (I - M)^{-1}(I - L)^{-1}(LM + N)$, а $g = (I - M)^{-1}(I - L)^{-1}f$. При этом исходное уравнение однозначно разрешимо в C(D), и его решение имеет вид

$$x(t,s) = f(t,s) + \int_{a}^{t} r_1(t,s,\tau)f(\tau,s) d\tau + \int_{c}^{+\infty} r_2(t,s,\sigma)f(t,\sigma) d\sigma + \int_{a}^{t} \int_{c}^{+\infty} r(t,s,\tau,\sigma)f(\tau,\sigma) d\sigma d\tau,$$

где $r_1, r_2, r - L^p$ -непрерывные и L^p -ограниченные резольвентные ядра оператора K.

Благодарности. Работа выполнена при финансовой поддержке РФФИ (проект № 19–41–480002).

Литература

1. Калитвин А.С., Фролова Е.В. Линейные уравнения с частными интегралами. –теория (Издание 2-е). Липецк (2015).

ПОСТРОЕНИЕ КАНОНИЧЕСКОЙ МАТРИЦЫ ПРОБЛЕМЫ РИМАНА ДЛЯ ТРЕХ ФУНКЦИЙ С ТРЕМЯ ОСОБЫМИ ТОЧКАМИ

Л. А. Хвощинская, Т. Н. Жоровина (Минск, Беларусь)

Рассмотрена задача определения системы трех функций $Y(z)=(y_1,y_2,y_3)$, аналитических в комплексной плоскости $\mathbb C$, за исключением трех точек $a_1=0,\ a_2=1,\ a_3=\infty$, при обходе вокруг которых функция Y(z) испытывает линейные преобразования с помощью постоянных невырожденных матриц V_1,V_2,V_3 третьего порядка, образующих группу монодромии, $V_1V_2V_3=E$.

Обозначив характеристические числа матриц V_k через $\alpha_k, \beta_k, \gamma_k, \ k=1,2,3$, найдем числа $\rho_k = \frac{1}{2\pi i} \ln \alpha_k, \ \sigma_k = \frac{1}{2\pi i} \ln \beta_k, \ \omega_k = \frac{1}{2\pi i} \ln \gamma_k; \ \mathrm{Re} \rho_k, \ \mathrm{Re} \sigma_k, \ \mathrm{Re} \omega_k \in (-1,0], \ \Delta = \sum_{k=1}^3 (\rho_k + \sigma_k + \omega_k),$ $\rho = -\rho_3 + \left[\frac{2-\Delta}{3}\right], \ \sigma = 1-\sigma_3 + \left[\frac{1-\Delta}{3}\right], \ \omega = 2-\omega_3 + \left[\frac{-\Delta}{3}\right].$ Не ограничивая общности, считаем, что $\mathrm{Re} \rho_3 \leqslant \mathrm{Re} \sigma_3 \leqslant \mathrm{Re} \omega_3$. Обозначим $s_k = \rho_k + \sigma_k + \omega_k, \ r_k = \rho_k \sigma_k + \sigma_k \omega_k + \rho_k \omega_k,$ $d_k = \rho_k \sigma_k \omega_k, \ k=1,2$.

Исследования показали, что матрица

$$X(z) = \begin{pmatrix} y_1 & z(z-1)y_1' & z^2(z-1)^2y_1'' \\ y_2 & z(z-1)y_2' & z^2(z-1)^2y_2'' \\ y_3 & z(z-1)y_3' & z^2(z-1)^2y_3'' \end{pmatrix} \begin{pmatrix} 1 & \rho z & \rho z(\sigma z + \rho - \sigma + 1) \\ 0 & 1 & z(\rho + \sigma + 1) \\ 0 & 0 & 1 \end{pmatrix}.$$

является канонической и удовлетворяет дифференциальному уравнению Фукса

$$\frac{dX}{dz} = X\left(\frac{U_1}{z - a_1} + \frac{U_2}{z - a_2}\right),\tag{1}$$

дифференциальные матрицы U_1, U_2 которого найдены в явном виде. Матрица $U_1 + U_2$ является треугольной и с помощью преобразования подобия треугольной матрицей C приводится к диагональному виду с элементами диагонали ρ, σ, ω . Умножая обе части уравнения (1) справа на матрицу C и соответственно преобразуя матрицы U_1 и U_2 , получили следующий результат.

Теорема. Пусть V_1, V_2, V_3 — матрицы монодромии проблемы Римана для трех функций с тремя особыми точками $a_1 = 0, a_2 = 1, a_3 = \infty$. Тогда каноническая матрица X(z) удовлетворяет дифференциальному уравнению (1) с дифференциальными матрицами

$$U_1 = \begin{pmatrix} \rho & cu_{12} & c^2u_{13} \\ -1/c & u_{22} & cu_{23} \\ 0 & -1/c & u_{33} \end{pmatrix}, \ U_2 = \begin{pmatrix} 0 & -cu_{12} & -c^2u_{13} \\ 1/c & \sigma - u_{22} & -cu_{23} \\ 0 & 1/c & \omega - u_{33} \end{pmatrix},$$

где
$$u_{22} = \frac{\rho(s_2 - \omega) - \sigma(s_1 - \omega) + r_1 - r_2}{\omega - \sigma}$$
, $u_{33} = \frac{\omega(s_2 - \sigma) - \rho(s_1 - \sigma) - r_1 + r_2}{\omega - \sigma}$, $u_{12} = \frac{d_2 - (\rho - \rho_1)(\rho - \sigma_1)(\rho - \omega_1)}{\sigma - \rho}$, $u_{13} = u_{12}(\omega - s_{33}) - d_2$, $u_{23} = r_2 - u_{12} - (\sigma - s_{22})(\omega - s_{33})$.