ИНТЕГРИРОВАНИЕ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ СТРАТОНОВИЧА, СОДЕРЖАЩИХ АНТИПЕРСИСТЕНТНЫЕ ДРОБНЫЕ БРОУНОВСКИЕ ДВИЖЕНИЯ

А. А. Леваков, М. М. Васьковский (Минск, Беларусь)

Рассмотрим стохастическое дифференциальное уравнение Стратоновича

$$dX(t) = b(X(t))dt + h(X(t))dW(t) + \sigma(X(t))dB^{H}(t), \ t \in [0, T], \ X \in \mathbb{R}^{d},$$
(1)

где W(t), $B^H(t)$ — независимые d_1 -мерное стандартное броуновское движение, d_2 -мерное дробное броуновское движение с индексом Херста $H \in (\frac{1}{3}, \frac{1}{2})$.

Перейдем от уравнения (1) к соответствующему уравнению в грубых траекториях

$$dX(t) = f(X(t))d\mathbf{B}(t), \tag{2}$$

где $\mathbf{B}=(B,\mathbb{B})$ — геометрическая грубая траектория над процессом $B(t)=(t,W(t),B^H(t)),\mathbb{B}$ — процесс второго порядка над B.

Пусть $B_m(t), m \ge 1,$ — последовательность кусочно-линейных аппроксимаций процесса B(t).

Наряду с уравнением (2) рассмотрим последовательность уравнений

$$dX(t) = f(X(t))dB_m(t). (3)$$

Теорема 1. Пусть функция f непрерывна и ограничена вместе с частными производными до третьего порядка включительно, $X_m(t)$ — решение уравнения (3) с начальным условием $X(0) = x \in \mathbb{R}^d$. Тогда последовательность процессов $X_m(t)$, $m \ge 1$, сходится по вероятности равномерно по $t \in [0,T]$ к единственному решению уравнения (2) с начальным условием X(0) = x.

Из теоремы 1 вытекает следующий метод интегрирования уравнения (2) и соответствующего ему уравнения (1):

- 1) построить кусочно-линейные аппроксимации B_m процесса B;
- 2) методами последовательных приближений или ломаных Эйлера найти решение $X_m(t)$ уравнения (3) с начальным условием X(0) = x;
 - 3) найти предел по вероятности $X(t) = \lim_{m \to \infty} X_m(t)$.

Теорема 2. Пусть функция $f = \operatorname{col}(f_1, \dots, f_n), n = 1 + d_1 + d_2$, имеет непрерывные и ограниченные частные производные любого порядка. Если дифференциальные операторы $D_i = f_i \frac{\partial}{\partial X}, i \in \{1,\dots,n\}$, попарно коммутируют, то единственное решение уравнения (2) с начальным условием $X_0 = x \in \mathbb{R}^d$ задается формулой

$$X(t) = (S_{1,B^{(1)(t)}} \circ \ldots \circ S_{n,B^{((n))}(t)})(x), \ t \in [0,T],$$

где $B^{(i)}(t)$, $i \in \{1, ..., n\}$, — компоненты процесса B(t), $S_{i,t} = \exp(tD_i)$, $t \in \mathbb{R}$, — полугруппа сдвига, соответствующая обыкновенному дифференциальному уравнению $dZ(t) = f_i(Z(t))dt$.

СВЯЗЬ ПАРАМЕТРОВ ФУНКЦИИ ЛАУРИЧЕЛЛЫ $F_D^{(n)}(a_1,\ldots,a_n,b,c,z_1,\ldots,z_n)$ С ПАРАМЕТРАМИ ДЕФОРМАЦИИ ВЕСЕЛОВА—ЧАЛОГО СИСТЕМ ТИПА A_n

В. П. Лексин (Коломна, Россия)

Функция Лауричеллы [2], представленная в окрестности начала координат комплесного линейного пространства \mathbb{C}^n степенным рядом

$$F_D^{(n)}(a_1, \dots, a_n, b, c, z_1, \dots, z_n) = \sum_{|\mathbf{k}|=0}^{\infty} \frac{(b)_{|\mathbf{k}|}(a_1)_{k_1} \cdots (a_n)_{k_n}}{(c)_{|\mathbf{k}|} k_1! \cdots k_n!} z_1^{k_1} \cdots z^{k_n}, \tag{1}$$