И.В. ШАПОЧКИНА, В.М. РОЗЕНБАУМ

ВЫСОКОТЕМПЕРАТУРНЫЙ ДИФФУЗИОННЫЙ ТРАНСПОРТ: АСИММЕТРИЧНЫЕ ПЕРЕХОДНЫЕ ПРОЦЕССЫ В СИММЕТРИЧНЫХ ДЕТЕРМИНИСТИЧЕСКИХ ДИХОТОМНЫХ ФЛУКТУАЦИЯХ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ

The influence of asymmetry $\lambda = (\tau_0^+ - \tau_0^-)/(\tau_0^+ + \tau_0^-)$ of transition duration (τ_0^\pm) between the deterministic dichotomic-process states with equal lifetimes $(\tau_+ = \tau_-)$ on the average velocity (ν) of the motion of high-temperature Brownian motors is analyzed. The consideration is equivalent to saw-tooth time dependence of potential energy at $\tau_\pm \to 0$. It is shown that the behaviour of $\nu(\lambda)$ appreciably depends on ratio (ξ) of the characteristic diffusion time of the Brownian particle on the spatial period of potential energy to time period of fluctuations: there is such a critical value $\xi_c(\tau_\pm)$ at which the function of $\nu(\lambda)$ monotonic decrease at $\xi \ge \xi_c(\tau_\pm)$ is replaced by its nonmonotonic behaviour at $\xi < \xi_c(\tau_\pm)$. During absence of one of transition processes $(\lambda \to \pm 1)$, a linear dependence ν on ξ at small ξ occurs, the proportionality factor being specified by sum of each jump process contribution.

В работе [1] на примере высокотемпературных броуновских моторов, однонаправленное движение которых обусловлено симметричными детерминистическими дихотомными флуктуациями потенциальной энергии, было показано, что учет одинаковых длительностей переходов $\tau_0^+ = \tau_0^-$ между состояниями дихотомного процесса с одинаковыми длительностями $\tau_+ = \tau_- >> \tau_0^\pm$ существенно влияет на среднюю скорость движения v, когда величины τ_0^\pm становятся больше характерного времени диффузии частицы $\tau_D = L^2 / D$ (D – коэффициент диффузии) на пространственном периоде L потенциальной энергии. В случае асимметричных переходных процессов ($\tau_0^+ \neq \tau_0^-$) каждая из величин τ_0^+ или τ_0^- может конкурировать с τ_D , что может приводить к новым нетривиальным зависимостям скорости броуновской частицы от параметров модели, изучению которых посвящена данная статья.



Рис. 1. Временная зависимость функции $\sigma(t)$, определяющая характер флуктуаций потенциальной энергии броуновского мотора. Линия $M_1M_2M_5$ соответствует пилообразной функции $\sigma(t)$ ($\eta_0 = 1$)

В качестве модельной потенциальной энергии, часто используемой в теории броуновских моторов, возьмем (как и в [2–4]) функцию вида

$$U(x,t) = [u + \sigma(t)w]V(x), \tag{1}$$

где

$$V(x) = \sin(2\pi x/L) + \kappa \sin(4\pi x/L) \tag{2}$$

является периодической функцией координаты, хорошо воспроизводящей асимметричный пилообразный потенциал при $\kappa=1/4$. Параметры u и w задают среднее значение и амплитуду флуктуаций потенциальной энергии, а временная зависимость периодической функции $\sigma(t)$ изображена на рис. 1 (линия $M_1M_2M_3M_4M_5$). Временными параметрами функции $\sigma(t)$ являются τ_+ и τ_- , отвечающие значениям $\sigma(t)=+1$ и -1, длительности переходных процессов τ_0^\pm и период $\tau=\tau_++\tau_-+\tau_0^++\tau_0^-$. При $\tau_0^\pm\to 0$ функция $\sigma(t)$ принимает только два значения $\sigma(t)=\pm 1$, что соответствует дихотомному процессу. Асимметрию детерминистических дихотомных флуктуаций потенциальной энергии и асим-

метрию длительностей переходных процессов будем характеризовать параметрами ϵ и λ , определяемыми соотношениями

$$\varepsilon = \frac{\tau_{+} - \tau_{-}}{\tau}, \quad \eta_{0}^{\pm} = \frac{\tau_{0}^{\pm}}{\tau} = \frac{1}{2} \eta_{0} (1 \pm \lambda), \quad \eta_{0} = \frac{\tau_{0}^{+} + \tau_{0}^{-}}{\tau}. \tag{3}$$

Поскольку $\tau_{\pm} \geq 0$ и $\tau_{0}^{\pm} \geq 0$, то области изменения введенных параметров задаются неравенствами $0 \leq \eta_{0} \leq 1, \ 0 \leq \lambda \leq 1, \ -1 + \eta_{0} \leq \varepsilon \quad \& -\eta_{0}.$

Средняя скорость броуновской частицы с потенциальной энергией U(x,t), периодической по координате и времени, определяется произведением пространственного периода на поток, усредненный по временному периоду. Общее выражение для средней скорости высокотемпературного броуновского мотора выводилось в работе [4] и использовалось в [1]:

$$v = i\beta^{3} D^{3} \sum_{qj,q'j'} \frac{k_{q}^{2} k_{q+q'}^{2} k_{q'} U_{qj} U_{q'j'} U_{-q-q',-j-j'}}{\left(i\omega_{j} + Dk_{q}^{2}\right) \left(i\omega_{j+j'} + Dk_{q+q'}^{2}\right)}.$$
 (4)

Здесь $\beta=(k_{\rm B}T)^{-1}$ $(k_{\rm B}$ — постоянная Больцмана, T — абсолютная температура), U_{qj} — фурьекомпоненты функции U(x,t) с $k_q=(2\pi/L)q$ и $\omega_j=(2\pi/\tau)j$ (q и j — целые числа). Подставляя в выражение (4) фурье-преобразование формулы (1) $U_{qj}=(u+\sigma_jw)V_q$, где σ_j и V_q — фурье-компоненты функций $\sigma(t)$ и V(x) вида (2), и проводя суммирование по q и q', получаем

$$\frac{v}{v_{0}} = F_{1}(\xi, \varepsilon, \eta_{0}^{\pm}) + \frac{w}{u} F_{2}(\xi, \varepsilon, \eta_{0}^{\pm}), \quad F_{1}(\xi, \varepsilon, \eta_{0}^{\pm}) = \frac{1}{2\pi\xi^{2}} \sum_{j\neq 0} |\sigma_{j}|^{2} j^{2} f_{1}(\xi, j),$$

$$F_{2}(\xi, \varepsilon, \eta_{0}^{\pm}) = \frac{1}{2\pi\xi^{2}} \left[\sigma_{0} \sum_{j\neq 0} |\sigma_{j}|^{2} j^{2} f_{1}(\xi, j) + \sum_{\substack{j,j'\neq 0 \ (j+j'\neq 0)}} \sigma_{j} \sigma_{j'} \sigma_{-j-j'} f_{2}(\xi, j, j') \right],$$

$$f_{1}(\xi, j) = \frac{1}{j^{2} + a^{2}} \left(\frac{1}{j^{2} + a^{2}} + \frac{5}{j^{2} + 16a^{2}} \right),$$

$$f_{2}(\xi, j, j') = \frac{jj' + 4a^{2}}{\left(j^{2} + a^{2}\right)\left(j'^{2} + 16a^{2}\right)} + \frac{jj' + 4a^{2}}{\left(j^{2} + 16a^{2}\right)\left(j'^{2} + a^{2}\right)} + \frac{1}{2} \frac{jj' + a^{2}}{\left(j^{2} + a^{2}\right)\left(j'^{2} + a^{2}\right)},$$

$$\xi = \frac{1}{(2\pi)^{2}} \frac{\tau_{D}}{\tau}, \quad a = \frac{1}{2\pi\xi} = 2\pi\frac{\tau}{\tau_{D}}, \quad v_{0} = \frac{L}{\tau_{D}} \kappa\beta^{3} u w^{2}.$$
(5)

Размерный параметр v_0 , как и ранее [1], определяет порядок величины средней скорости броуновского мотора, которая зависит от температуры, коэффициента диффузии и характеристик флуктуирующего во времени потенциального рельефа.

Фурье-компонента функции $\sigma(t)$ имеет вид

$$\sigma_{j} = \frac{i}{\pi^{2} j^{2}} \left[\frac{1}{\eta_{0}^{-}} \sin(\pi j \eta_{0}^{-}) - \frac{(-1)^{j}}{\eta_{0}^{+}} \sin(\pi j \eta_{0}^{+}) \exp(i\pi j \varepsilon) \right], \quad j \neq 0,$$

$$\sigma_{0} = \varepsilon.$$
(6)

Подстановка (6) в (5) дает выражение для средней скорости броуновского мотора, учитывающее асимметрию переходов между состояниями в общем случае асимметричного дихотомного процесса.

Далее мы ограничимся рассмотрением симметричного дихотомного процесса ($\epsilon=0$). Тогда из соотношения (6) следует тождество $\sigma_{-j}=-\sigma_{j}$, благодаря которому $F_{2}\left(\xi,0,\eta_{0}^{\pm}\right)=0$ (вследствие обращения в ноль двойной суммы при учете свойства $f_{2}\left(\xi,-j,-j'\right)=f_{2}\left(\xi,j,j'\right)$) и $v=v_{0}F_{1}\left(\xi,0,\eta_{0}^{\pm}\right)$, где

$$F_{1}(\xi, 0, \eta_{0}^{\pm}) = \frac{8}{\pi^{3} \eta_{0}^{2} (1 - \lambda^{2})^{2}} \left\{ 2(1 + \lambda^{2}) S(0, a) + 2(1 - \lambda^{2}) \left[S(1 + \eta_{0}, a) - - S(1 - \lambda \eta_{0}, a) \right] - (1 - \lambda)^{2} S((1 + \lambda) \eta_{0}, a) - (1 + \lambda)^{2} S((1 - \lambda) \eta_{0}, a) \right\},$$

$$S(y, a) = \sum_{j=1}^{\infty} \cos \pi y j \left[\frac{21}{16a^{2}} \frac{1}{j^{2}} - \frac{4}{3a^{2}} \frac{1}{j^{2} + a^{2}} + \frac{1}{48a^{2}} \frac{1}{j^{2} + 16a^{2}} - \frac{1}{(j^{2} + a^{2})^{2}} \right] =$$

$$= \frac{7\pi^{2}}{64a^{2}} \left(2 - 6y + 3y^{2} \right) + \frac{597}{512a^{4}} - \frac{11\pi}{12a^{3}} \frac{\cosh(1 - y)\pi a}{\cosh \pi a} + \frac{\pi}{384a^{3}} \frac{\cosh 4(1 - y)\pi a}{\cosh 4\pi a} - \frac{\pi^{2}}{4a^{2} \sinh^{2} \pi a} \left[y \sinh \pi a \sinh(1 - y)\pi a + \cosh \pi ay \right]$$

$$\left(0 \le y \le 2 \right).$$

$$(7)$$

Заметим, что $F_1(\xi,0,\eta_0^\pm)$ зависит от квадрата параметра λ , поскольку $S(1-\lambda\eta_0,a)=S(1+\lambda\eta_0,a)$. Аналитическое суммирование в S(y,a) выполнено с использованием табличных сумм из [5].

Соотношения (7) упрощаются в частном случае пилообразной зависимости $\sigma(t)$ (линия $M_1M_2M_5$ на рис. 1), когда $\tau_+ = \tau_- = 0$ и $\eta_0 = 1$:

$$F_{1}(\xi,0,\eta_{0}^{\pm}) = \frac{32\pi\xi^{2}}{(1-\lambda^{2})^{2}} \left[\frac{21}{16} (1-\lambda^{2}) - \frac{\lambda \sinh \pi a \lambda}{\sinh \pi a} + \frac{\cosh \pi a \lambda \cosh \pi a - 1}{\sinh^{2} \pi a} + \frac{11}{3\pi a} \frac{\cosh \pi a \lambda - \cosh \pi a}{\sinh \pi a} - \frac{1}{96\pi a} \frac{\cosh 4\pi a \lambda - \cosh 4\pi a}{\sinh 4\pi a} \right].$$
(8)

Последняя формула при $\lambda = 0$ (симметричная «пила») совпадает с формулой (7) из работы [1], где надо положить $z = (2\xi)^{-1}$.

Рассмотрим низкочастотные асимптотики $(\xi \to 0)$ представленных выражений. Если $\tau_0^{\pm} >> \tau_D$ и величины η_0 , $1-\lambda^2$ не слишком малы, то

$$F_1(\xi, 0, \eta_0^{\pm}) \approx \frac{42\pi\xi^2}{\eta_0(1-\lambda^2)}$$
 (9)

В случае симметричных переходных процессов ($\lambda=0$) асимптотика (9) совпадает с приведенной в [1]. Пропорциональность скорости броуновского мотора второй степени частоты флуктуаций характерна для плавных функций $\sigma(t)$ (см., например, аналогичный результат в [6] для броуновского дипольного ротатора, управляемого электрическим полем с гармонической временной зависимостью). Наличие малых временных интервалов, на которых функция $\sigma(t)$ изменяется достаточно быстро (в пределе – скачкообразно), приводит к линейной низкочастотной асимптотике [7]. В рассматриваемой нами задаче такое поведение возникает при $\tau_0^- << \tau_D^-$ и/или $\tau_0^+ << \tau_D^-$:

$$F_{1}(\xi,0,\eta_{0}^{\pm}) \approx \begin{cases} 6\pi\xi \left[1-(z_{0}^{+})^{2}/12-(z_{0}^{-})^{2}/12\right], & z_{0}^{\pm} <<1, \\ 3\pi\xi \left[1-(z_{0}^{+})^{2}/6\right], & z_{0}^{+} <<1, z_{0}^{-} >>1, \\ 3\pi\xi \left[1-(z_{0}^{-})^{2}/6\right], & z_{0}^{-} <<1, z_{0}^{+} >>1, \end{cases}$$

$$(10)$$

где $z_0^{\pm} \equiv (2\pi)^2 \tau_0^{\pm} / \tau_D = \eta_0^{\pm} / \xi$.

Приведенная асимптотика позволяет заключить, что в линейном по ξ приближении скорость аддитивно зависит от вкладов каждого временного интервала τ_0^\pm с быстрым изменением функции $\sigma(t)$: каждый скачок дает вклад $3\pi\xi$, а малое отклонение от скачкообразного поведения – квадратичную по τ_0^\pm поправку $-(\pi/2)\xi(z_0^\pm)^2$. Поскольку параметр η_0 не входит в выражение (10), то форма участков функции $\sigma(t)$ с плавным изменением не вносит никакого вклада.

Высокочастотная асимптотика ($\xi \to \infty$) выражения (7) имеет вид

$$F_1(\xi, 0, \eta_0^{\pm}) \approx \frac{\pi}{60\xi^2} \left[15 - 15\eta_0^2 + 6\eta_0^3 - \lambda^2 \eta_0^2 \left(15 - 18\eta_0 + 5\eta_0^2 \right) \right]. \tag{11}$$

При $\lambda = 0$ полученная асимптотика совпадает с приведенной в [1], а при $\eta_0 = 1$ становится равной $(3 - \lambda^2)\pi/30\xi^2$. Соотношение (11) показывает, что скорость броуновского мотора при высоких час-

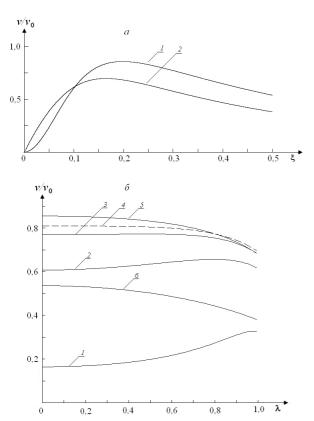


Рис. 2. Средняя скорость броуновского мотора, рассчитанная для пилообразной функции $\sigma(t)$ ($\eta_0 = 1$) в зависимости от: a – частоты при $\lambda = 0$ и $\lambda = 1$ – кривые l и 2; δ – параметра асимметрии λ при $\xi = 0.05$; 0.1; 0.135; 0.15; 0.2; 0.5 – кривые l – δ (штриховая линия соответствует критическому значению $\xi = \xi_c$)

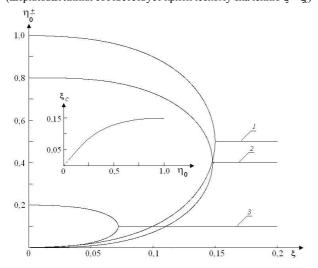


Рис. 3. Частотная зависимость относительных длительностей переходов $\eta_0^\pm = \eta_0(1\pm\lambda_m)/2$, соответствующих максимальному значению средней скорости броуновского мотора при различных вкладах симметричных дихотомных составляющих: $\eta_0=1$; 0,8; 0,2 — кривые 1—3. На вставке — поведение критического значения $\xi=\xi_c$ с изменением η_0

тотах флуктуаций убывает с ростом асимметрии переходного процесса. В то же время из асимптотик (9) и (10) следует, что при низких частотах рост асимметрии переходного процесса приводит к увеличению скорости. Графики зависимостей v/v_0 от ξ , рассчитанные для пилообразной функции $\sigma(t)$ ($\eta_0=1$) при $\lambda=0$ и $\lambda=1$, подтверждают эти выводы (рис. 2 a). Таким образом, характер зависимости скорости от параметра λ изменяется в случае перехода от низких частот к высоким и имеет интересные особенности в промежуточной области частот, к обсуждению которых мы и переходим.

На рис. 2 δ представлены зависимости v/v_0 от параметра асимметрии а, вычисленные при $\eta_0 = 1$ и различных значениях ξ . По мере уменьшения ξ, начиная с некоторого критического значения $\xi = \xi_c \approx 0.15$ (соответствующего значению $a_c \approx 1$), монотонно убывающая функция λ становится немонотонной с максимумом в точке $\lambda = \lambda_m$, зависящим от $\xi < \xi_c$. Такое поведение сохраняется и при $\eta_0 < 1$. Рис. 3 иллюстрирует, как критическое значение ξ_c и значения параметров η_0^{\pm} , соответствующие λ_m , зависят от η_0 . Механизм возникновения немонотонности зависимости v от λ описывается точно так же, как явление спонтанного нарушения симметрии в теории Ландау фазовых переходов второго рода [8]. Действительно, величина $F(\lambda, \xi, \eta_0) \equiv F_1(\xi, 0, \eta_0^{\pm})$ является функцией λ^2 и может быть разложена по λ^2 в малой окрестности точки $\lambda = 0$:

 $F(\lambda,\xi,\eta_0) \approx A(\xi,\eta_0) + B(\xi,\eta_0)\lambda^2 + C(\xi,\eta_0)\lambda^4$, (12) где $C(\xi,\eta_0) < 0$, а $B(\xi,\eta_0) \approx b(\eta_0)[\xi_c(\eta_0) - \xi]$ ($b(\eta_0) > 0$) вблизи интересующей нас критической области $\xi_c(\eta_0)$. Тогда при $\xi > \xi_c(\eta_0)$ имеет место монотонное убывание $F(\lambda,\xi,\eta_0)$ с ростом λ . При $\xi < \xi_c(\eta_0)$ монотонное поведение сменяется немонотонным с максимумом при $\lambda_m = \sqrt{b(\xi_c - \xi)/2 |C|}$. Это λ_m как раз и определяет характер зависимости значений параметров $\eta_0^\pm = \eta_0(1 \pm \lambda_m)/2$ от η_0 , приведенной на рис. 3.

Суммируя полученные результаты, следует отметить, что наиболее интересные особенности зависимостей средней скорости *v* броуновского

мотора от его параметров возникают, когда длительности переходных процессов τ_0^\pm могут конкурировать с характерным временем диффузии частицы τ_D . Поскольку τ_0^\pm всегда меньше периода τ изменения потенциальной энергии U(x,t) со временем t, то при $\tau < \tau_D$ (что соответствует большим значениям частотного параметра ξ) $\tau_0^\pm < \tau_D$ и имеет место монотонная убывающая зависимость v от параметра асимметрии $\lambda = (\tau_0^+ - \tau_0^-)/(\tau_0^+ + \tau_0^-)$ длительностей переходных процессов. Ситуация изменяется, когда τ становится порядка τ_D , а частотный параметр достигает критического значения ξ_c , которое зависит от соотношения длительностей переходных и дихотомных процессов (параметра η_0). Смысл изменений проще увидеть в частном случае отсутствия дихотомных составляющих, когда $\eta_0 = 1$, $\tau_0^+ + \tau_0^- = \tau$ и имеет место пилообразное изменение потенциальной энергии U(x,t) со временем. Тогда при $\xi < \xi_c$ с увеличением параметра λ может происходить переход от неравенств $\tau_0^\pm < \tau_D$ к неравенствам $\tau_0^- < \tau_D < \tau_0^+$, обусловливающий немонотонное поведение зависимости v от λ . Поскольку знак асимметрии временного сигнала не влияет на величину скорости и последняя зависит от λ^2 , то возникновение немонотонности описывается в терминах теории спонтанного нарушения симметрии. По мере же увеличения вклада симметричных дихотомных составляющих (уменьшения параметра η_0) критическое значение ξ_c уменьшается (см. вставку на рис. 3).

Особый интерес представляет рассмотрение низкочастотной асимптотики $(\xi \to 0)$ скорости броуновского мотора. При плавных зависимостях U(x,t) от времени скорость v пропорциональна ξ^2 . Линейное поведение возникает только при наличии скачков в зависимости U(x,t) от t, а малые отклонения от скачкообразного поведения с длительностями τ_0^\pm дают квадратичные по τ_0^\pm поправки. Оказалось, что не только сами скачки, но и квадратичные по τ_0^\pm поправки дают аддитивные вклады в скорость. При этом линейная по ξ асимптотика не зависит от формы плавной части функции U(x,t) от t. Эти закономерности важны для понимания механизма возникновения направленного движения в неравновесных системах под действием различных флуктуаций потенциальной энергии. Наибольший вклад в скорость дают дихотомные флуктуации, при которых функция U(x,t) от t принимает два значения со скачкообразными переходами между ними. Как правило, теоретические модели учитывают флуктуации именно такого типа, поскольку они обеспечивают наиболее простое описание. Практическое значение полученных результатов состоит в учете ненулевых длительностей переходных процессов, которые всегда присутствуют в реальных системах.

- 1. Шапочкина И.В., Розенбаум В.М. // Вестн. БГУ. Сер. 1. 2009. № 2. С. 43.
- 2. Reimann P. // Phys. Rep. 2002. Vol. 361. P. 57.
- 3. Hänggi P., Marchesoni F. // Rev. Mod. Phys. 2009. Vol. 81. P. 387.
- 4. Розенбаум В. М. // Письма в ЖЭТФ. 2008. T. 88. C. 391.
- 5. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. М., 1981.
- 6. Rozenbaum V.M., Vovchenko O.Ye., Korochkova T.Ye. // Phys. Rev. E. 2008. Vol. 77. P. 061111.
- 7. Parrondo J. M. R. // Phys. Rev. E. 1998. Vol. 57. P. 7297.
- 8. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М., 1976. Ч. 1.

Поступила в редакцию 04.02.10.

Ирина Викторовна Шапочкина — старший преподаватель кафедры методики преподавания физики и информатики. *Виктор Михайлович Розенбаум* — доктор физико-математических наук, заведующий лабораторией теоретических проблем поверхностных явлений Института химии поверхности им. А.А. Чуйко НАН Украины.