Белорусский государственный университет

УТВЕРЖДАЮ

Проректор по учебной работе и образовательным инновациям О.Н. Здрок

«02» июля 2021 г.

Регистрационный № УД- 9950/уч.

Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок»

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 04 06 Ядерные физика и технологии

Учебная программа составлена на основе образовательного стандарта специальности 1-31 04 06 Ядерные физика и технологии ОСВО 1-31 04 06 - 2013 от 30.08.2013 № 88 и учебных планов № G-31-142/уч от 30.05.2013 г., № G-31и-175/уч от 30.05.2013 г.

СОСТАВИТЕЛИ:

О.В. Семенович, старший преподаватель кафедры ядерной физики Белорусского государственного университета;

А.В. Ларькин, старший преподаватель кафедры энергофизики Белорусского государственного университета.

РЕЦЕНЗЕНТ:

В.В. Сорокин, заведующий лабораторией тепломассопереноса и гидродинамики в энергетическом оборудовании Государственного научного учреждения «Объединённый институт энергетических и ядерных исследований – Сосны», доктор технических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерной физики (протокол № 11 от 17.06.2021 г.);

Научно-методическим Советом БГУ (протокол № 7 от 30.06.2021 г.).

Зав. кафедрой	А.И. Тимощенко
эав. кафедроп	ттт тимощенке

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа учебной дисциплины Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок» разработана для специальности 1-31 04 06 Ядерные физика и технологии, специализации 1-31 04 06-03 «Физика ядерных реакторов и атомных энергетических установок» первой ступени высшего образования.

Цели и задачи учебной дисциплины

Цель учебной дисциплины – получение студентами углубленной информации о термодинамических циклах и тепловых схемах с ядерными энергетическими установками (ЯЭУ), о сущности и особенностях процессов гидродинамики и теплообмена в реакторной установке (РУ) при переходных и аварийных режимах работы.

Задачи учебной дисциплины:

- 1. ознакомить обучающихся с предметом дисциплины Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок»;
- 2. сформировать соответствующие современному уровню знания понятия, положения и концепции о термогидродинамических процессах, протекающих в РУ с реакторами с водой под давлением при переходных и аварийных режимах работы;
- 3. сформировать понятия о методах исследования и натурного моделирования названных явлений у студентов будущих инженеровфизиков, специализирующегося в области ядерной энергетики;
- 4. сформировать соответствующие современному уровню знания понятия, положения и концепции о термодинамических циклах и тепловых схемах ЯЭУ.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием: учебная дисциплина Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок», относится **к циклу** дисциплин специализации компонента учреждения высшего образования.

Связи с другими учебными дисциплинами: дисциплина позволяет сформировать широкий кругозор В вопросах термодинамики теплофизики ядерных энергетических установок. Учебная дисциплина на базовых знаниях и представлениях, заложенных дисциплинах «Молекулярная физика», «Тепломассоперенос в ядерных энергетических установках», «Термогидродинамика переходных аварийных режимов реакторных установок», «Техническая термодинамика ядерных энергетических установок». Учебный материал дисциплины будет использован при преподавании следующих специальных дисциплин: «Ядерные энергетические установки», «Атомные электрические станции», «Теплотехническое оборудование АЭС», «Оборудование АЭС», «Режимы работы и эксплуатации АЭС», «Ядерная безопасность», а также дисциплин

специализации «Термогидродинамика переходных и аварийных режимов реакторных установок», «Математическое моделирование физических процессов в реакторных установках», «Техническая термодинамика ядерных энергетических установок».

Требования к компетенциям

Освоение учебной дисциплины Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок» должно обеспечить формирование следующих академических, социальноличностных и профессиональных компетенций:

академические компетенции:

- AK-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.
 - АК-5. Быть способным вырабатывать новые идеи (креативность).
- АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-8. Иметь лингвистические навыки (устная и письменная коммуникация).
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

социально-личностные компетенции:

- СЛК-1. Обладать качествами гражданственности.
- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-5. Быть способным к критике и самокритике (критическое мышление).
 - СЛК-6. Уметь работать в команде.

профессиональные компетенции:

- ПК-1. Применять знания теоретических и экспериментальных основ ядерной физики и ядерных технологий, ядерно-физических методов исследования, методов измерения физических величин, методов автоматизации эксперимента, методов планирования, организации и ведения научно-производственной, научно-педагогической, производственно-технической, опытно-конструкторской работы в области ядерно-физических технологий и атомной энергетики.
- ПК-2. Осуществлять на основе методов математического моделирования оценку производственных процессов.

- ПК-3. Пользоваться компьютерными методами сбора, хранения и обработки информации, системами автоматизированного программирования, научно-технической и патентной литературой.
 - ПК-4. Взаимодействовать со специалистами смежных профилей.
- ПК-5. Применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научнотехнической работы.
- ПК-6. Использовать новейшие открытия в естествознании, методы научного анализа, информационные образовательные технологии, физические основы современных технологий, оборудование и аппаратуру в исследовательской, научно-педагогической и производственной деятельности.
 - ПК-9. Пользоваться глобальными информационными ресурсами.
- ПК-10. Пользоваться государственными языками Республики Беларусь и иными иностранными языками как средством делового общения.
- ПК-12. Осуществлять поиск, систематизацию и анализ информации по перспективным направлениям развития отрасли, инновационным технологиям, проектам и решениям.

В результате изучения дисциплины обучающийся должен:

знать:

- основы методов натурного моделирования термогидродинамических процессов в РУ и их отдельных элементах при названных режимах;
- характер протекания и специфику процессов гидродинамики и теплообмена в РУ в целом и в их отдельных элементах (в первую очередь – ЯР) при переходных и аварийных режимах;
- методы математического моделирования и аналитического рассмотрения термодинамических циклов и тепловых схем с ЯЭУ.

уметь:

- проводить анализ термодинамических циклов и тепловых схем ЯЭУ с последующими выводами об оптимальных режимах работы.
- анализировать методики натурных экспериментов по исследованию процессов гидродинамики и теплообмена в РУ при переходных и аварийных режимах;
- анализировать сценарии развития нестационарных термогидродинамических процессов в РУ при нештатных режимах работы.

владеть:

 основными методами натурного моделирования процессов гидродинамики и тепломассообмена в оборудовании водоохлаждаемого ядерного реактора и РУ в целом при переходных и аварийных режимах работы.

Структура учебной дисциплины

Дисциплина изучается в 8 семестре. Форма получения высшего образования – очная, дневная.

Всего на изучение учебной дисциплины Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок» отведено: 120 часов, в том числе 78 аудиторных часов, из них: лабораторные работы – 78 часов.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма текущей аттестации по учебной дисциплине – зачёт.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Термогидродинамика переходных и аварийных режимов реакторных установок.

Тема 1.1 Лабораторная работа «Исследование коэффициента гидравлического сопротивления дистанционирующих решеток ТВС реакторов ВВЭР». Коэффициенты гидравлического сопротивления. Дистанционирующие решётки ТВС реакторов ВВЭР.

Цель работы — ознакомление с методами экспериментального определения местного гидравлического сопротивления поясов дистанционирующих решеток.

В ходе время выполнения работы и обработки результатов студент должен изучить принципиальную схему аэродинамического стенда; освоить методику проведения экспериментов; научиться рассчитывать коэффициенты гидравлического сопротивления решёток, зная измеренные величины местных сопротивлений, обусловленных наличием решёток.

Тема 1.2 Лабораторная работа «Исследование теплоотдачи при движении жидкости в обогреваемых каналах». Теплоотдача в обогреваемых каналах.

Цель работы – исследование теплоотдачи при движении жидкости в каналах энергетических установок при характерных для ядерных энергетических установок скоростей движения теплоносителя, плотностей тепловых потоков и гидравлических диаметров (эквивалентных диаметров) проходных сечений.

Во время проведения работы и обработки результатов студент приобретает навыки экспериментального исследования теплоотдачи и получает наглядное представление о параметрах процесса.

Тема 1.3 Лабораторная работа «Исследование процесса естественной циркуляции при кипении жидкости». Естественная (свободная) конвекция. Естественная циркуляция в замкнутом контуре.

Цель работы – проведение натурного эксперимента для исследования развития естественной циркуляции, обусловленной естественной (свободной) конвекцией циркуляции теплоносителя в замкнутом контуре.

В ходе выполнения работы студент изучает экспериментальную установку, методику измерений и обработки экспериментальных данных.

Тема 1.4 Лабораторная работа «Определение передаваемой тепловой мощности кожухотрубного теплообменника». Кожухотрубный теплообменника.

Цель работы — исследование теплопередачи в кожухотрубном теплообменнике; эффективности теплообменников.

В ходе выполнения работы студент изучает экспериментальную установку, осваивает методику проведения эксперимента и обработки результатов.

Тема 1.5 Лабораторная работа «Определение коэффициента теплопередачи при движении жидкости в теплообменники типа «труба в трубе» в зависимости от схемы движения теплоносителя в теплообменных аппаратах: прямоток, противоток. Теплообменник «труба в трубе».

Цель работы — изучение особенностей процессов теплообмена при различных схемах движения (прямоток, противоток) теплоносителя в теплообменных аппаратах на примере теплообменника «труба в трубе».

В результате выполнения работы студент получает дополнительную информацию о зависимости коэффициента теплопередачи от схемы движения теплоносителя в аппарате.

Тема 1.6 Лабораторная работа «Построение статических характеристик модели трехконтурной ЯЭУ». Трёхконтурная паропроизводящая установка. Статические характеристики.

Цель работы — закрепить знания в области теплопередачи при транспортировке тепловой энергии от реактора и парогенератора применительно к трехконтурной паропроизводящей установке с водяным теплоносителем.

В ходе выполнения работы студент изучает экспериментальную установку, осваивает методику проведения эксперимента и обработки результатов.

Тема 1.7 Лабораторная работа «Исследование динамических характеристик модели трехконтурной ЯЭУ». Трехконтурная паропроизводящая установка. Статические характеристики.

Цель работы — закрепить знания в области теплопередачи при транспортировке тепловой энергии от реактора и парогенератора применительно к трехконтурной паропроизводящей установке с водяным теплоносителем.

В ходе выполнения работы студент изучает экспериментальную установку, осваивает методику проведения эксперимента и обработки результатов. В работе реакторная установка рассматривается как динамическая система. Студент знакомится с элементами теории управления.

Тема 1.8 Лабораторная работа «Моделирование аварийных режимов трехконтурной ЯЭУ (аварийное увеличение мощности — отказ работы СУЗ)». Трёхконтурная паропроизводящая установка. Аварийная ситуация: внезапный рост реактивности. Переходные характеристики.

Цель работы – исследование переходных характеристик в режиме с внезапным ростом реактивности (аварийным увеличением мощности), вызванным отказом работы СУЗ.

В ходе выполнения работы студент изучает экспериментальную установку, осваивает методику проведения эксперимента и обработки результатов.

Раздел 2. Термодинамические циклы и тепловые схемы с ядерными энергетическими установками.

- Тема 2.1 Лабораторная работа «Термодинамический анализ цикла Карно». Круговые процессы. Цикл Карно.
- Тема 2.2 Лабораторная работа «Сравнительный термодинамический анализ циклов Отто и Дизеля». Циклы поршневых двигателей внутреннего сгорания. Цикл Отто. Цикл Дизеля.
- Тема 2.3 Лабораторная работа «Анализ цикла простой газотурбинной установки». Газотурбинные установки. Цикл простой ГТУ. КПД простой ГТУ.
- Тема 2.4 Лабораторная работа «Анализ цикла газотурбинной установки с регенерацией». Цикл газотурбинной установки с регенерацией теплоты. КПД газотурбинной установки с регенерацией теплоты.
- Тема 2.5 Лабораторная работа «Анализ цикла газотурбинной установки с многоступенчатым сжатием и расширением рабочего тела». Цикл газотурбинной установки с многоступенчатым сжатием и расширением рабочего тела. Энергетические характеристики цикла газотурбинной установки с многоступенчатым сжатием и расширением рабочего тела.
- Тема 2.6 Лабораторная работа «Анализ цикла Ренкина с промежуточным перегревом пара». Цикл Ренкина. Цикл Ренкина с перегревом пара. Цикл Ренкина с перегревом пара для ПТУ, входящих в состав ЯЭУ с ЯППУ с ВВЭР. Идеальный и реальный цикл Ренкина, учет потерь от необратимости.
- Тема 2.7 Лабораторная работа «Анализ цикла Ренкина с учетом потерь от необратимости». Эксергия и ее свойства. Уравнения эксергетического баланса. Эксергия вещества и потоков энергии. Анализ установки, работающей по циклу Ренкина, эксергетическим методом.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ Дневная форма получения образования

	Количество аудиторных часов							
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Ауд. контроль УСР	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1	Термогидродинамика переходных и аварийных режимов реакторных установок				40			
1.1	Лабораторная работа «Исследование коэффициента гидравлического сопротивления дистанционирующих решеток ТВС реакторов ВВЭР»				5			Защита лабораторной работы
1.2	Лабораторная работа «Исследование теплоотдачи при движении жидкости в обогреваемых каналах»				5			Защита лабораторной работы
1.3	Лабораторная работа «Исследование процесса естественной циркуляции при кипении жидкости»				5			Защита лабораторной работы
1.4	Лабораторная работа «Определение передаваемой тепловой мощности кожухотрубного теплообменника»				5			Защита лабораторной работы
1.5	Лабораторная работа «Определение коэффициента теплопередачи при движении жидкости в теплообменники типа «труба в трубе» в зависимости от схемы движения теплоносителей»				5			Защита лабораторной работы
1.6	Лабораторная работа «Построение статических характеристик модели трехконтурной ЯЭУ»				5			Защита лабораторной

			работы
1.7	Лабораторная работа «Исследование динамических характеристик модели трехконтурной ЯЭУ»	5	Защита лабораторной
	модели трехконтурной дэз»		работы
1.8	Лабораторная работа «Моделирование аварийных режимов	5	Защита
	трехконтурной ЯЭУ (аварийное увеличение мощности – отказ работы СУЗ)».		лабораторной работы
2	Термодинамические циклы и тепловые схемы с ядерными	38	puodibi
	энергетическими установками		
2.1	Лабораторная работа «Термодинамический анализ цикла Карно»	5	Защита
			лабораторной
			работы
2.2	Лабораторная работа «Сравнительный термодинамический анализ	5	Защита
	циклов Отто и Дизеля»		лабораторной
2.2			работы
2.3	Лабораторная работа «Анализ цикла простой газотурбинной	5	Защита
	установки»		лабораторной работы
2.4	Лабораторная работа «Анализ цикла газотурбинной установки с	5	Защита
2.4	регенерацией»		лабораторной
	per eneparation/		работы
2.5	Лабораторная работа «Анализ цикла газотурбинной установки с	5	Защита
	многоступенчатым сжатием и расширением рабочего тела»		лабораторной
			работы
2.6	Лабораторная работа «Анализ цикла Ренкина с промежуточным	8	Защита
	перегревом пара»		лабораторной
			работы
2.7	Лабораторная работа «Анализ цикла Ренкина с учетом потерь от	5	Защита
	необратимости»		лабораторной
			работы

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Кириллов, П.Л. Гидродинамические расчеты: Справочное учебное пособие / П.Л. Кириллов, Ю.С. Юрьев. М.: ИздАт, 2009. 216 с.
- 2. Михеев М.А., Михеева И.М. Основы теплопередачи. –2-е изд. М.: Энергия, 1977. 344 с.
- 3. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача: учебник для вузов. 3-е изд. М.: Энергия, 1975. 488 с.
- 4. Лысиков, Б.В. Термометрия и расходометрия ядерных реакторов / Б.В. Лысиков, В.К. Прозоров. М.: Энергоатомиздат, 1985. 120 с.
- 5. Семенович, О.В. Введение в теплофизику ядерных энергетических установок: пособие. В 2 ч. Ч.1. Основы теории тепломассопереноса / О.В. Семенович. Минск: БГУ, 2016. 135 с.
- 6. Семенович, О.В. Термогидродинамика переходных и аварийных режимов реакторных установок: учеб. пособие / О.В. Семенович. Минск: Вышэйшая школа, 2016. 239 с.
- 7. Байков, В.И. Теплофизика. Неравновесные процессы тепломассопереноса / В.И. Байков, Н.В. Павлюкевич, А.К. Федотов, А.И. Шнип. Минск: Вышэйшая школа, 2018. 476 с.
- 8. Ларькин, А.В. Тепловые схемы и режимы работы ядерных энергетических установок. Раздел 2. Термодинамические циклы и тепловые схемы с ядерными энергетическими установками: электронный учебно-методический комплекс для специальности 1-31 04 06 «Ядерные физика и технологии» / А.В. Ларькин; БГУ, Физический фак., Каф. энергофизики. Минск: БГУ, 2020. 69 с.
- 9. Кириллин, В.А. Техническая термодинамика: учебник для вузов / В.А. Кириллин, В.В. Сычев, А.Е. Шейндлин. М.: Издательский дом МЭИ, 2019. 496 с.

Перечень дополнительной литературы

- 1. Себиси, Т. Конвективный теплообмен. Физические основы и вычислительные методы / Т. Себиси, П. Брэдшоу. М.: Мир, 1987. 592 с.
- 2. Идельчик, И.Е. Справочник по гидравлическим сопротивлениям / Под ред. М.О. Штейнберга. 3-е изд., перераб. и доп. М.: Машиностроение, 1992. 672 с.
- 3. Фомичев, М.С. Экспериментальная гидродинамика ЯЭУ/ М.С. Фомичев. М.: Энергоатомиздат, 1989. 248 с.

- 4. Тепло- и массообмен. Теплотехнический эксперимент: Справочник / под общ. ред. В.А. Григорьева и В.М. Зорина. М.: Энергоиздат, 1982. 512 с.
- 5. Логвинов, С.А. Экспериментальное обоснование теплогидродинамической надежности реакторов ВВЭР / С.А. Логвинов, Ю.А. Безруков, Ю.Г. Драгунов. М.: ИКЦ «Академкнига», 2004. 255 с.
- 6. Теплофизика. Неравновесные процессы тепломассопереноса / В.И. Байков [и др.]. Минск: Вышэйшая школа, 2018. 476 с.
- 7. Александров, А.А. Термодинамические основы циклов теплоэнергетических установок / А.А. Александров. М.: Издательский дом МЭИ, 2004. 159 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Для текущего контроля качества усвоения знаний по дисциплине рекомендуется защита выполненных лабораторных работ (15 работ).

Оценка лабораторных работ проводится по десятибалльной шкале.

текущей успеваемости O_{T} определятся как средневзвешенное (с округлением до целого значения по общепринятым полученных оценок, ПО каждому циклов Рассчитывается по формуле: $O_T = (O_{II-1} + O_{II-2})/2$, где O_{II-N} – оценка N-цикла: $O_{II} = \Sigma O_{\Pi Pi}/M$; $O_{\Pi Pi}$ – оценка за і-ю лабораторную работу, М - количество работ в цикле. Для допуска к зачёту необходимо получить От минимум 4 (четыре), при этом с оценкой минимум 4 (четыре) должна быть защищена каждая из лабораторных работ.

Формой текущей аттестации по дисциплине Лаборатория специализации «Тепловые схемы и режимы работы ядерных энергетических установок» учебным планом предусмотрен зачёт.

Зачет проводится в устной форме.

Итоговая (рейтинговая оценка) – $O_{\rm H}$ – определяется как средневзвешенное значение оценки текущей успеваемости и оценки зачёта – $O_{\rm S}$ – по формуле $O_{\rm H}$ =0,6· $O_{\rm T}$ +0,4· $O_{\rm S}$ (с округлением до целого значения по общепринятым правилам).

Оценка «зачтено» выставляется в случае выполнения условия – $O_{\text{и}}$ минимум 5 (пять).

В случае O_T минимум 8 (восемь) оценка «зачтено» может быть выставлена по итогам текущей успеваемости («автоматом»).

В случае проведения экзаменационной сессии в «дистанционном формате» оценка «зачтено» выставляется по итогам текущей успеваемости – если оценка текущей успеваемости O_T равна минимум 4 (четыре).

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используются практико-ориентированный подход и метод анализа конкретных ситуаций (кейс-метод). Это предполагает содержание освоение образования через решения практических задач; приобретение навыков эффективного выполнения разных видов профессиональной деятельности; ориентацию на генерирование идей, реализацию групповых студенческих развитие предпринимательской культуры; проектов, использованию способов оценивания, фиксирующих сформированность процедур, профессиональных компетенций; приобретение студентом знаний и умений для решения практических задач; анализ ситуации, используя дополнительную профессиональные знания, собственный опыт, литературу и иные источники.

Методические рекомендации по организации самостоятельной работы обучающихся

Основой методики организации самостоятельной работы студентов является предоставление студентам необходимой для работы информации, а также обеспечение регулярных консультаций преподавателя и периодичной отчетности по различным видам учебной и самостоятельной работы.

В открытом доступе для студентов размещается следующая информация: программа дисциплины с указанием основной и дополнительной литературы; ЭУМК по разделу 2 учебной дисциплины; график консультаций преподавателя; вопросы к зачету сроки, проведения лабораторных работ.

В случае необходимости, освоение части материала лабораторных занятий по отдельным темам и в объеме, определяемым решением кафедры, информационноможет быть организовано использованием (ИКТ) коммуникационных технологий И привлечением электронных средств обучения. Организация привлечением электронных занятий с средств обучения образовательного ведется помощью портала Физического факультета БГУ eduphys.bsu.by.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Тепломассоперенос в ядерно- энергетических установках.	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте (протокол № 11 от 17.06.2021 г.)
Термогидродинамика переходных и аварийных процессов в реакторных установках.	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте (протокол № 11 от 17.06.2021 г.)
Математическое моделирование физических процессов в реакторных установках.	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте (протокол № 11 от 17.06.2021 г.)
Теплотехническое оборудование АЭС	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте (протокол № 11 от 17.06.2021 г.)
Техническая термодинамика ядерных энергетических установок	Кафедра энергофизики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте (протокол № 10 от 13.05.2021 г.)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на / учебный год

Nº Nº	Дополнения и изменения	I	Основ	ание
ПП				
	бная программа пересмотрена	и одобј	рена на	заседании
	едры ядерной физики			
(про	токол № от 202_ г.)			
_				
	дующий кафедрой			
	ной физики			
к. ф.	-м. н., доцент		А.И. Т	имощенко.
УТВ	ЕРЖДАЮ			
	н физического факультета			
	-м. н., доцент		M.C. T	иванов.