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УДК 517.977.5

МЕТОД ПОСТРОЕНИЯ  
ОПТИМАЛЬНОЙ СТРАТЕГИИ УПРАВЛЕНИЯ  

В ЛИНЕЙНОЙ ТЕРМИНАЛЬНОЙ ЗАДАЧЕ

Д. А. КОСТЮКЕВИЧ 1), Н. М. ДМИТРУК1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Рассматривается задача оптимального управления линейной дискретной системой с неизвестными ограничен-
ными возмущениями, которую требуется за конечное время перевести с гарантией на терминальное множество, 
обеспечивая при этом минимум гарантированного значения терминального критерия качества. Определяется опти-
мальная стратегия управления, учитывающая информацию о состоянии системы в один будущий момент времени, 
и предлагается эффективный метод ее вычисления. Результаты численных экспериментов демонстрируют улучше-
ние качества управления на основе введенной оптимальной стратегии в сопоставлении с оптимальной гаранти-
рующей программой при сравнимой трудоемкости их вычисления.

Ключевые слова: линейная система; возмущения; оптимальное управление; стратегия управления; алгоритм.
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A METHOD FOR CONSTRUCTING AN OPTIMAL  
CONTROL STRATEGY IN A LINEAR TERMINAL PROBLEM
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This paper deals with an optimal control problem for a linear discrete system subject to unknown bounded disturban-
ces, where the control goal is to steer the system with guarantees into a given terminal set while minimising the terminal 
cost function. We define an optimal control strategy which takes into account the state of the system at one future time 
instant and propose an efficient numerical method for its construction. The results of numerical experiments show an im-
provement in performance under the optimal control strategy in comparison to the optimal open-loop worst-case control 
while maintaining comparable computation times.

Keywords: linear system; disturbance; optimal control; control strategy; algorithm.

Introduction
Optimal control problems for dynamical systems under uncertainty have been studied in the literature since 

late 1960s [1–3]. The simplest approach that guarantees constraints satisfaction and achieves the guaranteed 
value of the cost at the worst-case disturbance realisation is to find an optimal open-loop worst-case control. 
The optimal open-loop worst-case control is constructed before the control process starts and is not correc ted 
during it; no information about possible future state measurements is used for its construction. It is well known 
that optimal open-loop worst-case controls underestimate the potential of the control process, i. e., they give 
a conservative estimate of the guaranteed optimal value of the problem and often cannot be constructed be-
cause of the constraints infeasibility (see, e. g., [4 – 6]). However, dynamic programming takes into account all 
future state realisations, but the practical derivation of the dynamic programming strategy is computationally 
intense with the exception of special cases of low dimensional systems and short control intervals. 

Therefore, such control strategies are relevant that take into account some information about the future 
states of the system and at the same time the complexity of their construction is comparable to the comple-
xity of calculating optimal open-loop worst-case controls. One of the possible approaches was proposed in 
papers [6 – 8]. In [6] linear terminal problems were considered [7] deals with linear-quadratic optimal control 
problems and [8] deals with problems of minimising the total momentum of the control input. All these papers 
assume that before control process starts, we can choose one or more time instants (closing time instants of 
the system according to [6; 8]), at which we can measure exactly the system state and make corrections in the 
control input.

This paper deals with the problem considered in [6]. In contrast to [6], where a complex iterative algorithm 
was used to construct an optimal control strategy with one closing instant, which requires sequential optimisation 
first in control inputs and then in a parameter, we use the ideas of [8] to reduce the problem under consideration to 
a single linear program, which allows to calculate the optimal control and the optimal parameter simultaneously. 

Compared to [8], the problem studied in this paper has a terminal performance index and a discrete time 
system, while in [8] a Lagrange cost of a special type and continuous time systems are investigated. Further 
comparison of the results from [8] and the ones of this paper, the drawbacks and advantages of the two methods 
are discussed in example 2. Two more examples demonstrate the efficiency of the new approach.

Optimal open-loop worst-case control
Consider a linear discrete-time time-invariant control system with a disturbance

 x t Ax t Bu t Mw t x x t T+( ) = ( ) + ( ) + ( ) ( ) = = … -1 0 0 1 10, , , , ,,  (1)

where x t n( ) ∈¡  is the state, u t U r( ) ∈ ⊂ ¡  is the control input, w t W p( ) ∈ ⊂ ¡  is the unknown disturbance at 
time t, A ∈ ¡n × n, B ∈ ¡n × r, M ∈ ¡n × p are given matrices; U u u u ur= ∈ ≤ ≤{ }¡ : ,min max  W w w wp= ∈ ≤{ }∞¡ : ,max

W w w wp= ∈ ≤{ }∞¡ : ,max  where u u r
min max, ,∈¡  wmax > 0, z z

i i∞ = max . A trajectory of system (1) generated by a feasible 

control input u u t U t T⋅( ) = ( ) ∈ = -( ), , , ,0 1 1  and a disturbance w w t W t T⋅( ) = ( ) ∈ = -( ), , , ,0 1 1  is de-
noted by x t x u w0, , ,⋅( ) ⋅( )( )  t = 0, 1, …, T – 1.
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Given a terminal set X x g Hx gT
n= ∈ ≤ ≤{ }¡ : ,min max  where H ∈ ¡m × n, gmin, gmax ∈ ¡m, the control goal 

is to steer system (1) at time instant T to the terminal set with guarantees. The requirement of a guaranteed 
(robust) steering to the set XT without any further assumptions yields the definition of a feasible open-loop 
worst-case control.

Definition 1. A control input u ⋅( ) is called a feasible open-loop worst-case control if for any possible rea-
lisation of the disturbance w ⋅( ) it steers system (1) at time instant T into the terminal set, i. e. the following 
inclusion holds 
 x T x u w X w t W t TT0 0 1 1, , , , , , .⋅( ) ⋅( )( ) ∈ ∀ ( ) ∈ = … -  (2)

The quality of a feasible open-loop worst-case control u ⋅( ) is measured by the value

 J u x T cc
w

n( ) = ( ) ∈′
⋅( )

max , ,¡  (3)

that represents the terminal cost (Mayer’s performance index) at the worst realisation of the disturbance and is 
called the guaranteed value of the terminal cost. Here the prime symbol denotes a transpose.

Definition 2. A feasible open-loop worst-case control u0 ⋅( ) is called optimal if it minimises the guaranteed 
value of the terminal cost (3): J u J u

u
0( ) = ( )min .

In guaranteed (robust) optimal control problems, along with the disturbed system (1), one considers a so-
called nominal system

x t Ax t Bu t x x t T0 0 0 01 0 0 1 1+( ) = ( ) + ( ) ( ) = = … -, , , , ,,

that is used to formulate a deterministic optimal control problem equivalent to the problem of minimising the 
cost (3) subject to system (1) and inclusion (2). The method for constructing this deterministic problem is well 
investigated in the literature (see, e. g., [6]). It uses the linearity of system (1) and estimates of the worst-case 
realisations of disturbances in the directions specified by the vector c and the rows ′hi  of the matrix H:

γ τ γ τ
τ τ

0
1

0

1

1
0

1

1( ) = ′ = ′ = …( )
=

- -

=

- -

∑ ∑w c AM w h AM it

t

T

i i
t

t

T

max max, , , ,, , .m z zi
i

1
= ∑

The vector of estimates γ γ0 0 1( ) = ( ) = …( )i i m, , ,  allows to define a «tightened» terminal set for the no-
minal system and to formulate the deterministic problem in the form
 J u c x T

u
( ) = ′ ( ) + ( )

⋅( )
min ,0 0 0γ  (4)

x t Ax t Bu t x x u t U t T0 0 0 01 0 0 1 1+( ) = ( ) + ( ) ( ) = ( ) ∈ = … -, ,, , , , ,

g Hx T gmin max .+ ( ) ≤ ( ) ≤ - ( )γ γ0 00

Using the formula x T A x A Bu tT T t

t

T

0 0
1

0

1

( ) = + ( )- -

=

-

∑  for the terminal state of the nominal system and sub-

stituting it in problem (4) we conclude that the optimal open-loop worst-case control u0 ⋅( ) can be calculated 
as a solution to the linear program

min ,
u

T t

t

T

c A Bu t
⋅( )

- -

=

-

′ ( )∑ 1

0

1

g HA x HA Bu t g HA xT T t

t

T
T

min max ,+ ( ) - ≤ ( ) ≤ - ( ) -- -

=

-

∑γ γ0 00
1

0

1

0

u u t u t Tmin max, , , ,≤ ( ) ≤ = … -0 1

where the constant ′ ( )+c A xT 0 0 0γ  in the cost is omitted.
The optimal open-loop worst-case control is the simplest solution of the problem under consideration, when 

system (1) has to be robustly steered to the terminal set while minimising the terminal cost (3). The open-loop 
control does not take into account the possibility of future state measurements of system (1), that allow to close 
the control loop and to make corrections to the planned control inputs (see, e. g., [7; 8]). In contrast to optimal 
open-loop worst-case controls, such a possibility is taken into account by the control strategies. One of such 
control strategies is introduced in the next section.
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Optimal control strategy
Before the control process starts, we fix a time instant T T1 1 2 1∈ … -{ }, , ,  that is referred to as the closing 

instant of system (1) (see [6; 8]). Denote D = … -{ }0 10 1 1, , , ,T  D = + … -{ }1 1 1 1 1T T T, , , ; u u t U tk k k⋅( ) = ( ) ∈ ∈D( ),
u u t U tk k k⋅( ) = ( ) ∈ ∈D( ),  is the control input on the interval Dk ; w w t W tk k k⋅( ) = ( ) ∈ ∈D( ),  is the disturbance on Dk ; 

U u u t U tk k k k= ⋅( ) ( ) ∈ ∈D{ }: ,  is the set of feasible control inputs on Dk ; W w w W ttk k k k= ⋅( ) ∈ ∈D{ }( ): ,  is 
the set of possible disturbances on Dk , k = 0, 1.

Assume that on the interval D0 a control input u u x U0 0 0 0⋅( ) = ⋅( ) ∈  is chosen. At time T1 system (1) reaches 
a state x1 that belongs to the set 

X T x u x x x T x u w w Wn
1 0 0 1 0 0 0 0 0, : , , , .⋅( ) ⋅( ) ⋅( ) ⋅( )( ) = ∈ = ( ){ ∈ }¡

Following [7; 8], it is assumed that at time instant T1 we can:
1) measure exactly the current state x x T x u w1 1 0 0 0= ⋅( ) ⋅( )( ), , ;

2) choose a new control input u u x U1 1 1 1⋅( ) = ⋅( ) ∈  on D1 taking into account the obtained state measure-
ment x1.

Taking into account 1) and 2) we look for a solution of the problem under consideration in terms of a cont-
rol strategy (with the closing instant T1):

p1 0 0 1 1 1 1 0 0 0= ⋅( ) ⋅( ) ∈ ⋅( )( ){ }u x u x x X T x u x; , , ,

where the control input u u x0 0 0⋅( ) = ⋅( )  is referred to as an initial open-loop control.
A trajectory of control system (1), corresponding to a strategy p1 and a disturbance w w w⋅( ) = ⋅( ) ⋅( )( )0 1, , is 

defined as a sequential solution of two systems [7; 8]:
x t Ax t Bu t Mw t x x t+( ) = ( ) + ( ) + ( ) ( ) = ∈D1 00 0 0 0, , ,

x t Ax t Bu t x T Mw x T x T x u wt+( ) = ( ) + ( )( ) + ( ) = ⋅( ) ⋅( )( )( )1 1 1 1 1 1 0 0 0, , , , tt∈D1.

Now we discuss conditions for the strategy p1 to be feasible, i. e. for the trajectory defined above to guarantee 
the terminal constraints satisfaction.

First, the control input u x U1 1 1⋅( ) ∈  that is chosen at the time instant T1, must satisfy the inclusion

 X T x u x XT1 1 1, ,⋅( )( ) ⊆  (5)

where X T x u x x x T x u w w Wn
1 1 1 1 1 1 1, : , , ,⋅( ) ⋅( ) ⋅( ) ⋅( )( ) = ∈ = ( ) ∈{ }¡  is the set of possible terminal states 

x T x u w1 1 1, ,⋅( ) ⋅( )( ) of system (1) with the initial condition x xT1 1( ) = , the control input u1 ⋅( ) and the distur-
bance w1 ⋅( ).

Secondly, the control input u0 ⋅( ) should be such that for all states x1 from the set X T x u1 0 0, ⋅( )( ) there exist 
a control u x1 1⋅( ), satisfying (5). Summarising, we obtain the next definition.

Definition 3. A strategy p1 is called a feasible control strategy if

X T x u x X x X T x uT1 1 1 1 1 0 0, , .⋅( )( ) ⊆ ∀ ∈ ⋅( )( )
Obviously, an arbitrary feasible strategy with the initial open-loop control u x0 0⋅( )  is not better than a fea-

sible control strategy of the form

 p1 0 0 1
0

1 1 1 0 0 0= ⋅( ) ⋅( ) ∈ ⋅( )( ){ }u x u x x X T x u x; , , ,  (6)

which on D1 consists of the optimal open-loop worst-case controls u x1
0

1⋅( ) for states x1. Every open-loop con-
trol u x1

0
1⋅( ) for a fixed x1 is the solution of the problem

 J x c x T x u w
u U w W1 1 1 1 1

1 1 1 1

( ) = ′ ⋅( ) ⋅( )( )
⋅( ) ∈ ⋅( ) ∈

min max , ,  (7)

subject to (5). The quality of strategy (6) is obviously measured by the value

V J x T x u w
w W

p1 0 0 01 1
0 0

( ) = ( )( )⋅( ) ⋅( )
⋅( ) ∈

max ., ,
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Note that if problem (7) is infeasible, then we assume J x1 1( ) = + ∞. Therefore, if the strategy p1 is not fea-
sible, i. e. for some x X T x u1 1 0 0∈ ⋅( )( ),  there is no control input u x1 1⋅( ) that satisfies (5), then V p1( ) = + ∞.

Definition 4. A feasible control strategy

 p1
0

0
0

0 1
0

1 1 1 0 0
0

0= ⋅( ) ⋅( ) ∈ ⋅( )( ){ }u x u x x X T x u x; , , ,  (8)

is called optimal, if V Vp p1
0

1( ) = ( )min , where minimum is taken over all feasible strategies of the form (6). 
A control input u x0

0
0⋅( ) is called the optimal initial open-loop control (within the optimal strategy p1

0
).

Hence, the control strategy (8) is optimal if u x0
0

0⋅( ) is a solution of the minimax problem

 V J x T
u U w W

p1
0

1 1
0 0 0 0

( ) = ( )( )
⋅( ) ∈ ⋅( ) ∈

min max ,  
(9)

x t Ax t Bu t Mw t x x t+( ) = ( ) + ( ) + ( ) ( ) = ∈D1 00 0 0 0, , ,

and u x1
0

1⋅( )  are solutions of problems (7) for the states x X T x u x1 1 0 0
0

0∈ ⋅( )( ), .

Problem (9) implies that the optimal guaranteed value of the strategy p1
0 is equal to

V c x T x T
u U w W u U w W

p1
0

1
0 0 0 0 1 1 1 1

( ) = ′
⋅( ) ∈ ⋅( ) ∈ ⋅( ) ∈ ⋅( ) ∈

min max min max xx u w u x T x u w w0 1 1 0 10 0 0 0, , , , , , ,⋅( ) ⋅( )( ) ⋅ ⋅( ) ⋅( )( )( ) ⋅( )( )
while the optimal guaranteed value of the open-loop worst-case control u t0( ) is calculated as

J u c x T x T x
u U u U w W w W

0
1

0 0 0 0 1 11 1

( ) = ′
⋅( ) ∈ ⋅( ) ∈ ⋅( ) ∈ ⋅( ) ∈

min min max max 00 1 10 0, , , , .u w u w⋅( ) ⋅( )( ) ⋅( ) ⋅( )( )
Taking into account the minimax inequality we conclude that V J up1

0 0( ) ≤ ( ). In the last section we will 
provide some examples where the optimal control strategy with one closing instant achieves a significant im-
provement in comparison to the optimal open-loop worst-case control. 

Calculating the optimal initial open-loop control
Before the control process starts, we need to know only the optimal initial open-loop control u x0

0
0⋅( ).  

The collection of the optimal open-loop worst-case controls u x1
0

1⋅( )  is not calculated in advance. The control 
input u x T1

0
1 1⋅ ( )( )  is only found at the closing time instant T1, when the current state x T1( ) is measured. There-

fore, the purpose of this section is to propose an efficient method for calculating the optimal initial open-loop 
control u x0

0
0⋅( ),  i. e. solving problem (9).

Problem (9) is the terminal control problem of the same type as the problem for calculating the optimal 
open-loop worst-case control u0 ⋅( ). It has no explicit terminal constraints; however, these are implicitly im-
posed by the condition x T X x xJ1 1 1 1 1( ) ∈ = ( ) < + ∞{ }: . The principal difficulty in solving problem (9) is that 
the function J1 in the performance index is defined implicitly as the optimal value of problem (7). In this 
regard, for the purposes of further presentation, we reformulate problem (9) in an equivalent form (see [9]):

 V
u

p1
0

0

( ) =
⋅( )

min ,
, a

a  

(10)x t Ax t Bu t Mw t x x u t U t+( ) = ( ) + ( ) + ( ) ( ) = ( ) ∈ ∈D1 00 0 0 0 0 0, ,, ,

J x T w W1 1 0 0( )( ) ≤ ∀ ⋅( ) ∈a .

The function J x1 1( ), x1 ∈ ¡n, as the optimal value of a linear program (to which problem (7) is reduced), is 
a piecewise linear convex function (see [10, p. 180]), therefore for any fixed a a a∈[ ]min max,  the a-level set 
X x X J x1 1 1 1 1a a( ) = ∈ ( ) ≤{ }:  is a convex polyhedron. Here a γmin = ′ + ( )inf ,c x T0 1  a γmax = -′ ( )sup ,c Tx 0 1  
subject to g T Hx g Tmin max .+ ( ) ≤ ≤ - ( )γ γ1 1  Then in (10) the terminal constraint has the form x T X1 1( ) ( )∈ a  
∀ ⋅( ) ∈w W0 0.

Since the exact description of the polyhedra X1 a( ) for all values of the parameter a is difficult, in [6; 8] it 
was proposed to replace X1 a( ) with their outer polyhedral approximations with normals to the faces of these 
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polyhedra being independent of a. Let pj ∈ ¡n, j = 1, 2, …, m1, pj = 1, be a collection of vectors which rep-
resent the mentioned normals, and P m n

1
1∈ ×

¡  be a matrix, which rows are the vectors pj. Denote 
 f x x Xpj ja a( ) = ( )′ ∈max .,1 1 1  (11)

Then the outer approximating polyhedron for X1 a( )  is X x P x fn
1 1 1 1a a( ) = ∈ ≤ ( ){ }¡ : , where f f j mja a( ) = ( )( )= …, , , .1 1

f f j mja a( ) = ( )( )= …, , , .1 1  With a sufficiently large set of vectors pj,  j = 1, 2, …, m1, X1 a( ) approximate the sets 
X1 a( ), a a a∈[ ]min max, , quite accurately.

In [6], in order to solve problem (10), an iterative algorithm was proposed. Each iteration of the algorithm 
for the current value ak refines the approximation X k1 a( ) and calculates the control u t

ka
0 ( ), t ∈ D0, that gua-

rantees steering the system to the set X k1 a( ) at the time instant T1. Thus, at each iteration k the algorithm 
solves m k1( ) problems (11) and one control problem. The value ak + 1 is found by any line search method. 

In what follows we propose a method for solving problem (10), which does not require application of the 
iterative procedure described in [6].

Denote G HAT T
1

1= -
, ′ = ′ -c c AT T

1
1 and consider the case when rank ′( ) = + ≤G c m n1 1 1 . Simple arguments 

yield that in this case amin = – ∞, amax = +	∞, i. e. function (11) is defined on the entire real axis. Let us show 
that f a( ), a ∈ ¡, is affine. 

Assumption 1. For any j = 1, 2, …, m1 the vector pj is such that equalities rank rank′( ) = ′( ) = +G c G c p mj1 1 1 1 1 
rank rank′( ) = ′( ) = +G c G c p mj1 1 1 1 1  hold.

Proposition. Let assumption 1 hold. Then
 f fa la( ) = +0 , (12)
where f f0 0= ( ), l l= = …( )j j m, , ,1 1 , lj satisfies the conditions ′ + =G y c pj j1 1l , lj ≥ 0.

P r o o f. Consider problem (11) for a fixed index  j. The set X1 a( ) consists of those and only those vectors x1 
for which the following system is feasible

x t Ax t Bu t x T x t tu U+( ) = ( ) + ( ) ( ) = ( ) ∈D∈1 1 1 11 1, , , ,

g T Hx T g T c x T Tmin max , .+ ( ) ≤ ( ) ≤ - ( ) ′ ( ) ≤ - ( )γ γ a γ1 1 0 1

Following the arguments that were used to reduce the problem for constructing the optimal open-loop 
worst-case control to problem (4), problem (11) can also be reduced to a linear program. We represent it in the 
form
 f xpj u jx

a( ) = ′max ,
,1 1

1  

(13)

g T G x G D t u t g T
t

min max ,+ ( ) ≤ + ( ) ( ) ≤ - ( )
∈
∑γ γ1 1 1 1 1 1

1D

′ + ′ ( ) ( ) ≤ - ( )
∈
∑c x c D t u t T
t

1 1 1 1 0 1

1D
a γ ,

u u t u tmin max, ,≤ ( ) ≤ ∈1 1D
where D t A B tT t( ) = ∈- -1 1

1, .D
The problem dual to (13) has the form

f g T y g Tj
y y

v t v t t

j

a γ γ
l

( ) = - ( )( )′ - +
*

*

*( ) ( ) ∈

*min
, , ,

, ,

max min

* D1

1 1(( )( )′ + - ( )( ) + ′ ( ) - ′ ( )( )*

∈
∑y T u v t u v tj
t

* max min * ,a γ l0 1

1D

 ′ - ′ + =*G y G y c pj j1 1 1* ,l  
(14)

D t G y D t G y D t c v t v tj( )′ ′ - ( )′ ′ + ( )′ + ( ) - ( ) =* *
1 1 1 0* * ,l

l j y y v t v t t≥ ≥ ≥ ( ) ≥ ( ) ≥ ∈* *0 0 0 0 0 1, , , , , ,* * D
and the complimentary slackness conditions hold [9; 10]. Note that all the dual variables in (14), similarly to 
l	j, depend on the index  j that is omitted for simplicity of presentation. 
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Denote y = y* – y*. Then, according to assumption 1, the system of linear algebraic equations (14) has 
a unique solution ( y, l	j). If that solution has l	j < 0, then the dual problem (14) is infeasible and the primal 
problem (13) is unbounded on X1 a( ). Let l	j ≥ 0, then both problems (13), (14) are feasible. The second group 
of equality constraints in problem (14) can be represented as

v t v t D t p tj
*

*( ) - ( ) = - ( )′ ∈, .D1

Taking into account non-negativeness of the dual variables and the complementary slackness conditions, it 
is clear that the dual variables are calculated according to the formulae

 y
y y

y
y

y
y y

i mi
i i

i
i

i

i i

* =
≥
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=
≥

- <




= …
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, ,
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, , ,*

0
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0
1  

(15)v t v t k r v t v t k rk k* * , , , , , , , ,( ) = ( ) = …( ) ( ) = ( ) = …( )* *1 1

v t
v t v t

v t
v t

v t
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( ) ≥
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∈

, ,
,

v t
t

k 0
1D

where v t v t k r D t p tk j( ) = ( ) =( ) = ( )′ ∈, , , , .1 1 D
Problem (14) for a = 0 has same optimal solution, therefore we can conclude that f fj j ja l a( ) = ( ) +0 , 

which proves formula (12). 
Along with the proposition we derived a simple formula for calculating the components of the vector f0 that 

allows to avoid solving linear programs (13) or (14):

f f g T y g T y T u vj j j0 1 1 0 10= ( ) = - ( )( )′ - + ( )( )′ - ( ) + ′* *
max min * maxγ γ γ l tt u v t

t
( ) - ′ ( )( )

∈
∑ min * .

D1

It also follows that if rank rank′( ) ≠ ′( )G c G c pj1 1 1 1 ,  then fj a( ) = + ∞.
Considering the relation (12) the problem for constructing the optimal initial open-loop control (10) (case 

rank ′( ) = + ≤G c m n1 1 1 ) can be presented in the form

 V
u

p1
0

0

( ) =
⋅( )

min ,
, a

a  

(16)x t Ax t Bu t Mw t x x u t U t+( ) = ( ) + ( ) + ( ) ( ) = ( ) ∈ ∈D1 00 0 0 0 0, ,, ,

Px T f w W1 1 0 0 0( ) ≤ + ∀ ⋅( ) ∈la ,

and further reduces to the linear program
 min ,

,u0 ⋅( ) a
a  

(17) P A Bu t f P A xT t

t

T
1

1
0 0 1 0

1

0

1- -

∈
( ) - ≤ - -∑

D
la γ ,

u u t u tmin max, ,≤ ( ) ≤ ∈0 0D

where γ γ= = …( )j j m, , , :1 1  γ j j
t

t
w p AM= ′

∈
∑max .

1
0D

Now let us consider the case when rank ′( ) = < +G c n m1 1 1.  In this case – ∞ < amin ≤ amax < +	∞, function 
f a a a a( ) ∈[ ], , ,min max  is piecewise affine and concave. Here in order to construct the optimal initial open-

loop control u x0
0

0⋅( ) we propose to replace the approximation of the set X1 a( ) with the approximation of the set 

Ξ
D

1 0
1

1 1 1 1 1

1

a ξ ξ γ ξ( ) = ( ) ∈{ ∃ ⋅( ) ∈ + ( ) ≤ + ( ) ( )+

∈
∑, : , min¡

m

t
u U g T G D t u t ≤≤ - ( )g Tmax ,γ 1
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ξ a γ0 1 1 0 1

1

+ ′ ( ) ( ) ≤ - ( )}
∈
∑ c D t u t T
t D

,

by the polytope Ξ1 0 0 1
1

0a ξ ξ aξ ξ( ) = ( ) ∈ ≤ ( ){ }++
, : ,¡

m q Q f  where q q j mj0 0 10 1= ≥( )= …, , , , matrix 

Q m m
1

1∈ ×
¡  consists of rows ′ ∈qj

m
¡ ,  j = 1, …, m1, that are chosen in advance, and f f j mja a( ) = ( )( )= …, , , ,1 1  

where fj a( ) is the optimal value of the linear program

 f qqj u jja ξ ξ
ξ ξ

( ) = + ′max ,
, ,0 1

0 0  

(18)g T G D t u t g T c D t u t
t t

min max ,+ ( ) ≤ + ( ) ( ) ≤ - ( ) + ′ ( ) ( )
∈ ∈
∑γ ξ γ ξ1 1 1 1 0 1 1

1D DD1

0 1∑ ≤ - ( )a γ T ,

u u t u tmin max, .≤ ( ) ≤ ∈1 1D

Following the arguments of the proposition, we derive that f a( ),  a ∈ ¡, is calculated by the formulae

 f f qa la l( ) = + = ≥0 0 0, ,

f g T y g T y T q u v tj j0 1 1 0 1 0( ) = - ( )( )′ - + ( )( )′ - ( ) + ′ ( )*
*

*
max min maxγ γ γ -- ′ ( )( )*

∈
∑ u v t
t

min ,
D1

where y y v t v t t*
*

*
*( ) ( ) ∈, , , , ,D1  are found from (15) with the following adjustment: y = qj, v t D t G q D t c qj j( ) = ′( ) ′ + ′( )1 1 0 ,

v t D t G q D t c qj j( ) = ′( ) ′ + ′( )1 1 0 , t ∈ D1.
The problem for constructing the optimal initial open-loop control (10) (case rank ′( ) = < +G c n m1 1 1) has 

the form
 V

u
p1

0

0

( ) =
⋅( )

min ,
, a

a  

(19)x t Ax t Bu t Mw t x x u t U t+( ) = ( ) + ( ) + ( ) ( ) = ( ) ∈ ∈D1 00 0 0 0 0, ,, ,

Px T f q w W1 1 0 0 0 0( ) ≤ + ∀ ⋅( ) ∈a

with P Gq c Q1 1 10 1= +′  and can be reduced to the linear program similarly to the reduction of problem (16) to 
problem (17).

The resulting linear program of the form (17) has T1 + 1 variables and m1 constraints. Depending on the 
required accuracy of approximation of the set X1 a( ) or the set Ξ1 a( ) the number of constraints can be quite 
large. However, in contrast to the method from [6], where first problems (13), (18) are solved and then the 
problem of the dimension comparable with the dimension of problems (17), (19) for a fixed parameter a is 
solved, problem (17) is solved only once and its solution immediately yields the optimal value of the parameter 
a0

1
0= ( )V p  and the optimal initial open-loop control u x0

0
0⋅( ).

Note that in the second case ( )rank ′( ) = < +G c n m1 1 1  the space dimension where we approximate the set 
Ξ1 a( ) is higher than the state space dimension n, which can be undesirable and lead to a significant increase 
in the number of constraints in problem (19). To avoid this problem one has to explore the piecewise affine 
structure of the function f a a a a( ) ∈[ ], , .min max  This will be the focus of a future work.

It is also worth mentioning that the idea of approximating the set Ξ1 a( ) can be applied in the case 
rank ′( ) = +G c m1 1 1, if the number of terminal constraints m is less than the number of states n of the control 
system. Such an approach reduces the dimension of the space where approximations are constructed and is 
applied to solve examples 2 and 3 in the next section.

Examples
Let us illustrate the proposed method for constructing the optimal control strategy by three examples. 

The first example is a discrete analogue of the problem from [6], the second is the problem of minimising the 
total momentum of the control input from [8], and the third is a modification of the latter. Discrete systems for 
the examples are obtained by discretisation of continuous systems with the sampling period h = 0, 1.
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Example 1. Consider a discretised problem from [6]:

 x T2( ) → max,  

x t x t+( ) =
-







( ) +


1
  0.9950 0.0998

0.0998 0.9950

0.0050

0.0998



( ) +






( ) ( ) =






u t w t x
0.0050

0.0998
, ,0

0

1

 x T X x x x x u t w t t TT( ) ∈ = ∈ ≤ ≤{ } ( ) ≤ ( ) ≤ = … -*
*

¡

2
1 1 0 5 0 1: , , . , , , .  

(20)

Let us choose the control horizon T = 120 and the closing instant T1 = 80. In [6] x* = 2, x* = 7; however, in 
this case there exists no feasible open-loop worst-case control (in both continuous problem from [6] and dis-
crete problem (20)). Therefore, we choose x* = 2, x* = 10. This modification does not affect the optimal control 
strategy since the constraint x T1 10( ) ≤  is not active, but it allows to compare the optimal open-loop worst-case 
control and the optimal strategy. In particular, problem (20) has the optimal open-loop worst-case control u0 ⋅( ) 
that achieves the optimal guaranteed value equal to J u0

1 501102( ) = . , while the optimal control strategy (8) 

has the optimal guaranteed value V p1
0 0

2 754 215( ) = =a . . Calculating the optimal open-loop worst-case con-
trol takes 0.015 1 s, while to obtain the optimal strategy we needed 0.018 6 s. Figures 1 and 2 illustrate the 
results. The obtained solutions correspond to results from [6] (with provision for discretisation), but allow to 
avoid a computationally intense iterative procedure (see table 1 in [6]).

Let us explain in more detail fig. 1, which shows the state trajectories of the nominal system correspon-
ding to (20) under the optimal open-loop worst-case control u t0( ), t = 0, …, 119 (dashed line 1), and under 
the optimal initial open-loop control u xt0

0
0( ), t = 0, …, 79 (solid line 2). A dotted line represents the set 

X T x u0, ⋅( )( ) of possible states of system (20) under the optimal open-loop worst-case control. This set lies 
entirely in the terminal set XT (grey area), which illustrates that constraints (2) are satisfies with guarantees. 
The optimal initial open-loop control u x0

0
0⋅( ) generates the set X T x u x1 0 0

0
0, ⋅( )( ) of possible states of sys-

tem (20) at the closing instant T1. This set belongs to the set X1
0a( ) (dotted lines at the bottom of fig. 1), i. e. 

for any x X T x u x1 1 0 0
0

0∈ ( )⋅( ),  the inequality J x1 1
0( ) ≥ a  holds. For a satisfactory representation of the set 

X1
0a( ), 83 vectors were required, i. e. m1 = 83. Point x1

* corresponds to the extremal value of the function  J1, 

i. e. J x1 1
0*( ) = a .  Despite the approximation of the set X1

0a( ), the last equality holds exactly. The state trajec-
tory that corresponds to the optimal open-loop worst-case control u x1

0
1⋅( )*  for the state x T x1 1( ) = * is shown by 

dash-dotted line 3. Note that geometrically

J Vu x x X T x u x x X T x u x0
2 0

0
2 1 1

0
11

0 0( ) = ( ) = =∈ ⋅( )( ) ∈ ⋅* *min , , , min , ,p a (( )( ).
Figure 2 represents the optimal open-loop worst-case control u t0( ), t = 0, …, 119 (dashed line), optimal 

initial open-loop control u xt0
0

0( ), t = 0, …, 79 (solid line before the closing instant), optimal open-loop worst-
case control u t x1

0
1
*( ), t = 80, …, 119 (solid line after the closing instant), and the trajectories that correspond 

to the worst-case disturbance. The latter here is the disturbance that delivers the exact optimal value. In the 
example under consideration, the worst disturbances for the optimal open-loop worst-case control and for the op-
timal strategy coincide and are equal to w t w c A MT t* - -( ) = ′( )max ,sign

1  t = 0, …, T – 1.
Example 2. The following problem was solved in [8]:

 u t
t f

( ) →∫
0

min,  

  x x x x u w x x1 2 2 1 00= = - + + ( ) =, , ,  (21)

x t x u t w t w t tf f( ) ≤ ( ) ≤ ( ) ≤ ∈ 
* *, , , , .1 0
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Let u t u t u t( ) = ( ) - ( )1 2 , 0 1≤ ( ) ≤u tj ,  j = 1, 2, x t u s u s ds
t

3 1 2

0

( ) = ( ) + ( )∫ , t t f∈  0, , and suppose that the 

control and the disturbance are discrete with the sampling period equal to h = 0, 1. In this case we obtain the dis - 
crete problem with n = 3, r = 2:
 x T4( ) → min,  

(22)x t x t+( ) = -
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u t
 ( )w t ,

x x x T x i u t j w t w t Ti j0 1 2 0 1 1 2 0 10( ) = ( ) ≤ = ≤ ( ) ≤ = ( ) ≤ = … -* *, , , , , , , , , , ,

where T
t
h
f= , x x0 0 0= ( ), . We assume that parameters are as in [8]: tf = 10 resulting in T = 100, x0 5 0 0= ( ), , , 

x* = 2, w* = 0,3. The closing instant T1 = 80 is chosen. 
The optimal open-loop worst-case control u0 ⋅( ) of problem (22) gives the optimal guaranteed value equal 

to J u0( ) = 5.722 047. The optimal control strategy has the optimal guaranteed value V p1
0 0( ) = =a 5.039103. 

Compared to [8], where J u0( ) = 5.656 317 and V p1
0

5 013186 5( ) = . , slightly worse performance is due to 
discrete disturbance, while in [8] disturbance was assumed piecewise continuous. We are not presenting the 
optimal controls and trajectories here since they visually coincide with the results in [8]. 

The principal difference in solving problem (22) and applying the method from [8] to solve problem (21) is 
that the function f a( ) as defined by (12) for problem (22) is linear in the parameter a, while for problem (21) 
this function is piecewise linear. This results in lower dimension of problem (19). The latter has T1 + 1 vari-
ables, while the resulting problem in [8] has T variables. As a result, to obtain the optimal strategy by solution 
of problem (19) we needed only 0.081 2 s (0.75 s in [8]). The disadvantage of the method proposed in this paper 
compared to [8] is that we approximate the set Ξ1 a( ) in ¡3 instead of ¡2 in [8].

Example 3. Consider a modification of problem (21)

u t
t f

( ) →∫
0

min,

  x x x x x w x u x x1 2 2 1 3 3 00= = - + + = ( ) =, , , ,

x t x i u t w t w t ti f f( ) ≤ = ( ) ≤ ( ) ≤ ∈ 
* *, , , , , , .1 2 1 0

Here a modification concerns the so-called indirect control of system (21).

Introducing u t u t u t( ) = ( ) - ( )1 2 , x t u s u s ds
t

4 1 2

0

( ) = ( ) + ( )∫ , t t f∈ 0, , as in example 2, we obtain the dis-

crete problem with n = 4, r = 2:
 x T4( ) → min,  

(23)x t +( ) =
-
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x t

0.0002 0.0002
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0 1 0 1

0 1 0 1

. .
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( ) +



















( )u t w t

0.0005

0.1051

    0

    0

,

x x x t x i u t j w t w t Ti f j0 1 2 0 1 1 2 0 10( ) = ( ) ≤ = ≤ ( ) ≤ = ( ) ≤ = … -* *, , , , , , , , , , .

The closing instant T1 = 60 is chosen. We illustrate the solution for the initial condition x0 7 0 0 0= ( ), , , ,  
and the parameters x* = 1.5, w* = 0.2.
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Fig. 4. Optimal control and trajectories in example 2 
under the worst-case disturbance w* ⋅( )

Fig. 1. Phase-plane solution representation of example 1.  
Trajectories under the optimal open-loop worst-case  

control (line 1), under the optimal  initial  
open-loop control (line 2), and the optimal open-loop  

worst-case control on the interval after the closing  
instant for a sample state x1

* (line 3)

Fig. 2. Optimal control and trajectories in example 1 
under the worst-case disturbance w* ⋅( )

Fig. 3. Phase-plane solution representation of example 2.  
Trajectories under the optimal open-loop worst-case  

control (line 1), under the optimal  initial  
open-loop control (line 2), and the optimal open-loop  

worst-case control on the interval after the closing  
instant for a sample state x1

* (line 3)
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The optimal open-loop worst-case control u0 ⋅( )  in problem (23) has the optimal guaranteed value equal 
to J u0

7 438 263( ) = . .  The optimal strategy gives V p1
0 0

6( ) = =a .657 643. The time spent to construct the 
optimal open-loop worst-case control was 0.015 s, while for the optimal control strategy 0.139 s were spent. 

Figures 3 and 4 show results for problem (23). In fig. 3 projections of the state trajectories on the 
phase plane x1x2, the terminal set, sets of possible states and the intersection of the set X1

0a( ) by a plane 
x x3 41 966 4 4 166 4= ={ }. , . , where the point x T0

0
1( ) and the set X T x u x1 0 0

0
0, ⋅( )( ) lie, are shown. To approximate 

sets X1 a( ) we used m1 = 1385 vectors. In the neighbourhood of the point x1 6 813 7 2 519 2 1 966 3 4 166 4* = ( ). , . , . , .  
the approximation accuracy is J x1 1

0 5
6 8 10* -( ) - = ⋅a . .

In fig. 4 the optimal open-loop worst-case control u0 ⋅( ), the optimal initial open-loop control u x0
0

0⋅( ) 
and the realisations of the particular optimal strategy and the corresponding trajectory in the process with the 
disturbance defined as in example 1, are presented. The mentioned disturbance is the worst for the optimal 
open-loop worst-case control u0 ⋅( ). The optimal strategy in the same process has the value equal to 5.136 926.

Conclusion
This paper considers a guaranteed terminal cost minimisation problem for linear discrete systems with un-

known bounded disturbance. We study two types of control inputs that achieve the guaranteed constraint satis-
faction and minimise the cost in the problem under consideration. The first is the optimal open-loop worst-case 
control that is constructed entirely before the control process starts, is not corrected during the process, and 
ignores any possible information about the system’s future behaviour. The second is the optimal control strate-
gy with one closing instant, where closure means taking into account a state measurement at one future time 
instant. The optimal control strategy consists of the optimal initial open-loop control, defined at time instances 
before the closure, and a collection of optimal open-loop worst-case controls, defined after the closing instant 
for all possible (due to disturbance and initial control) states at that closing instant. Practical application of the 
optimal strategy implies using the optimal initial open-loop control before the closing instant and then cho-
osing optimal open-loop worst-case control depending on the state measurement in a particular control process.

While optimal control strategies with one closing instant for linear terminal problems were introduced 
in [6], the main contributions of this paper consist both in the new formulation of the problem for constructing 
the optimal initial open-loop control and the numerical method for its solution. The proposed formulation is 
a mini max optimal control problem with a cost function that is implicitly defined as the optimal value of an-
other optimal control problem. We thoroughly elaborated the structure of this problem using the duality theory, 
which allowed us to reduce it to an equivalent linear program and significantly simplify the method for optimal 
strategy construction compared to the algorithm introduced in [6]. Numerical experiments demonstrate effec-
tiveness of the proposed approach and superiority of the optimal control strategy over the optimal open-loop 
worst case control.
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