Mn doped BiNbO₄ ceramics: phase transitions, magnetic properties, NEXAFS and EPR spectra

N.A. Zhuk¹, L.V. Rychkova¹, L.S. Feltsinger¹, I.E. Vasileva¹, M.V. Arteeva¹, Ya.A. Busargina¹, E.M. Overin¹, L.O. Karlova¹, N.V. Chezhina², V.P. Lutoev³, B.A. Makeev³, V.A. Belyy⁴, S.V. Nekipelov^{1,5}

¹Syktyvkar State University, Syktyvkar, Komi Republic, Russia, e-mail: nzhuck@mail.ru

³Institute of Geology, Komi Scientific Center UB RAS, Syktyvkar, Komi Republic, Russia

⁴Institute of Chemistry of the Komi Science Center UB RAS, Syktyvkar, Komi Republic, Russia,

⁵Institute of Physics and Mathematics of the Komi Science Center UB RAS, Syktyvkar, Komi Republic, Russia

Magnetic susceptibility, NEXAFS and ESR of solid solutions BiNb_{1-x}Mn_xO_{4-δ} in triclinic and orthorhombic modifications have been studied. The reversibility of the phase transition from the high-temperature triclinic modification to the orthorhombic one has been revealed by means of magnetic dilution and X-ray phase analysis on the example of polycrystalline samples of the solid solutions $BiNb_{1-x}Mn_xO_{4-\delta}$ [1]. The manganese-containing $BiNbO_4$ solid solutions were obtained at $x \le 0.06$. The ESR spectra of solid solutions in triclinic modification revealed sextet structure of Mn(II) ions with 8.4 mT splitting and some features at g = 3.80 and 1.47, and a broad diffuse band with $g \sim 2.2$ having a sextet with 8–9 mT splitting and g = 2.0 against its background. The parameters of exchange interactions in dimers and the distribution of manganese atoms (II), (III) and (IV) of BiNb_{1-x}Mn_xO_{4-δ} in triclinic and orthorhombic modifications have been calculated depending on the concentrations of the solid solutions. The solid solutions BiNb_{1,x}Mn_xO_{4-δ} as well as iron oxides MnO, Mn₂O₃ and MnO₂ were studied by the NEXAFS spectroscopy in order to determine the degrees of oxidation of iron atoms. The analysis of the NEXAFS Mn2p-spectra of manganese-containing solid solutions and oxides revealed that the studied Mn atoms were mainly in the (II), (IV) oxidation state.

References

[1] N.A. Zhuk, M.V. Yermolina, V. P. Lutoev, B. A. Makeev, E.A. Belyaeva, N. V. Chezhina. Ceram. Int. (2017) 43:16919.