Kinetics sorption of Co(II) and Cr(III) ions on ion exchange resin from acidic solutions

D. Bekchanov¹, H. Kawakita², M. Mukhamediev¹, T. Savitskaya³, G. Babajonova¹, A. Inkhanova¹, S. Botirov¹

¹National University of Uzbekistan, Tashkent, Uzbekistan ²Saga university, Saga, Japan ³Delange State Usic, Mind Delange

³Belarusian State University, Minsk, Belarus

E-mail: bekchanovdj@gmail.com

Currently, many factories dispose waste water containing various toxic and nonferrous metal ions [1]. In particular, an increase in concentrations of Co(II), Cr(III), Cu(II) and Zn(II) in waters adversely affects the environment [2]. This study demonstrate the possibility of remove Co(II) and Cr(III) from aqueous solutions by the formation of the polyampholyte based on polyvinylchloride. The calculated parameters of the pseudo-first and second order of sorption of Co(II) and Cr(III) on PVC- (SO₃H) (NH) are presented in Table. According to the results of the investigation the kinetics of the adsorption of Co(II) and Cr(III) with polyampholyte on the base of PVC is close to the data integrity of the pseudo-firstorder model compared to the pseudo-first-order model.

Table.	Kinetic	parameters	for Co(II)	and	Cr(III)	adsorption	with po	lyampholyte
on the	base of F	VC						

Initial conc	Calculated equilib.	k ₂	h					
			· · · · · · · · · · · · · · · · · · ·	D ²				
(mol/L)	uptake q _e (mg·g ⁻¹)	$(g mg^{-1} min^{-1})$	$(g mg^{-1} min^{-1})$	R^2				
0,010	37,04	0,000497	0,682	0,989				
0,0125	50,00	0,000163	0,407	0,937				
0,025	58,82	0,000092	0,321	0,848				
0,050	90,91	0,000076	0,635	0,871				
Average k ₂	0,000112							
0,010	45,45	0,000374	0,773	0,987				
0,0125	76,92	0,000219	1,311	0,993				
0,025	100,0	0,000145	1,451	0,990				
0,050	125,0	0,000066	1,033	0,967				
Average k ₂	0,000113							

Pseudo-second order adsorption coefficient the coefficient of correlation in the (R^2) relative to the combined Co(II) ($R^2=0.989$) and Cr(III) ($R^2=0.987$). This means that the sorption process is influenced not only by the nature of the ions, but also by the sulpho- and amine- groups in the ion exchanger.

References

[1] L.L. Krim, S. Nacer, G. Bilango. Am. J. Environ. Sci. (2006) 2: 27

[2] J.J. Yisa. J. Am. J. Applied Sci. (2010) 7: 1231