Nuclear magnetic resonance relaxation efficiency of Mn_{0.3}Fe_{2.7}O₄ magnetic nanoparticles

A.S. Korsakova¹, D.A. Kotsikau¹, V.V. Pankov¹, K.S. Livanovich², T.G. Shutava², A.V. Nikitina³, Y.V. Bogachev³

¹Belarusian State University, Minsk, Belarus, e-mail: korsakova@bsu.by

² Institute of Chemistry of New Materials, NAS of Belarus, Minsk, Republic of Belarus

From a series of magnetic nanoparticles of Mn-substituted magnetite $Mn_xFe_{3-x}O_4$ (x=0.1-1.8) that previously were described in [1] the powder of composition $Mn_{0.3}Fe_{2.7}O_4$ showed the highest value of saturation magnetization of relatively unsubstituted magnetite. MNPs $Mn_{0.3}Fe_{2.7}O_4$ were stabilized in the form of colloidal solutions using a number of polyelectrolytes, such as poly(diallyldimethylammonium chloride) (PDDA), chitosan 60 kDa (CH60), copolymer of chitosan 60 kDa and polyethylene glycol 5 kDa ($\chi=0.15$) (CH60-PEG), copolymer of chitosan 60 kDa and dextran 6 kDa ($\chi=0.15$) (CH60-DEX) and silica (SiO₂). Nuclear magnetic resonance relaxation of protons in aqueous solutions of $Mn_{0.3}Fe_{2.7}O_4$ stabilized nanoparticles has been investigated (Table).

Table. Physicochemical characteristics of $Mn_{0.3}Fe_{2.7}O_4$ magnetic nanoparticles stabilized by different reagents

MNP composition	Z _{av} , nm	PdI	d _{HD} , nm	Relaxation efficiency, l·mmol ⁻¹ ·s ⁻¹		r ₂ /r ₁
				\mathbf{r}_{1}	\mathbf{r}_2	
Mn _{0.3} Fe _{2.7} O ₄ /PDDA	$86,4 \pm 0,8$	$0,153 \pm 0,021$	68,1	11,7	89,9	7,68
Mn _{0.3} Fe _{2.7} O ₄ /CH60	$195,5 \pm 1,3$	$0,294 \pm 0,032$	78,8	_	61,5	_
Mn _{0.3} Fe _{2.7} O ₄ /CH60-PEG	$220,6 \pm 3,4$	$0,241 \pm 0,021$	68,1 141,8 w	12,3	129,0	10,5
Mn _{0.3} Fe _{2.7} O ₄ /CH60-DEX	$214,3 \pm 1,3$	$0,178 \pm 0,033$	190,1	12,5	135,5	10,8
Mn _{0.3} Fe _{2.7} O ₄ /SiO ₂	48.13 1000 (0,1%)	$0,247 \pm 0,024$	_	13,8	105,2	7,62

w - weak intensity

Measurements of spin-relaxation properties have shown that nature of the dispersion stabilizer in most cases has little effect on the relaxation parameters (r_1 and r_2). Typical contrast agents with a r_2/r_1 ratio of 2 to 40 are treated as T_2 -contrast agents, while for T_1 -contrast agents this ratio is less. The resulting dispersion has a sufficiently high contrasting ability for magnetic resonance studies.

References

[1] A.S. Korsakova et al. Journal of the Belarusian State University. Physics. (2021) 1:12

³ Saint Petersburg Electrotechnical University «LETI», Saint Petersburg, Russia