Nuclear magnetic resonance relaxation efficiency of Mn_{0.3}Fe_{2.7}O₄ magnetic nanoparticles A.S. Korsakova¹, D.A. Kotsikau¹, V.V. Pankov¹, K.S. Livanovich², T.G. Shutava², A.V. Nikitina³, Y.V. Bogachev³ ¹Belarusian State University, Minsk, Belarus, e-mail: korsakova@bsu.by ² Institute of Chemistry of New Materials, NAS of Belarus, Minsk, Republic of Belarus From a series of magnetic nanoparticles of Mn-substituted magnetite $Mn_xFe_{3-x}O_4$ (x=0.1-1.8) that previously were described in [1] the powder of composition $Mn_{0.3}Fe_{2.7}O_4$ showed the highest value of saturation magnetization of relatively unsubstituted magnetite. MNPs $Mn_{0.3}Fe_{2.7}O_4$ were stabilized in the form of colloidal solutions using a number of polyelectrolytes, such as poly(diallyldimethylammonium chloride) (PDDA), chitosan 60 kDa (CH60), copolymer of chitosan 60 kDa and polyethylene glycol 5 kDa ($\chi=0.15$) (CH60-PEG), copolymer of chitosan 60 kDa and dextran 6 kDa ($\chi=0.15$) (CH60-DEX) and silica (SiO₂). Nuclear magnetic resonance relaxation of protons in aqueous solutions of $Mn_{0.3}Fe_{2.7}O_4$ stabilized nanoparticles has been investigated (Table). Table. Physicochemical characteristics of $Mn_{0.3}Fe_{2.7}O_4$ magnetic nanoparticles stabilized by different reagents | MNP composition | Z _{av} , nm | PdI | d _{HD} , nm | Relaxation
efficiency,
l·mmol ⁻¹ ·s ⁻¹ | | r ₂ /r ₁ | |--|----------------------|-------------------|----------------------|--|----------------|--------------------------------| | | | | | \mathbf{r}_{1} | \mathbf{r}_2 | | | Mn _{0.3} Fe _{2.7} O ₄ /PDDA | $86,4 \pm 0,8$ | $0,153 \pm 0,021$ | 68,1 | 11,7 | 89,9 | 7,68 | | Mn _{0.3} Fe _{2.7} O ₄ /CH60 | $195,5 \pm 1,3$ | $0,294 \pm 0,032$ | 78,8 | _ | 61,5 | _ | | Mn _{0.3} Fe _{2.7} O ₄ /CH60-PEG | $220,6 \pm 3,4$ | $0,241 \pm 0,021$ | 68,1
141,8 w | 12,3 | 129,0 | 10,5 | | Mn _{0.3} Fe _{2.7} O ₄ /CH60-DEX | $214,3 \pm 1,3$ | $0,178 \pm 0,033$ | 190,1 | 12,5 | 135,5 | 10,8 | | Mn _{0.3} Fe _{2.7} O ₄ /SiO ₂ | 48.13
1000 (0,1%) | $0,247 \pm 0,024$ | _ | 13,8 | 105,2 | 7,62 | w - weak intensity Measurements of spin-relaxation properties have shown that nature of the dispersion stabilizer in most cases has little effect on the relaxation parameters (r_1 and r_2). Typical contrast agents with a r_2/r_1 ratio of 2 to 40 are treated as T_2 -contrast agents, while for T_1 -contrast agents this ratio is less. The resulting dispersion has a sufficiently high contrasting ability for magnetic resonance studies. ## References [1] A.S. Korsakova et al. Journal of the Belarusian State University. Physics. (2021) 1:12 ³ Saint Petersburg Electrotechnical University «LETI», Saint Petersburg, Russia