## Quasi–Kähler and Hermitian f–structures on homogeneous $\Phi$ –spaces of order $k^1$

A.S. Samsonov

Belarusian State University, Minsk andrey.s.samsonov@gmail.com

**Introduction.** The well known almost complex structure  $J = \frac{1}{\sqrt{3}}(\theta - \theta^2)$  (see [11], [12]) on homogeneous 3–symmetric spaces belongs [12] to the classes in *Hermitian geometry* such as *quasi–Kähler structures* (class **QK**) and *nearly*  $K\ddot{a}hler$  (**NK**) structures in the naturally reductive case.

An extension of these results is investigation of so called canonical f-structures [3] on homogeneous  $\Phi$ -spaces of order k ( $\Phi^k = id$ ) [4], [10] (in other terminology, homogeneous k-symmetric spaces [7]) in the generalized Hermitian geometry field (see, for example, [5]). For example [1], the base canonical f-structures are Hermitian f-structures (class  $\mathbf{H}\mathbf{f}$ ) on naturally reductive homogeneous 4- and 5-symmetric spaces. For order k=6 the necessary and sufficient conditions are known [8] under which the base canonical f-structures belong to  $\mathbf{H}\mathbf{f}$  and nearly  $K\ddot{a}hler\ f$ -structures ( $\mathbf{N}\mathbf{K}\mathbf{f}$ ). Finally, the pointed results were generalized for the base canonical f-structures on arbitrary homogeneous  $\Phi$ -spaces of any order k ( $k \geq 3$ ) with naturally reductive metric [2] and for more general set of metrics [9].

Now we continue similar investigations of the canonical f-structures on arbitrary homogeneous k-symmetric spaces. This article contains new results concerning algebraic sum of the base canonical f-structures and the class **Hf**. The structures are considered also with the restriction they are almost complex structures and it's proved they belong to the class **QK** in this case.

**Preliminaries.** Let G/H be a homogeneous  $\Phi$ -space of order k with an automorphism  $\Phi$  ( $\Phi^k = id$ ,  $k \geq 3$ ) [4], [7], [10]. Denote by  $\mathfrak g$  and  $\mathfrak h$  the corresponding Lie algebras and  $\varphi = d\Phi_e$  is automorphism in  $\mathfrak g$  ( $\varphi^k = id$ ). It's known [10] G/H is reductive and its canonical reductive decomposition is  $\mathfrak g = \mathfrak h \oplus \mathfrak m$ . Denote by  $\theta = \varphi|_{\mathfrak m}$ ,  $s = \left[\frac{k-1}{2}\right]$  (whole part), u = s (if k is odd), u = s + 1 (if k is even number). Recall the decomposition of  $\mathfrak m$  corresponding to the automorphism  $\varphi$  [7]:

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m}_1 \oplus \dots \oplus \mathfrak{m}_u, \tag{1}$$

where some of  $\mathfrak{m}_i$  can be trivial. If i+j>u we will denote also subspace  $\mathfrak{m}_{k-(i+j)}$  by  $\mathfrak{m}_{i+j}$ .

 $<sup>^1</sup>$ The research was supported by the Belarus Republic Foundation for Basic Research (project F10R–132) in the framework of the joint BRFBR–RFBR project.

Any canonical f-structure can be represented (see [3]) as  $f = (\zeta_1 J_1, \ldots, \zeta_s J_s)$ , where  $J_1, \ldots, J_s$  are specially defined almost complex structures  $(J_i^2 = -1)$  on  $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ ,  $\zeta_i \in \{-1; 0; 1\}$ ,  $i = \overline{1, s}$ ,  $f|_{\mathfrak{m}_u} = 0$  for even k. If subspace  $\mathfrak{m}_i$  isn't trivial,  $\zeta_i = 1$  and other  $\zeta_j = 0$   $(j \neq i)$ , then the structure f will be denoted by  $f_i$  (i.e.  $f_i$  is the base canonical f-structure).

Observe that for k = 2 the next Theorem 1 yields well–known commutator relations for homogeneous symmetric spaces [6]:

$$[\mathfrak{h},\mathfrak{h}]\subset\mathfrak{h},\,[\mathfrak{h},\mathfrak{m}]\subset\mathfrak{m},\,[\mathfrak{m},\mathfrak{m}]\subset\mathfrak{h}.$$

**Theorem 1.** [2], [9] Suppose that G/H is a homogeneous  $\Phi$  space of order k ( $k \geq 2$ );  $\mathfrak{m}$  is the corresponding canonical reductive complement with decomposition (1);  $i, j = 0, 1, \ldots, u$ ;  $i \geq j$ ; and  $\mathfrak{m}_{i+j}$  denotes  $\mathfrak{m}_{k-(i+j)}$  if i + j > u. Then, the following commutator relations are valid:  $[\mathfrak{m}_i, \mathfrak{m}_j] \subset \mathfrak{m}_{i+j} + \mathfrak{m}_{i-j}$ .

Let us specify now the set of G-invariant Riemannian metrics on the homogeneous k-symmetric spaces. Using the bijective correspondence [6] between the G-invariant metrics and the Ad(H)-invariant inner products on the canonical reductive complement  $\mathfrak{m}$ , consider the following family of invariant metrics in the case of a semisimple compact Lie algebra  $\mathfrak{g}$  with Killing form B:

$$\langle X, Y \rangle = \lambda_1 B(X_1, Y_1) + \dots + \lambda_n B(X_n, Y_n), \tag{2}$$

where  $X, Y \in \mathfrak{g}$ ,  $i = \overline{1, u}$ ,  $X_i, Y_i \in \mathfrak{m}_i$ , while  $\mathfrak{m}_i$  is a summand of the decomposition (1),  $\lambda_i \in \mathbb{R}$ ,  $\lambda_i < 0$ .

In case of the Levi–Civita connection  $\nabla$  for an invariant Riemannian metric  $g=\langle\cdot,\cdot\rangle$  on the homogeneous reductive space G/H the bilinear symmetric mapping  $U:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$  for the Nomizu function [6]  $\alpha$  is determined (see [6]) from

$$2\langle U(X,Y), Z \rangle = \langle X, [Z,Y]_{\mathfrak{m}} \rangle + \langle [Z,X]_{\mathfrak{m}}, Y \rangle \quad \forall Z \in \mathfrak{m}. \tag{3}$$

In the next theorem we establish that U(X,Y) is determined by the commutator of  $X,Y \in \mathfrak{m}$  in the case of homogeneous k-symmetric spaces with the metric (2).

**Theorem 2.** [9] Consider a homogeneous  $\Phi$ -space of order k ( $k \geq 3$ ) M = G/H with the metric (2), and suppose that the Lie algebra  $\mathfrak{g}$  of G is semisimple and compact. Take arbitrary elements  $X_i, Y_i, Y_j$  of the summands  $\mathfrak{m}_i$  and  $\mathfrak{m}_j$  in (1) for  $i, j = \overline{1, u}$  with i > j. Then U satisfies

$$U(X_i, Y_j)_{\mathfrak{m}_{i\pm j}} = \frac{\lambda_j - \lambda_i}{2\lambda_{i\pm j}} [X_i, Y_j]_{\mathfrak{m}_{i\pm j}}, \quad U(X_i, Y_i) = U(X_i, Y_j)_{\mathfrak{m}_n} = 0,$$

where  $\mathfrak{m}_{i+j}$  with i+j>u stands for  $\mathfrak{m}_{k-(i+j)}$ , while  $\lambda_{i+j}$  with i+j>u stands for  $\lambda_{k-(i+j)}$ , and  $\mathfrak{m}_n$  is an arbitrary summand of (1) except for  $\mathfrak{m}_{i-j}$  and  $\mathfrak{m}_{i+j}$ .

New Results. The next theorems are proved taking into account Theorem 2, commutator and other useful relations (see [9]) for the homogeneous k-symmetric spaces. Note, that the theorems are formulated for the metrics (2) where Lie algebra  $\mathfrak g$  is semisimple and compact. However, if we take arbitrary homogeneous naturally reductive k-symmetric space then the theorems are also applicable without semisimpleness and compactness requirements. Let us consider the class  $\mathbf{Hf}$  defined by the condition T(X,Y)=0 where T is composition tensor and [5]

$$T(X,Y) = \frac{1}{4} f\left(\nabla_{fX}(f) f Y - \nabla_{f^2X}(f) f^2 Y\right),$$

where  $\nabla$  is the Levi–Civita connection of a (pseudo)Riemannian manifold  $(M,g),\,X,Y\in\mathfrak{X}(M).$  For this class we have

**Theorem 3.** [9] Let M = G/H be a homogeneous  $\Phi$ -space of order k with the metric (2). Then for every base canonical f-structure  $f_i$  on M the following statements hold:

```
if 3i \neq k then f_i is of the class \mathbf{Hf};
if 3i = k then f_i \in \mathbf{Hf} \Leftrightarrow [\mathfrak{m}_i, \mathfrak{m}_i] \subset \mathfrak{h}.
```

**Theorem 4.** Let M = G/H be a homogeneous  $\Phi$ -space of order k with the metric (2) and  $f_i$ ,  $f_j$  are arbitrary base canonical f-structures on M with i > j. The structure  $f_i - f_j \in \mathbf{Hf}$  iff both conditions are satisfied:

- 1) The structures  $f_i$  and  $f_j$  are of the class **Hf**.
- 2)  $i \neq 2j$  or both  $[\mathfrak{m}_i, \mathfrak{m}_i] \subset \mathfrak{h}$  and  $[\mathfrak{m}_i, \mathfrak{m}_i] \subset \mathfrak{m}_{i+1}$ .

**Theorem 5.** Let M = G/H be a homogeneous  $\Phi$ -space of order k with the metric (2) and  $f_i$ ,  $f_j$  are arbitrary base canonical f-structures on M with i > j. The structure  $f_i + f_j \in \mathbf{Hf}$  iff all next conditions are satisfied:

- 1) The structures  $f_i$  and  $f_j$  are of the class Hf.
- 2)  $2i + j \neq k$  or both  $[\mathfrak{m}_i, \mathfrak{m}_i] \subset \mathfrak{h}$  and  $[\mathfrak{m}_i, \mathfrak{m}_j] \subset \mathfrak{m}_{i-j}$ .
- 3)  $i + 2j \neq k$  or both  $[\mathfrak{m}_j, \mathfrak{m}_j] \subset \mathfrak{h}$  and  $[\mathfrak{m}_i, \mathfrak{m}_j] \subset \mathfrak{m}_{i-j}$ .

For the class  $\mathbf{Q}\mathbf{K}$  of Hermitian geometry defined for an almost Hermitian structure J by well–known condition

$$\nabla_X(J)Y - \nabla_{JX}(J)JY = 0,$$

where  $\nabla, X, Y$  are the same as for composition tensor T, we have

**Theorem 6.** Let M = G/H be a homogeneous  $\Phi$ -space of order k with the metric (2),  $f_i$  is a base canonical f-structure on M and  $f_i$  is almost complex structure (i.e. all subspaces of decomposition (1) are trivial except  $\mathfrak{m}_i$  and, probably,  $\mathfrak{m}_0 = \mathfrak{h}$ ). Then  $f_i \in \mathbf{QK}$ .

It's easy to conclude from "almost complex structure" condition and Theorem 1 that M=G/H is a locally symmetric space (i.e.  $[\mathfrak{m},\mathfrak{m}]\subset \mathfrak{h}$ ) if  $3i\neq k$  in Theorem 6. However, we don't have this conclusion if 3i=k and the base canonical f-structure  $J=\frac{1}{\sqrt{3}}(\theta-\theta^2)$  from Introduction is an example illustrating it.

The author is grateful to Vitaly V. Balashchenko for helpful discussions and recommendations related to this article.

## List of bibiliography

- [1]  $Balashchenko\ V.V.$  Homogeneous Hermitian f-manifolds //  $Russian\ Math.\ Surveys. -2001.$  Vol. 56, no. 3. Pp. 575-577.
- [2]  $Balashchenko\ V.V.$ ,  $Samsonov\ A.S.$  Nearly Kahler and Hermitian f-Structures on Homogeneous k-Symmetric Spaces //  $Doklady\ Mathematics. -2010.$  Vol. 81, no. 3. Pp. 1-4.
- [3] Balashchenko V.V., Stepanov N.A. Canonical affinor structures of classical type on regular Φ-spaces // Sbornik: Mathematics. — 1995. — Vol. 186, no. 11. — Pp. 1551–1580.
- [4] Fedenko A.S. Spaces with symmetries.— Minsk: Belarusian State University, 1977.
- [5] Kirichenko V.F. Quasi-homogeneous manifolds and generalized almost Hermitian structures // Math. USSR, Izv. 1984. no. 23. Pp. 473–486.
- [6] Kobayashi S., Nomizu K. Foundations of Differential Geometry. New York: Intersc. Publ. J.Wiley & Sons, 1963.
- [7] Kowalski O. Generalized symmetric spaces // LN in Math. Berlin, Heidelberg, New York: Springer-Verlag, 1980. Vol. 805.
- [8] Samsonov A.S. Nearly Kähler and Hermitian f-structures on homogeneous  $\Phi$ -spaces of order 6 // Russian Math. (Iz. VUZ). 2011. no. 4. Pp. 74–82.
- [9] Samsonov A.S. Nearly Kähler and Hermitian f-structures on homogeneous  $\Phi$ -spaces of order k with the special metrics // Doklady Mathematics. 2011. Vol. 54, no. 6. (to appear).

- [10] Stepanov N.A. Basic facts of the theory of  $\varphi$ -spaces // Soviet Math. (Iz. VUZ). 1967. Vol. 11, no. 3. Pp. 88–95.
- [11] Stepanov N.A. Homogeneous 3–cyclic spaces // Soviet Math. (Iz. VUZ). 1967. Vol. 11, no. 12. Pp. 65–74.
- [12] Wolf J.A., Gray A. Homogeneous spaces defined by Lie group automorphisms // J. Diff. Geom. 1968. Vol. 2, no. 1,2. Pp. 77–159.

## Ограниченно однородные по Клиффорду-Вольфу римановы многообразия<sup>1</sup>

В.Н. Берестовский, Ю.Г. Никоноров Омский филиал ИМ СО РАН, г. Омск, Южный математический институт ВНЦ РАН и РСО-А, г. Владикавказ vberestov@inbox.ru, nikonorov2006@mail.ru

## Введение

Начнем с определения важных классов изометрий и соответствующих метрических пространств.

Определение 1 ([9], [4]). Пусть (X,d) — метрическое пространство. Изометрия f пространства (X,d) на себя называется переносом Клиффорда-Вольфа, кратко КВ-переносом, если f смещает все точки (X,d) на одно u то же расстояние, m. e. d(y,f(y))=d(x,f(x)) для всех  $x,y\in X$ .

Определение 2 ([9], [8]). (Полное) метрическое пространство (X,d) называется (ограниченно) однородным по Клиффорду-Вольфу, кратко (ограниченно) КВ-однородным, если для всех  $x,y \in X$  (соответственно, всех x,y из открытого шара B(z,r(z)), r(z) > 0, с произвольным центром  $z \in X$ ) существует перенос Клиффорда-Вольфа пространства (X,d), перемещающий x в y.

В статье [8] доказана следующая классификационная теорема.

**Теорема 1.** Односвязное (связное) риманово многообразие КВоднородно тогда и только тогда, когда оно изометрично прямому метрическому произведению некоторого евклидова пространства, нечетномерных сфер постоянной кривизны и односвязных компактных простых

 $<sup>^1</sup>$ Работа поддержана ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009-2013 гг. (гос. контракт № 02.740.11.0457), грантом НШ-6613.2010.1 и грантом РФФИ-БРФФИ 10-01-90000-Бел-а.