List of bibliography

Canonical structures and distributions on spaces with symmetries of order k\footnote{This research was partially supported by the Belarus Republic Foundation for Basic Research (project F10R–132) in the framework of the joint BRFBR–RFBR project.}

V.V. Balashchenko

Belarusian State University, Minsk

balashchenko@bsu.by; vitbal@tut.by

Introduction. Idea of symmetry is very important and fruitful in natural sciences, specifically, in mathematics. In this respect, theory of symmetric spaces plays a remarkable role in many branches of mathematics. More general, among homogeneous manifolds of Lie groups there exists a wide and...
very interesting class of spaces with symmetries of order k, i.e. homogeneous k–symmetric spaces, which are homogeneous spaces generated by Lie groups automorphisms Φ of order k ($\Phi^k = id$) [7].

Any homogeneous k–symmetric space $(G/H, \Phi)$ admits the commutative algebra $\mathcal{A}(\theta)$ [3] of canonical affinor structures. This algebra contains well-known classical structures such as almost complex structures, almost product structures, f–structures of K. Yano ($f^3 + f = 0$) etc. (see [3], [5]). The main feature of the canonical structures is their invariance with respect to the symmetries of order k of the k–symmetric space $(G/H, \Phi)$.

Here we present several new results on invariant distributions generated by canonical almost product structures on naturally reductive k–symmetric spaces. Besides, using canonical structures, we construct four left-invariant metric f–structures on the 6–dimensional generalized Heisenberg group and provide new invariant examples for the classes of nearly Kähler and Hermitian f–structures as well as almost Hermitian G_1–structures.

Canonical structures on k–symmetric spaces. Let G be a connected Lie group, Φ its (analytic) automorphism, G/H a homogeneous Φ–space [3], [4], i.e. G/H is generated by the Lie group automorphism Φ [11]. In the case $\Phi^k = id$ the pair $(G/H, \Phi)$ is a homogeneous Φ–space of order k or, in the other terminology, homogeneous k–symmetric space (see [7]). The special case $k = 2$ leads to homogeneous symmetric spaces.

For any homogeneous Φ–space G/H one can define [9] the analytic diffeomorphism $S_p: G/H \to G/H$, $xH \to \Phi(x)H$, which is usually called a "symmetry"of G/H at the point $o = H$. In view of homogeneity the "symmetry"S_p can be defined at any point $p \in G/H$. This implies that any homogeneous k–symmetric space is a space with symmetries of order k.

Let G/H be a homogeneous Φ–space of order k, \mathfrak{g} and \mathfrak{h} the corresponding Lie algebras for G and H, $\varphi = d\Phi_e$ the automorphism of \mathfrak{g}. Consider the linear operator $A = \varphi - id$. Recall [9] that G/H is a reductive space for which the corresponding canonical reductive decomposition is of the form:

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}, \quad \mathfrak{m} = A\mathfrak{g}.$$

Besides, this decomposition is obviously φ–invariant. Denote by θ the restriction of φ to \mathfrak{m}. As usual, we identify \mathfrak{m} with the tangent space $T_o(G/H)$ at the point $o = H$.

Recall [3] that an invariant affinor structure F on a homogeneous Φ–space G/H of order k is called canonical if its value at the point $o = H$ is a polynomial in θ. It follows that any canonical structure is invariant, in addition, with respect to the "symmetries"$\{S_p\}$ of G/H. The set $\mathcal{A}(\theta)$ of all canonical affinor structures on $(G/H, \Phi)$ is a commutative subalgebra of the algebra \mathcal{A} of all invariant affinor structures on G/H. Evidently, the algebra $\mathcal{A}(\theta)$ for any symmetric Φ–space ($\Phi^2 = id$) is trivial, i.e. it is isomorphic to \mathbb{R}.

Ломоносовские чтения на Алтае
However, the algebra $\mathcal{A}(\theta)$ for homogeneous Φ-spaces of order k ($k \geq 3$) contains a rich collection of classical structures such as almost complex structures J ($J^2 = -1$), almost product structures P ($P^2 = 1$), f-structures ($f^3 + f = 0$), h-structures ($h^3 - h = 0$). All these canonical structures on homogeneous k-symmetric spaces were completely described [3], [5]. Note that the first and the most remarkable example of canonical structures is the canonical almost complex structure $J = \frac{1}{\sqrt{3}}(\theta - \theta^2)$ on homogeneous 3-symmetric spaces (N.A.Steanov, J.A.Wolf-A.Gray).

Below we illustrate some new applications of canonical structures to the theory of Riemannian almost product structures as well as to Hermitian and generalized Hermitian geometry.

Canonical distributions on k-symmetric spaces. Any Riemannian almost product manifold (M, g, P) naturally admits two complementary mutually orthogonal distributions corresponding to the eigenvalues 1 and -1 of P. They are usually called vertical V and horizontal H respectively. In accordance with the Naveira classification [8] there are 36 classes of Riemannian almost product structures (8 types for each of distributions). It was proved [5] that, in accordance with the classification, there are exactly three classes of invariant naturally reductive almost product structures. They are $(\mathrm{TGF}, \mathrm{TGF})$, $(\mathrm{TGF}, \mathrm{AF})$, $(\mathrm{AF}, \mathrm{AF})$, where TGF is a totally geodesic foliation, AF is an anti-foliation.

Let G/H be a homogeneous k-symmetric space. Denote by $s = \lfloor \frac{k+1}{2} \rfloor$ (integer part), $u = s$ (if k is odd), $u = s + 1$ (if k is even number). Consider the corresponding canonical reductive decomposition

$$g = h \oplus m = m_0 \oplus m = m_0 \oplus m_1 \oplus \ldots \oplus m_u,$$

where subspaces m_i ($i = 1, u$) are determined by the spectrum of the operator θ. Denote by P_i the base canonical almost product structure, which is id on the m_i and $-id$ on the other subspaces.

The following results were obtained:

Theorem 1. Let $(G/H, g)$ be a naturally reductive Φ-space of order $k = 2n, n \geq 2$ such that a subspace m_n corresponding to the eigenvalue -1 of the operator θ is non-trivial. Then a canonical invariant distribution on G/H generated by the subspace m_n is of type TGF. In other words, the canonical almost product structure P_n belongs to the class $(\mathrm{TGF}, \mathrm{AF})$.

Theorem 2. Let $(G/H, g)$ be a naturally reductive homogeneous k-symmetric space. Suppose P_i, $i = 1, u$ is a base canonical almost product structure such that for index i the following system of conditions is satisfied for any $j \neq i$:
$k = 3i, \quad 2i \neq k - j, \quad 2i \neq j$. Then the structure P_i belongs to the class (TGF, AF).

All the canonical structures P for orders $k = 5, 6, 7$ were characterized in this sense (the case $k = 4$ was already studied [5]).

Canonical f–structures on the 6–dimensional generalized Heisenberg group. Canonical f–structures on homogeneous k–symmetric spaces play an important role in the generalized Hermitian geometry [6]. More exactly, these structures provide a wealth of invariant examples for main classes of metric f–structures (see, e.g., [5], [2]).

In this respect, the 6–dimensional generalized Heisenberg group (N, g) is of especial interest. Specifically, (N, g) can be simultaneously represented as Riemannian homogeneous k–symmetric spaces for $k = 3, 4, 6$, where the metric g is not naturally reductive (see, e.g., [10], [5], [1]). We concentrate on the four left-invariant metric canonical f–structures on the Riemannian homogeneous 6–symmetric space (N, g). Two of them, f_1 and f_2, are base metric f–structures, the other two $f_3 = f_1 + f_2 = J$ and $f_4 = f_1 - f_2 = \tilde{J}$ are almost Hermitian structures. We notice that the structure J is just the canonical almost complex structure for 3–symmetric space (N, g) [10]. Besides, the structure f_1 coincides with the canonical f–structure for the corresponding 4–symmetric space (see [5]). Thus, these structures were investigated before. Here we formulate the results for the structures f_2 and J.

Theorem 3. Let (N, g) be the 6–dimensional generalized Heisenberg group considered as the Riemannian homogeneous 6–symmetric space. Then the canonical structure f_2 is a non-integrable nearly Kähler and Hermitian f–structure on the manifold N, but f_2 is not a Killing f–structure.

Theorem 4. The 6–dimensional generalized Heisenberg group (N, g) is a G_1–manifold with respect to the left-invariant canonical almost Hermitian structure $J = f_3$ of the Riemannian homogeneous 6–symmetric space (N, g, Φ). Besides, the structure J is neither nearly Kähler nor Hermitian structure on the manifold (N, g).

We note that more detailed and some additional information can be found in [1].

List of bibliography

