Атомный вес элементов

Д. И. Мычко, доцент кафедры неорганической химии БГУ, кандидат химических наук

Если вы когда-нибудь внимательно рассматривали периодическую систему химических элементов Д. И. Менделеева, размещённую на форзаце школьных учебников по химии, то, наверное, обратили внимание на то, что приведённые в ней относительные атомные массы у разных элементов отличаются числом знаков после запятой. Так, например, у водорода значение относительной атомной массы равно 1,00794 (указано 5 знаков после запятой), у бора — 10,811 (3 знака), у кислорода — 15,9994 (4 знака), у олова — 118,71 (2 знака), а у свинца — 207,2 (всего 1 знак). У технеция, прометия и у всех элементов, стоящих после висмута, приведены только целочисленные значения, взятые в квадратные скобки, как, например, у полония — [209].

Не меньше вопросов появится, если обратить внимание на таблицы атомных весов элементов (atomic weights of the elements), размещаемые на сайте ИЮПАК. Так, значение относительной атомной массы у водорода равно 1,00794(7), у бора — 10,811(7), у кислорода — 15,9994(3), у фтора — 18,9984032(5), у олова — 118,710(7), у свинца — 207,2(1) [1]. Возникает вопрос, что за цифры стоят в скобках?

Да и сам термин «атомный вес», который присутствует в июпаковских документах и который я умышленно избрал в качестве названия статьи, многим может показаться устаревшим. Между тем этот термин используется в англоязычной литературе не только в названии физической величины, но и в названии Комиссии ИЮПАК по атомным весам и распространённости изотопов (Commission IUPAC on Atomic Weights and Isotopic Abundances) — законодателя в стандартизации значений относительных атомных масс элементов.

Попробуем ответить на эти вопросы.

Немного истории

6 сентября 1803 г. английский учитель физики Дж. Дальтон составил первую в истории химии таблицу «относительных весов первичных частиц». Этим первичным частицам Дальтон присвоил название «атомы», позаимствованное у древних греков. Чтобы уточнить особенности своего учения, которое он назвал «химической атомистикой», Дальтон ввёл понятие о химическом атоме как наименьшей химически неделимой частице вещества и придал ему количественно измеряемое свойство — атом-

ный вес. Благодаря этой величине, невидимый атом стал «осязаемым». Почему осязаемым? Потому что исходя из массовых отношений элементов в их соединениях стало возможным подсчитать число атомов в молекулах и в виде формул представлять атомный состав веществ.

В первой таблице Дальтона были представлены атомные веса 14 элементов. Позже в результате кропотливых исследований самого Дальтона и его последователей эти значения уточнялись и добавлялись (табл. 1).

 $Taблица\ 1.\ 3$ начения относительных атомных масс для ряда элементов в их исторической динамике

Элемент	Дальтон,	Авогадро,	Берцелиус,	Менделеев,	1903 г.	1959 г.	1961 г.	2007 г.
	1810 г.	1821 г.	1826 г.	1869 г.				
Н	1	1	1	1	1,008	1,0080	1,00797	1,00794(7)
C	5,4	12,08	12,25	12	12,00	12,01115	12,01115	12,0107(8)
0	7	16,1	16,03	16	16,00	16	15,9994	15,9994(3)

Выбранные даты имеют эпохальное значение в истории изучения химических элементов:

1903 г. — принята первая международная таблица атомных весов;

1959 г. — составлена последняя таблица, в которой система атомных весов строилась с использованием кислородной единицы атомной массы;

1961 г. — создана первая таблица, в которой были приведены значения атомных весов, определённых с использованием углеродной единицы атомной массы.

Долгое время атомный вес считался фундаментальной характеристикой химического элемента, положенной Д. И. Менделеевым в основу создания периодической системы элементов. Однако исследование радиоактивности урана и тория позволило обнаружить несколько типов одинаковых ядер, распадающихся с различной скоростью. Тщательные определения американского химика Т. В. Ричардса показали, что атомные веса элементов не целочисленны. Ещё большее недоумение вызвало его сообщение о том, что свинец, найденный среди продуктов распада урана, имеет атомную массу, отличающуюся от известной атомной массы свинца. Эти проблемы были решены с помощью смелой гипотезы, предложенной в 1911 г. Ф. Содди. Гипотеза заключалась в том, что место, занимаемое отдельным элементом в периодической таблице, может служить «пристанищем» более чем одному виду атомов. Содди назвал эти атомы изотопами, что по-гречески означает «то же место».

Напомним, что радиоизотопы ²³⁸U, ²³⁵U и ²³²Th в результате радиоактивного распада образуют дочерние ядра, которые радиоактивны и, в свою очередь, распадаются на радиоактивные дочерние ядра следующего поколения и т. д., вплоть до образования стабильных ядер. Окончательно получаемые стабильные ядра, которыми завершаются естественные семейства упомянутых радиоизотопов, являются ядра свинца-206, -207 и -208.

Справедливости ради следует заметить, что В. Крукс ещё в 1886 г. предположил, что атомы одного элемента могут иметь различные целочисленные значения массы и что атомный вес элемента представляет собой среднюю массу смеси различных атомов. Эти идеи получили прямое экспериментальное подтверждение, когда в 1913 г. Дж. Дж. Томсон обнаружил, что неон состоит из двух типов атомов с атомными весами около 20 и 22. Эти наблюдения были сделаны «прибором с положительными лучами», описанном Томсоном. Решив подтвердить или опровергнуть его сообщение, молодой химик Ф. В. Астон создал более совершенную конструкцию описанного Томсоном прибора, названую им масс-спектрографом, с помощью которого не только подтвердил его данные, но и открыл третий изотоп неона с массой 21.

Впоследствии Астон посвятил свою жизнь созданию всё более совершенных типов масс-спектрографов, открыв с их помощью 212 из 356 существующих природных нуклидов.

От чего зависит точность определения относительной атомной массы элемента?

Казалось бы, что точность значения атомного веса элемента определяется возможностями используемого метода.

Действительно, долгое время оно так и было. Например, в 1874 г. погрешность определения атомного веса была не меньше 0,5 %. В 1903 г. уже для 33 элементов эта величина составляла 0,1 %, а для двух элементов (серебро и иод) — 0,01 %. Повышение точности было связано с усовершенствованием химических методов, исключающих различные загрязнения в анализируемой пробе. Дальнейшее повышение точности было достигнуто благодаря использованию масс-спектрометрии. В настоящее время большая часть атомных масс известна с погрешностью 0,01 %, а для 26 элементов точность превышает $10^{-4} \%$ [2].

Хімія: праблемы выкладання. № 3, 2011

В июпаковских таблицах о точности определения атомных весов элементов можно судить по числу знаков после запятой и цифре в круглых скобках. Например, для фтора это значение равно $18,9984032 \pm 0,0000005$. Это наиболее точное значение относительной атомной массы. Относительная погрешность его определения составляет:

$$\Delta_{\text{oth}} = \frac{A_r^{\text{max}} - A_r^{\text{cp}}}{A_r^{\text{cp}}} = \frac{0,0000005}{18,9984032} = 2,6 \cdot 10^{-8}.$$

У бора точность определения значения относительной атомной массы гораздо ниже — 10,811(7), что означает $10,811\pm0,007$.

Почему точность метода определения атомных масс для всех элементов примерно одинаковая, а точность значений относительных атомных масс элементов разная?

Ясность в этот вопрос вносят результаты изучения распространённости изотопов каждого химического элемента.

Например, рассмотренный выше фтор представлен в природе всего одним нуклидом — фтором-19. Поэтому именно его значение относительной атомной массы приводится в таблице.

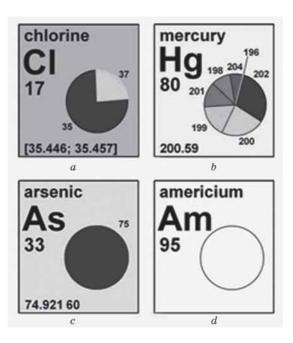
Такие элементы, как фтор, называют изотопно-чистыми. Их 21 элемент: Ве, F, Na, Al, P, Sc, Mn, Co, As, Y, Nb, Rh, I, Cs, Pr, Tb, Ho, Tm, Au, Bi, Th. Остальные элементы являются изотопно-смешанными, они в природе представлены несколькими изотопами. Больше всего изотопов у олова — 10. Отсюда понятно: чем больше изотопов, тем больше вариаций в массовом содержании различных изотопов в исследуемых образцах и тем меньше точность при усреднении результатов анализа в определении относительной атомной массы элемента.

Например, свинец в природе присутствует в виде четырёх изотопов: свинец-204, свинец-206, свинец-207 и свинец-208. Относительные атомные массы его нуклидов определены достаточно точно: $A_r(^{204}\text{Pb}) = 203,973037, \quad A_r(^{206}\text{Pb}) = 205,974455, \quad A_r(^{207}\text{Pb}) = 206,975885,$

 $A_r(^{208}\text{Pb}) = 207,976641$, а вот среднее значение относительной атомной массы свинца как химического элемента приведено с точностью до первого знака после запятой — $207,2\pm1$. Это связано с тем, что значение относительной атомной массы химических элементов усредняется с учётом распространённости их изотопов. Свинец относится к элементам, изотопный состав которых крайне непостоянен. По последним данным мольные доли этих изотопов варьируются в следующих пределах для свинца-204 - 0.0104 - 0.0165, свинца-206 - 0,2084 - 0,2748, свинца-207 - 0,1762 - 0,2365, свинца-208 -0,5128-0,5621 [3]. Кроме того, надо учитывать, что свинец является последним членом природных радиоактивных рядов распада и может накапливаться в исследуемом образце при распаде мизерных радиоактивных примесей. Ещё один фактор колебаний изотопного состава — геологический: в зависимости от места земной коры, где была взята проба на анализ, изотопный состав может существенно отличаться.

С учётом всех этих факторов каждые два года Комиссия ИЮПАК по атомным весам и распространённости изотопов публикует таблицы с уточнёнными значениями атомных весов элементов.

Элементы технеций, прометий и те, которые стоят в периодической системе после висмута, называются радиоактивными, поскольку у них нет стабильных изотопов. В связи с этим у этих элементов нет постоянного изотопного состава. Точно также не может быть постоянного изотопного состава для синтезируемых элементов, т. е. тех, которые стоят после урана и называются трансурановыми. Трансфермиевые элементы вообще синтезируются в виде одиночных изотопов, а о наличии элементов с атомными номерами после 112 принято говорить как о ядерных событиях и их массы только рассчитываются. Поэтому ИЮПАК приняло решение для радиоактивных элементов указывать не усреднённое значение относительной атомной массы, а массовое число наиболее долгоживущего нуклида, выделяя его в квадратных скобках, например [244] для плутония (Pu). Исключение делают для тория, протакти-


ния и урана, которые присутствуют в природе в достаточном количестве и имеют более-менее постоянный изотопный состав.

О готовящихся нововведениях ИЮПАК

ИЮПАК приняло решение с целью более точного отражения изотопного распределения элементов в природе и их атомных масс перейти к новой форме их отражения в периодической таблице. Это объясняется тем, что современные аналитические технологии могут осуществлять точные изменения атомных масс многих элементов, при этом незначительные изменения в значениях атомной массы очень часто могут оказаться важными как для решения исследовательских задач, так и на практике. Например, точное определение распространённости изотопов углерода в образце может использоваться для определения качества пищи или особенностей её происхождения. Изотопное распределение азота, хлора и ряда других элементов важно для отслеживания перемещения загрязняющих веществ в гидросфере и грунтовых водах. При проведении допинг-контроля различия в изотопном составе также могут оказаться полезными — распределение изотопов в тестостероне, вырабатывающимся организмом человека, и фармацевтическом тестостероне различно.

Скорректированные атомные массы элементов теперь будут выражаться в виде интервалов, для которых будет обозначаться наибольшее и наименьшее значение, соответствующее наиболее точно измеренному разбросу атомных масс [5]. Например, для серы в таблице сейчас приводится значение атомной массы 32,065 Да*, а в соответствии с новым требованием ИЮПАК — будет приводиться интервал от 32,059 до 32,076 Да, отражающий, что относительная атомная масса зависит от источника элемента.

Один из предполагаемых фрагментов периодической таблицы элементов может иметь следующий вид:

Как отмечает заместитель директора ИЮПАК Фабиен Мейерс (Fabienne Meyers), хотя новая система задания атомных масс в виде интервалов несёт существенные преимущества в плане понимания химии и практического применения, преподаватели химии и учащиеся столкнутся с определёнными трудностями. Им придётся выбирать единственное значение атомной массы из интервала для применения в химических расчётах и решении задач. При этом он надеется, что преподаватели химии смогут преодолеть эти трудности и привить молодому поколению интерес к химии и подготовить новых исследователей (источник ChemPort.Ru).

^{*} Да — Дальтон — это ещё одна внесистемная единица атомной массы, по своему значению она равна атомной единице массы.

О термине «атомный вес»

В 1960 г. XI Генеральная конференция по мерам и весам рекомендовала ввести Международную систему единиц. Упорядочение системы величин привело, в частности, к чёткому разграничению понятий веса как силы и массы, как меры инертности тел. В связи с этим был уточнён ряд терминов с заменой «веса» на «массу». Так появились термины «относительная атомная масса», «молекулярная масса» и др. Но вскоре возникла дискуссия по правомерности такого перехода [4] и уже в 2001 г. в документах ИЮПАК наряду с термином «относительная атомная масса элемента» (relative atomic mass of an element) стало использоваться сокращённое название этой величины «атомный вес» (atomic weight), который в июпаковской литературе в настоящее время полностью заменил привычный для нас термин «относительная атомная масса».

Можно рассматривать несколько предпочтений такого перехода к использованию термина «атомный вес».

Во-первых термин «atomic weight» короче, чем «relative atomic mass of an element», во-вторых, он более однозначен, и его не перепутаешь с термином «относительная атомная масса» какогонибудь конкретного нуклида. Так, относительная атомная масса кислорода-16 является своеобразной константой, а относительная атомная масса кислорода как химического элемента, существующего в природе в виде трёх изотопов (кислорода-16, кислорода-17, кислорода-18), колеблется, по данным 2009 года, в пределах от 15,99903 до 15,99977. В-третьих, в самом определении относительной атомной массы химического элемента, как известно, присутствует такое понятие, как среднее значение атомной массы элемента. Но у элемента нет массы, есть среднеевзвешенное значение масс нуклидов данного элемента.

С учётом этих аргументов термин «атомный вес» лучше удовлетворяет требованиям, предъявляемым к научной терминологии.

Из опыта работы

К моему большому изумлению вопрос: «Как определить массу атома...» приводит учащихся в тупик. Они путают понятия «масса атома» и «относительная атомная масса», «относительная атомная масса элемента». Ещё больше затруднений у них вызывает задача на вычисление относительной атомной массы элемента с учётом распространённости изотопов, которая часто встречается в олимпиадных заданиях различного уровня.

Так, решая эту задачу для трёх изотопов кислорода, они складывают относительные атомные массы трёх изотопов и делят её на 3.

На мой взгляд, их путает само определение относительной атомной массы элемента, данное в учебниках, как отношение средней массы данного химического элемента к 1/12 части массы атома углерода-12.

Большинство учащихся воспринимают среднюю массу как среднее арифметическое из значений масс изотопов, хотя на самом деле эта величина является средней арифметической взвешенной. Между этими двумя величинами существует принципиальное различие. Его я объясняю с помощью задачи, уровень сложности которой отвечает математике начальной школы.

 $3a\partial a$ ча. Представьте, что у вас 10 яблок. Два из них весят по 110 г каждое, остальные восемь яблок — по 150 г каждое. Определите среднюю массу яблока.

Эта задача решается всеми легко: находят массу всех десяти яблок и делят на их количество:

$$m_{\rm cp}$$
(яблока) = $\frac{2 \cdot 110 + 8 \cdot 150}{10}$ = 142 г.

После этого можно перейти к объяснению процедуры вычисления относительной атомной массы углерода.

Задача. Известно, что химический элемент углерод в природе представлен двумя изотопами, относительные атомные массы и мольные доли которых соответственно равны: углерод-12 — 12,000000 и 98,90 %, углерод-13 — 13,003355 и 1,10 %. Рассчитайте относительную атомную массу элемента углерода.

Откровенно говоря, само понятие «мольная доля» довольно-таки сложное. Ряд международных попыток унифицировать системы величин для гармонизации понимания, на мой взгляд, внесли больше неразберихи. Я хорошо помню время, когда нормоконтролёр в научных отчётах строго отслеживал, чтобы использовались такие величина как масс% и ат%. Эти понятия и обозначения не вызывали путаницы. Так масс% означал, что данная величина вычислена как процент по массе, т. е. то, что сейчас называют массой долей; ат% — это доля данного вида атомов в общей смеси атомов, т. е. то, что сейчас называют мольной долей. Мне кажется, что и учеников следует учить, используя эти обозначения, так как они понятней.

Объяснение решения. Пусть у нас 1000 атомов углерода. Это число атомов выбрано для того, чтобы от процентов можно было перейти к целым числам

атомов в смеси изотопов. Тогда атомов углерода-12 в этой смеси изотопов будет 989, а углерода-13 — 11. Умножая число атомов на их относительные атомные массы, получаем относительную атомную массу всех 1000 атомов. Разделив это число на 1000, находим среднее взвешенное значение относительной атомной массы углерода — 12,011.

$$A_r(C) = \frac{12,000\,000 \cdot 989 + 13,003354 \cdot 11}{1000} = 12,011.$$

Сравниваем эту величину с приведённой в периодической системе, убеждаемся в правильности вычислений.

Для тех, кто понял, как решать такие задачи, можно предложить более научную форму записи решения.

 $A_r(^{12}\text{C}) = 12,000000$, распространённость (мольная доля) — 98,90 %.

 $A_r(^{13}\text{C}) = 13,003354$, распространённость (мольная доля) — 1,10 %.

 $A_r(C) = 12,0000 \cdot 0,9890 + 13,003354 \cdot 0,011.$

 $A_r(C) = 12,011.$

В заключение можно привести определение относительной атомной массы химического элемента ($A_r(\partial)$) как безразмерной величины, значение которой рассчитывается как среднее взвешенное из значений относительных атомных масс изотопов данного элемента с учётом их относительной друг к другу распространённости в природе.

Список использованной литературы

- 1. IUPAC 2007 Standard Atomic Weights Revised // Pure Appl. Chem. 2009. Vol. 81. P. 2131—2156.
- 2. Γ ринвуд, H. Химия элементов / H. Гринвуд, A. Эрншо. M. : БИНОМ. Лаборатория знаний, 2008.
- 3. Isotopic compositions of the elements 2009 (IUPAC Technical Report) // Pure Appl. Chem. 2011. Vol. 83, N. 2. P. 397-410. [doi:10.1351/PAC-REP-10-06-02].
- 4. Bièvre, P. de Atomic weight: The name, its history, definition, and units / P. de Bièvre, H. S. Peiser // Pure Appl. Chem. 1992. Vol. 64. P. 1535—1543.
- 5. Wieser, M. E. Atomic weights of the elements 2009 (IUPAC Technical Report) / M. E. Wieser, T. B. Coplen // Pure Appl. Chem. 2011. Vol. 83, N. 2. P. 359—396. [doi:10.1351/PAC-REP-10-09-14].