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Introduction. Homogeneous ®-spaces [4] (generalized symmetric spaces
[9]) form a remarkable class of homogeneous manifolds and play an important
role in differential geometry and its applications. The important feature is
that any homogeneous regular ®-space (G/H,®) admits the commutative
algebra A(0) [3] of canonical affinor structures. This algebra contains classical
structures such as almost complex structures, almost product structures, f—
structures of K. Yano (f3 + f = 0) etc. (see [3], [7]).

It is a classical result [10] that homogeneous k—symmetric spaces are
included into the class of regular ®-spaces. Besides, it turned out that
canonical f-structures on homogeneous k—-symmetric spaces provide large
classes of invariant examples for Hermitian and generalized Hermitian
geometry (see [1], [7], [2] and some others). It should be mentioned that first
results in this direction were obtained for homogeneous 3—symmetric spaces
12], 3]

Here we present new results for the most general case of arbitrary
Riemannian regular ®-spaces. More exactly, we indicate the base canonical
f—structures on naturally reductive regular ®-spaces, which are nearly Kéhler
f-structures. As a particular case, it follows the corresponding result for
naturally reductive homogeneous k—symmetric spaces [2].

Canonical structures on regular ®¢-spaces. Let G be a connected Lie
group, @ its (analytic) automorphism, G® the subgroup of all fixed points of
®, and G the identity component of G®. Suppose a closed subgroup H of G
satisfies the condition

G*C HcCG®.
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Then G/H is called a homogeneous ®-space [4].

Homogeneous ®-spaces include homogeneous symmetric spaces (®? = id)
and, more general, homogeneous ®-spaces of order k (®* = id) or, in the other
terminology, homogeneous k-symmetric spaces [9].

For any homogeneous ®—space G/H one can define the mapping

S,=D: G/H— G/H, xH — ®(z)H.
It is known [10] that S, is an analytic diffeomorphism of G/H. S, is usually
called a "symmetry"of G/H at the point o = H. It is evident that in view of
homogeneity the "symmetry"S, can be defined at any point p € G/H.

The class of homogeneous ®—spaces is very large and contains even non-
reductive homogeneous spaces. Now we recall the definition of a regular ®&—
space first introduced in [10]. Let G/H be a homogeneous ®-space, g and f
the corresponding Lie algebras for G and H, ¢ = d®. the automorphism of
g. Consider the linear operator A = ¢ — id and the Fitting decomposition
g = go © g1 with respect to A, where go and g; denote 0- and 1-component
of the decomposition respectively. It is clear that h = Ker A, h C go. A
homogeneous ®-space G/H is called a regular ®-space if h = gg.

It was proved in [10] that any homogeneous k-symmetric space is a regular
®-space and any regular ®-space is reductive. More exactly, the Fitting
decomposition

g=hé&m, m=Ag
is a canonical reductive one. Besides, this decomposition is obviously ¢—
invariant. Denote by 6 the restriction of ¢ to m. As usual, we identify m
with the tangent space T,(G/H) at the point o = H.

An invariant affinor structure F' (i.e. a tensor field of type (1,1)) on a
homogeneous regular ®-space G/H is called canonical if its value at the point
o = H is a polynomial in 6 [3]. It follows that any canonical structure is
invariant, in addition, with respect to the "symmetries"{S,} of G/H. Denote
by A() the set of all canonical affinor structures on G/H. It is easy to see
that A(f) is a commutative subalgebra of the algebra A of all invariant affinor
structures on G/H. Moreover, dim A(f) = deg v < dimG/H, where v
is a minimal polynomial of the operator 6. Note that the algebra A(6) for
any symmetric ®-space (®? = id) consists of scalar structures only, i.e. it is
isomorphic to R.

The most remarkable example of canonical structures is the canonical
almost complex structure J = (6 — 62)/+/3 on a homogeneous 3-symmetric
space (see [11], [12] [5] and many others). It turns out that it is not an
exception. In other words, the algebra A(#) contains many affinor structures
of classical types, namely, almost complex structures J (J?> = —1), almost
product structures P (P? = 1), f-structures (f> + f = 0) and some others.
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All the canonical structures of classical types above mentioned on regular ®-
spaces were completely described in [3], [7]. In particular, for homogeneous
k-symmetric spaces, precise computational formulae were indicated. For future
reference we formulate here the result about canonical f-structures only.

Denote by § (respectively, s) the number of all irreducible factors
(respectively, all irreducible quadratic factors) over R of a minimal polynomial
v. A regular ®-space G/H admits a canonical f-structure if and only
if s # 0. In this case A(f) contains [3] 3° — 1 different f-structures.
Suppose s = 5. Then 2° f-structures are almost complex and the remaining
3% — 2% — 1 have non-trivial kernels.

Nearly Kéi&hler f-manifolds. Recall that an f-structure on a
(pseudo)Riemannian manifold (M, g = (-,-)) is called a metric f-structure,
it (fX,)Y)+ (X, fY) =0, XY € X(M) (see [8]). In this case the triple
(M, g, f) is called a metric f-manifold. It is easy to see that the particular
cases def f = 0 and def f = 1 of metric f-structures lead to almost
Hermitian structures and almost contact metric structures respectively.

Let M be a metric f-manifold. Then X(M) = £ & M, where £ =
Im f and M = Ker f are mutually orthogonal distributions, which
are usually called the first and the second fundamental distributions of
the f-structure respectively. Denote by V the Levi-Civita connection of a
(pseudo)Riemannian manifold (M,g), X,Y € X(M). Recall that a metric
f-structure on (M, g) is called a nearly Kdhler f-structure (briefly, NK f-
structure) if Vyx(f)fX = 0 for any smooth vector field X on M [1]. The
class of all NK f-structures is denoted by INKf. Besides, Kill f means the
class of all Killing f-structures, which are defined by the stronger condition
Vx(f)X = 0 [6]. It is important to note that in the case f = J the classes
Kill f and NKIf coincide with the well-known class NK of nearly Kdhler
structures.

Canonical nearly Kéhler f-structures. Let G/H be a regular ®-space.
In accordance with the structure of the minimal polynomial v of the operator
0, we have the following canonical reductive decomposition:

g=hedm=m; @ Z Mgy

a€Espec O

Theorem 1. For this decomposition we have
[ma,mg] C myp + Mgg,

where the subspace myp (Tespectively, mgg) is trivial if af (respectively, @f)
doesn’t belong to spec 0 (over C).
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Using this result and some other facts, we obtain

Theorem 2. Let G/H be a regular ®-space with naturally reductive metric
9, fa the base canonical f-structure (i.e. my, is an image of f,). Suppose «
satisfies any of two conditions:

1) moda=1; 2)aa ¢ spech.
Then f, is a nearly Kéhler f-structure.

As a particular case, it immediately follows the result from [2]:

Corollary 1. Any base canonical f-structure f; on naturally reductive
homogeneous k-symmetric space is a nearly Kdihler f-structure.
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Abstract
We present results on the existence, uniqueness and regularity of
solutions to the modified Camassa-Holm equation (which depends on
the inverse of a second order differential operator) and to the generalized
bosonic string equation (which depends on an exponential of a second
order differential operator).

Camassa-Holm and geometry

The Camassa-Holm equation, [2],
2ua:u:cz+uuwa:$:ut_uza:t"_guxuy (1)

is a bi-hamiltonian equation describing shallow water waves. It possesses
classical solutions that blow-up in finite time for some regular data (i.e., it
admits wave breaking, see [4]) and it also admits traveling wave solutions
which are not always smooth [8].

The Camassa-Holm equation also has a geometric interpretation: it
describes pseudo-spherical surfaces (see [3] and the recent review [12]).
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