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Introduction. Homogeneous Φ-spaces [4] (generalized symmetric spaces
[9]) form a remarkable class of homogeneous manifolds and play an important
role in differential geometry and its applications. The important feature is
that any homogeneous regular Φ-space (G/H,Φ) admits the commutative
algebra A(θ) [3] of canonical affinor structures. This algebra contains classical
structures such as almost complex structures, almost product structures, f–
structures of K. Yano (f3 + f = 0) etc. (see [3], [7]).

It is a classical result [10] that homogeneous k–symmetric spaces are
included into the class of regular Φ-spaces. Besides, it turned out that
canonical f–structures on homogeneous k–symmetric spaces provide large
classes of invariant examples for Hermitian and generalized Hermitian
geometry (see [1], [7], [2] and some others). It should be mentioned that first
results in this direction were obtained for homogeneous 3–symmetric spaces
[12], [5].

Here we present new results for the most general case of arbitrary
Riemannian regular Φ-spaces. More exactly, we indicate the base canonical
f–structures on naturally reductive regular Φ-spaces, which are nearly Kähler
f -structures. As a particular case, it follows the corresponding result for
naturally reductive homogeneous k–symmetric spaces [2].

Canonical structures on regular Φ-spaces. Let G be a connected Lie
group, Φ its (analytic) automorphism, GΦ the subgroup of all fixed points of
Φ, and GΦ

o the identity component of GΦ. Suppose a closed subgroup H of G
satisfies the condition

GΦ
o ⊂ H ⊂ GΦ.
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Then G/H is called a homogeneous Φ-space [4].
Homogeneous Φ-spaces include homogeneous symmetric spaces (Φ2 = id)

and, more general, homogeneous Φ-spaces of order k (Φk = id) or, in the other
terminology, homogeneous k-symmetric spaces [9].

For any homogeneous Φ–space G/H one can define the mapping
So = D : G/H → G/H, xH → Φ(x)H.

It is known [10] that So is an analytic diffeomorphism of G/H. So is usually
called a "symmetry"of G/H at the point o = H. It is evident that in view of
homogeneity the "symmetry"Sp can be defined at any point p ∈ G/H.

The class of homogeneous Φ–spaces is very large and contains even non-
reductive homogeneous spaces. Now we recall the definition of a regular Φ–
space first introduced in [10]. Let G/H be a homogeneous Φ-space, g and h

the corresponding Lie algebras for G and H, ϕ = dΦe the automorphism of
g. Consider the linear operator A = ϕ − id and the Fitting decomposition
g = g0 ⊕ g1 with respect to A, where g0 and g1 denote 0- and 1-component
of the decomposition respectively. It is clear that h = KerA, h ⊂ g0. A
homogeneous Φ-space G/H is called a regular Φ-space if h = g0.

It was proved in [10] that any homogeneous k-symmetric space is a regular
Φ-space and any regular Φ-space is reductive. More exactly, the Fitting
decomposition

g = h⊕m, m = Ag
is a canonical reductive one. Besides, this decomposition is obviously ϕ–
invariant. Denote by θ the restriction of ϕ to m. As usual, we identify m

with the tangent space To(G/H) at the point o = H.
An invariant affinor structure F (i.e. a tensor field of type (1, 1)) on a

homogeneous regular Φ-space G/H is called canonical if its value at the point
o = H is a polynomial in θ [3]. It follows that any canonical structure is
invariant, in addition, with respect to the "symmetries"{Sp} of G/H. Denote
by A(θ) the set of all canonical affinor structures on G/H. It is easy to see
that A(θ) is a commutative subalgebra of the algebra A of all invariant affinor
structures on G/H. Moreover, dimA(θ) = deg ν ≤ dimG/H, where ν
is a minimal polynomial of the operator θ. Note that the algebra A(θ) for
any symmetric Φ-space (Φ2 = id) consists of scalar structures only, i.e. it is
isomorphic to R.

The most remarkable example of canonical structures is the canonical
almost complex structure J = (θ − θ2)/

√
3 on a homogeneous 3-symmetric

space (see [11], [12] [5] and many others). It turns out that it is not an
exception. In other words, the algebra A(θ) contains many affinor structures
of classical types, namely, almost complex structures J (J2 = −1), almost
product structures P (P 2 = 1), f -structures (f3 + f = 0) and some others.
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All the canonical structures of classical types above mentioned on regular Φ-
spaces were completely described in [3], [7]. In particular, for homogeneous
k-symmetric spaces, precise computational formulae were indicated. For future
reference we formulate here the result about canonical f -structures only.

Denote by s̃ (respectively, s) the number of all irreducible factors
(respectively, all irreducible quadratic factors) over R of a minimal polynomial
ν. A regular Φ-space G/H admits a canonical f -structure if and only
if s 6= 0. In this case A(θ) contains [3] 3s − 1 different f -structures.
Suppose s = s̃. Then 2s f -structures are almost complex and the remaining
3s − 2s − 1 have non-trivial kernels.

Nearly Kähler f-manifolds. Recall that an f–structure on a
(pseudo)Riemannian manifold (M, g = 〈·, ·〉) is called a metric f–structure,
if 〈fX, Y 〉 + 〈X, fY 〉 = 0, X,Y ∈ X(M) (see [8]). In this case the triple
(M, g, f) is called a metric f–manifold. It is easy to see that the particular
cases def f = 0 and def f = 1 of metric f–structures lead to almost
Hermitian structures and almost contact metric structures respectively.

Let M be a metric f–manifold. Then X(M) = L ⊕ M, where L =
Im f and M = Ker f are mutually orthogonal distributions, which
are usually called the first and the second fundamental distributions of
the f–structure respectively. Denote by ∇ the Levi-Civita connection of a
(pseudo)Riemannian manifold (M, g), X,Y ∈ X(M). Recall that a metric
f -structure on (M, g) is called a nearly Kähler f -structure (briefly, NKf -
structure) if ∇fX(f)fX = 0 for any smooth vector field X on M [1]. The
class of all NKf -structures is denoted by NKf. Besides, Kill f means the
class of all Killing f -structures, which are defined by the stronger condition
∇X(f)X = 0 [6]. It is important to note that in the case f = J the classes
Kill f and NKf coincide with the well-known class NK of nearly Kähler
structures.

Canonical nearly Kähler f-structures. Let G/H be a regular Φ-space.
In accordance with the structure of the minimal polynomial ν of the operator
θ, we have the following canonical reductive decomposition:

g = h⊕m = m1 ⊕
∑

α∈spec θ

mα.

Theorem 1. For this decomposition we have

[mα,mβ ] ⊂ mαβ +mαβ ,

where the subspace mαβ (respectively, mαβ) is trivial if αβ (respectively, αβ)
doesn’t belong to spec θ (over C).
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Using this result and some other facts, we obtain

Theorem 2. Let G/H be a regular Φ-space with naturally reductive metric
g, fα the base canonical f -structure (i.e. mα is an image of fα). Suppose α
satisfies any of two conditions:

1) mod α = 1; 2) αα /∈ spec θ.
Then fα is a nearly Kähler f -structure.

As a particular case, it immediately follows the result from [2]:

Corollary 1. Any base canonical f -structure fi on naturally reductive
homogeneous k-symmetric space is a nearly Kähler f -structure.
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Abstract

We present results on the existence, uniqueness and regularity of
solutions to the modified Camassa-Holm equation (which depends on
the inverse of a second order differential operator) and to the generalized
bosonic string equation (which depends on an exponential of a second
order differential operator).

Camassa-Holm and geometry

The Camassa-Holm equation, [2],

2ux uxx + uuxxx = ut − uxxt + 3ux u , (1)

is a bi-hamiltonian equation describing shallow water waves. It possesses
classical solutions that blow-up in finite time for some regular data (i.e., it
admits wave breaking, see [4]) and it also admits traveling wave solutions
which are not always smooth [8].

The Camassa-Holm equation also has a geometric interpretation: it
describes pseudo-spherical surfaces (see [3] and the recent review [12]).

1Paper issued with the financial support of Fondo Nacional de Desarrollo Cient́ıfico y
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