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Abstract. We consider two server queueing system with an infinite
buffer. Customers arrive to the system according to the Markovian
Arrival Process. Service time of a customer has a phase-type distribu-
tion. The servers use the same equipment (phases of PH) for customers
processing. So, if service of a customer transits to the phase, at which
another server is currently providing the service, the service of the cus-
tomer is suspended until the phase will become available. Behavior of the
system is described by the multi-dimensional Markov chain. The gener-
ator of this Markov chain is derived. Expressions for computation of the
main performance measures are derived.

Keywords: Markovian arrival process · Phase-type service time
distribution · Interacting service processes

1 Introduction

The simplest queueing models suggest that customer’s service time is exponen-
tially distributed. This allows to avoid the necessity of taking into account the
elapsed service time when the Markovian process describing behavior of the
queue should be constructed. It is quite obvious that in many real world appli-
cations of queueing theory assumption about the exponential distribution does
not hold true and more general distributions of service time have to be consid-
ered. If service time has an arbitrary distribution, it is mandatory to take into
account the elapsed or residual service times, e.g., by introducing supplementary
variables or considering the embedded Markov chains. This may lead to huge
analytical difficulties in analysis of the Markovian process describing dynamics
of the queue, especially when multi-server queue is under study. To avoid such
difficulties, so called phase type (PH) distribution, as natural extension of previ-
ously well-known Erlangian and hyper-exponential distribution, was offered, see,
e.g., [1]. Good property of this distribution is its generality. Generally speaking,
any distribution can be approximated, in sense of a weak convergence, by the
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PH type distribution, see, e.g., [3]. Random time having the PH type distribu-
tion can be interpreted as the sequence of phases duration of each of which has
exponential distribution. The total number of existing phases of service is finite.
However, implementation of the phases during the service of a customer may
be repeated random number of times. So, in concrete realization of the random
time having the PH type distribution the number of phases in a sequence is
random.

Formal definition of PH type distribution is given in the next section. For
purposes of this paper, we slightly rephrase this definition as follows. There is
a virtual network with nodes (phases), say, {1, . . . , M}. Random time having
the PH type distribution with an irreducible representation (β, S) is the time
during which some virtual customer stays in this network conditional on the
fact that this virtual customer starts its staying in the network from the visit
to the state m of the network with probability βm, m = 1,M , then it makes
transitions inside of the set {1, . . . , M} with intensities given by the entries of
the matrix S or leaves the network from any state m with intensity, which is
the mth component of column vector S0 = −Se, where e denotes unit column
vector. In brief, as it was already noted above, random time having the PH
type distribution consists of the random number of virtual phases, duration of
which is exponentially distributed. This allows to replace keeping track of the
continuous elapsed or residual service time by the keeping track of the discrete
current phase of the service what greatly simplifies the analysis.

So, phases of service in definition of PH type distribution may be just the
virtual entities. However, in many real world situations, random time having
PH type distribution may represent the sequence of real phases. E.g., process-
ing time of the query in data base consists of implementation of a sequence of
input/output operations alternating with the use of CPU. Processing of a car
in service station consists of a sequence of technological operations. Security
control in airport includes screening of a luggage and passengers with possible
additional personal individual passenger inspection. If the service is provided by
the single server, no collisions occur. But, if there are several servers operating
in parallel, collisions may occur because the servers use some common resources,
e.g. memory and CPU, tables and indices of data base, different equipment of
a car service station, screening devices and cabins for the personal individual
inspection, etc.

Traditionally in analysis of multi-server queues with PH type service time
distribution, it is assumed that service processes in the servers are independent.
To the best of our knowledge, the systems with interference of phases of service in
different servers are not considered in literature. In this paper, we start research
of such systems from a relatively simple model where there are only two servers,
state spaces of the virtual networks, in terms of which PH type service time
distribution is interpreted, coincide and if some phase of the service by a server
is required while this phase is busy by another server this phase of service is
postponed until it will be released by another server. In some sense, in this model
we somehow unite the problems considered in two different popular branches
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of operations research, queueing theory and scheduling theory, which consider
the similar objects (service systems) but with emphasis to different aspects of
the problem. Scheduling theory addresses the aspect how the required phases
of service should be ordered for different jobs to provide the shortest common
processing time and completely ignores the stochastic aspects (arrival of jobs at
random moments and random duration of implementation of a service at each
phase). Queueing theory accounts these stochastic aspects, but is not focused on
proper ordering the phases of the service.

The mathematical model is described in detail in Sect. 2. Behavior of the
system is described by the multidimensional continuous time Markov chain in
Sect. 3. The infinitesimal generator of this Markov chain as the block structured
matrix is presented here. This Markov chain belongs to the class of continuous-
time asymptotically quasi-Toeplitz Markov chains. Using this fact, it is shown
that, due to impatience of customers, this Markov chain is ergodic for any set
of the system parameters. The problem of computation of the stationary distri-
bution of this Markov chain is touched. In Sect. 4, formulas for computation of
the main performance measures of the system are presented. Section 5 concludes
the paper.

2 Mathematical Model

Queueing system with two servers and a buffer of infinite capacity is considered.
The structure of the system under study is presented in Fig. 1.

buffer

Fig. 1. Queueing system under study

Customers arrive at the system according to the Markovian arrival process
(MAP ). Arrivals in the MAP are directed by an irreducible continuous time
Markov chain νt, t ≥ 0, with the finite state space {0, 1, ...,W}. The sojourn
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time of the Markov chain νt, t ≥ 0, in the state ν has an exponential distribution
with the parameter λν , ν = 0,W . Here, notation such as ν = 0,W means that
ν assumes values from the set {0, 1, ...,W}. After this sojourn time expires, with
probability pk(ν, ν′) the process νt transits to the state ν′ and k customers,
k = 0, 1, arrive at the system. The intensities of transitions from one state
to another, that are accompanied by the arrival of k customers, are combined
to the square matrices Dk, k = 0, 1, of size W + 1. The matrix generating
function of these matrices is D(z) = D0 + D1z, |z| ≤ 1. The matrix D(1) is
an infinitesimal generator of the process νt, t ≥ 0. The stationary distribution
vector θ of this process satisfies the system of equations θD(1) = 0, θe = 1.
Here and throughout this paper, 0 is a zero row vector. In case if the dimension
of a vector is not clear from the context, it is indicated as a lower index.

The average intensity λ (fundamental rate) of the MAP is defined by λ =
θD1e.

The MAP arrival process was introduced as a versatile Markovian point
process (V MPP ) by M.F. Neuts in the 70th. The original development of the
V MPP contained extensive notations; however these notations were greatly
simplified in [4] and ever since this process bears the name Markovian arrival
process. The class of MAP s includes many input flows considered previously,
such as stationary Poisson (M), Erlangian (Ek), hyper-Markovian (HM), phase-
type (PH), Markov modulated Poisson process (MMPP ). Generally speaking,
the MAP is correlated, so it is ideal to model correlated and or bursty traffic in
the modern telecommunication networks, see, e.g., [5–7].

The service time of a customer for the server has a PH (phase-type) distri-
bution with an irreducible representation (β, S). This service time traditionally
is interpreted as the time until the underlying Markov process mt, t ≥ 0, with
a finite state space {1, . . . , M, M + 1} reaches the single absorbing state M + 1
condition on the fact that the initial state of this process is selected among the
states {1, . . . , M} according to the probabilistic row vector β = (β1, . . . , βM ).
The transition rates of the process mt within the set {1, . . . , M} are defined by
the sub-generator S, and the transition rates into the absorbing state (what leads
to service completion) are given by the entries of the column vector S0 = −Se.
The mean service time is calculated as b1 = β(−S)−1e.

But here we assume that the service processes of customers by two servers are
not independent. The state space of the underlying Markov processes for both
the servers is the same. If there is no collision, these processes make transitions
according to definition given above, independently of each other. However if the
service of a customer by the l-th server, l = 1, 2 is at some phase, say, m while
the underlying service process of other customer by l′th, l′ = 1, 2, l′ �= l, server
should transit to this phase m, the l′-th server is stopped and the service is
blocked until the l-th server finishes the mth phase of the service. The servers of
the system are assumed to be identical and are enumerated in arbitrary order.
However, if two servers need the same phase of the service, they are assumed
being enumerated in order of occupation of the phase. Number 1 is appointed
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to the server that currently occupies the phase under the conflict. Number 2 is
appointed to the server that currently waits for releasing this phase.

The customers from the buffer are impatient, i.e., the customer leaves the
buffer and the system after an exponentially distributed waiting time described
by the parameter α, 0 < α < ∞.

3 Process of System States

It is easy to see that the dynamics of the system under study is described by the
following regular irreducible multi-dimensional continuous-time Markov chain

ξt = {it, rt, νt, nt, mt}, t ≥ 0,

where, during the epoch t, t ≥ 0,

• it is the number of customers in the system, it ≥ 0;
• rt is an indicator that indicates whether some server is blocked or not: rt = 0

corresponds to the case when a server isn’t blocked and rt = 1 otherwise;
• νt is the state of the underlying process of the MAP , νt = 0,W ;
• nt is the state of PH service process at the first server, nt = 1,M.
• mt is the state of PH service process at the second server, mt = 1,M, mt �=

nt.

The Markov chain ξt, t ≥ 0, has the following state space:(
{0, 0, ν}

)⋃(
{1, 0, ν, n}, n = 1,M

)⋃
(

{i, 0, ν, n,m}, i ≥ 2, n = 1,M, m = 1,M, m �= n

)⋃
(

{i, 1, ν, n}, i ≥ 2, n = 1,M

)
, ν = 0,W .

For further use throughout this paper, we introduce the following notation:

• I is the identity matrix, and O is a zero matrix of appropriate dimension;
• ⊗ and ⊕ indicate the symbols of Kronecker product and sum of matrices (see

[8]), respectively;
• W̄ = W + 1;
• Il1,l2 , l1, l2 = 1,M, l1 �= l2, is the matrix of size (M − 1) × (M − 1) with all

zero entries except the entries (Il1,l2)k,k, k = 0,M − 2, k �= l2 − 2, in the case
(l1 < l2) and (Il1,l2)k,k, k = 0,M − 2, k �= l2 − 1, in the case (l1 > l2) which
are equal to 1;

• S̃l, l = 1,M, is the square matrix of size M − 1 that is obtained from matrix
S by removing the l − 1-th column and the l-th row;
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• el1,l2 , l1, l2 = 1,M, l1 �= l2, is the column vector of size (M − 1) with all zero
entries except the entry (el1,l2)l2−1 in the case (l1 > l2) and (el1,l2)l2−2, in
the case (l1 < l2) which are equal to 1;

• cl1,l2 , l1, l2 = 1,M, l1 �= l2, is the row vector of size (M − 1) with all zero
entries except the entry (cl1,l2)l1−2 in the case (l1 > l2) and (cl1,l2)l1−1, in the
case (l1 < l2) which are equal to 1;

• βl, l = 1,M, - the row vector that obtained from the vector β by deleting
l − 1-th component;

• al, l = 1,M, is the column vector of size M − 1 that is obtained from the
l − 1-th column of the matrix S by removing the l − 1-th entry;

• I+l , l = 1,M, is the matrix of size (M − 1) × M which obtained from the
identity matrix of size M − 1 by adding the zero column in position l − 1;

• Sl
0, l = 1,M is a column vector of size M − 1 which is obtained from the

vector S0 by removing the l − 1-th component.
• ãl, l = 1,M, is a row vector of size M with all zero components except the

component (ãl)l−1 which is equal to 1;
• Bl, l = 1,M, is the matrix of size (M − 1) × M(M − 1) which obtained from

the matrix diag{β1, . . . ,βM} by deleting the l − 1-th row;
• Cl, l = 1,M, is the matrix of size (M − 1) × M which obtained from the

matrix diag{β1, . . . , βM} by deleting the l − 1-th row;

Let us enumerate the states of the Markov chain ξt, t ≥ 0, in the direct
lexicographic order of the components r, k, ν, ζ, η and refer to the set of the
states of the chain having values (i, r) of the first two components of the Markov
chain as a macro-state (i, r).

Let Q be the generator of the Markov chain ξt, t ≥ 0, consisting of the blocks
Qi,j , which, in turn, consist of the matrices (Qi,j)r,r′ of the transition rates of
this chain from the macro-state (i, r) to the macro-state (j, r′), r, r′ = 0, 1.
The diagonal entries of the matrices Qi,i are negative, and the modulus of the
diagonal entry of the blocks (Qi,i)r,r defines the total intensity of leaving the
corresponding state of the Markov chain ξt, t ≥ 0.

Analysing all transitions of the Markov chain ξt, t ≥ 0, during an interval of
an infinitesimal length and rewriting the intensities of these transitions in the
block matrix form we obtain the following result.

Theorem 1. The infinitesimal generator Q = (Qi,j)i,j≥0 of the Markov chain
ξt, t ≥ 0, has a block-tridiagonal structure:

Q =

⎛
⎜⎜⎜⎝

Q0,0 Q0,1 O O . . .
Q1,0 Q1,1 Q1,2 O . . .
O Q2,1 Q2,2 Q+ . . .
...

...
. . . . . . . . .

⎞
⎟⎟⎟⎠ .

The non-zero blocks Qi,j , i, j ≥ 0, have the following form:

Q0,0 = D0,

Q1,1 = D0 ⊕ S,
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Qi,i =

(
Q

(0,0)
i,i Q

(0,1)
i,i

Q
(1,0)
i,i Q

(1,1)
i,i

)
, i > 1,

Q
(0,0)
i,i = D0⊗IM(M−1)+IW̄ ⊗(S+diag{S̃1, . . . , S̃M})−(i−2)αIW̄M(M−1), i > 1,

S =

⎛
⎜⎜⎜⎝

S1,1IM−1 S1,2I1,2 . . . S1,MI1,M

S2,1I2,1 S2,2IM−1 . . . S2,MI2,M

...
... . . .

...
SM,1IM,1 SM,2IM,2 . . . SM,MIM−1

⎞
⎟⎟⎟⎠ ,

Q
(0,1)
i,i = IW̄ ⊗

(
⎛
⎜⎜⎜⎝

0T S1,2e1,2 . . . S1,Me1,M

S2,1e2,1 0T . . . S2,Me2,M

...
... . . .

...
SM,1eM,1 SM,2eM,2 . . . 0T

⎞
⎟⎟⎟⎠+ diag{a1, . . . , aM}

)
, i > 1,

Q
(1,0)
i,i = IW̄ ⊗

⎛
⎜⎜⎜⎝

0 S1,2c1,2 . . . S1,Mc1,M

S2,1c1,M 0 . . . S2,Mc1,M

...
... . . .

...
SM,1c1,M SM,2c1,M . . . 0

⎞
⎟⎟⎟⎠ ,

Q
(1,1)
i,i = D0 ⊕ diag{S1,1, . . . , SM,M} − (i − 2)αIW̄M , i > 1,

Q0,1 = D1 ⊗ β,

Q1,2 =
(

Q
(0,0)
1,2 Q

(0,1)
1,2

)
,

Q
(0,0)
1,2 = D1 ⊗ diag{β1, . . . ,βM},

Q
(0,1)
1,2 = D1 ⊗ diag{β1, . . . , βM},

Q+ =
(

D1 ⊗ IM(M−1) O
O D1 ⊗ IM

)
,

Q1,0 = IW̄ ⊗ S0, Q2,1 =

(
Q

(0,0)
2,1

Q
(1,0)
2,1

)
, i > 1,

Q
(0,0)
2,1 = IW̄ ⊗

(⎛
⎜⎝

S01I
+
1

...
(S0)MI+M

⎞
⎟⎠ + diag{(S0)l, l = 1,M}

)
,

Q
(1,0)
2,1 = IW̄ ⊗

⎛
⎜⎝

(S0)1ã1
...

(S0)M ãM

⎞
⎟⎠ ,

Qi,i−1 =

(
Q

(0,0)
i,i−1 Q

(0,1)
i,i−1

Q
(1,0)
i,i−1 Q

(1,1)
i,i−1

)
, i > 2,
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Q
(0,0)
i,i−1 = IW̄ ⊗

(⎛
⎜⎝

S01B1

...
(S0)MBM

⎞
⎟⎠+diag{(S0)lβl, l = 1,M}

)
+(i−2)αIW̄M(M−1),

Q
(0,1)
i,i−1 = IW̄ ⊗

(⎛
⎜⎝

(S0)1C1

...
(S0)MCM

⎞
⎟⎠ + diag{Sl

0βl, l = 1,M}
)

,

Q
(1,0)
i,i−1 = IW̄ ⊗ diag{(S0)lβl, l = 1,M},

Q
(1,1)
i,i−1 = IW̄ ⊗ diag{(S0)lβl, l = 1,M} + (i − 2)αIW̄M .

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of continuous-
time asymptotically quasi-Toeplitz Markov chains (AQTMC), for definition and
relevant information see paper [9].

Proof. It can be verified that the limits Y0, Y1 and Y2

Y0 = lim
i→∞

R−1
i Qi,i−1, Y1 = lim

i→∞
R−1

i Qi,i + I, Y2 = lim
i→∞

R−1
i Qi,i+1

exist and the matrix Y0 +Y1 +Y2 is stochastic where the matrix Ri is a diagonal
matrix with the diagonal entries which are defined as the moduli of the corre-
sponding diagonal entries of the matrix Qi,i, i ≥ 0. According to the definition
given in [9] this means that the Markov chain ξt, t ≥ 0, belongs to the class of
AQTMC.

Let us analyze the properties of this Markov chain. This analysis includes
derivation of conditions which should be imposed on the system parameters
to guarantee existence of the stationary distribution of the states of the chain
(ergodicity condition) and a procedure for computation of the stationary prob-
abilities of the states.

As follows from [9], a sufficient condition for the existence of a stationary
distribution of AQTMC ξt, t ≥ 0, is expressed in terms of the matrices Y0, Y1

and Y2 defined above. This sufficient condition of ergodicity of Markov chain
ξt, t ≥ 0, is fulfillment of inequality

yY0e > yY2e (1)

where the vector y is the unique solution to the system

y(Y0 + Y1 + Y2) = y, ye = 1.

It is easy to verify that for the considered Markov chain the matrices Y0, Y1

and Y2 have the following form:

Y0 = I, Y1 = O, Y2 = O.

It is easy to see that here the ergodicity condition (1) is transformed to
inequality 1 > 0 which is true for all possible values of the system parameters.
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Thus, the following limits (stationary probabilities) exist for any set of the
system parameters:

π(i, r, ν, n,m) = lim
t→∞ P{it = i, rt = r, νt = ν, nt = n,mt = m},

i ≥ 0, r = 0, 1, ν = 0,W , n = 1,M, m = 1,M.

Then let us form the row vectors πi of the stationary probabilities as follows:

π0 = (π(0, 0, 0), π(0, 0, 1), . . . , π(0, 0,W )),

π1 = (π(1, 0, 0),π(1, 0, 1), . . . ,π(1, 0,W )),

where

π(1, 0, ν) = (π(1, 0, ν, 1), π(1, 0, ν, 2), . . . , π(1, 0, ν,M)), ν = 0,W .

πi = (π(i, 0),π(i, 1)), i ≥ 2,

where

π(i, r) = (π(i, r, 0),π(i, r, 1), . . . ,π(i, r,W )), r = 0, 1, i ≥ 2,

π(i, 0, ν) = (π(i, 0, ν, 1),π(i, 0, ν, 2), . . . ,π(i, 0, ν,M)), ν = 0,W ,

π(i, 0, ν, n) = (π(i, 0, ν, n, 1), π(i, 0, ν, n, 2), . . . , π(i, 0, ν, n,M)), n = 1,M,

π(i, 1, ν) = (π(i, 1, ν, 1), π(i, 1, ν, 2), . . . , π(i, 1, ν,M)), ν = 0,W .

It is well known that the probability vectors πi, i ≥ 0, satisfy the following
system of linear algebraic equations:

(π0,π1, . . . )Q = 0, (π0,π1, . . . )e = 1. (2)

To solve system (2), we use the numerically stable algorithm for computation
of the probability vectors πi, i ≥ 0, developed in [10] which effectively uses
information about the asymptotic behavior of the Markov chain ξt, t ≥ 0, and
the sparse structure of the generator Q.

4 Performance Measures

The average number Nbuffer of customers in the buffer is computed by

Nbuffer =
∞∑

i=3

(i − 2)πie.

The average number Nbusy of busy servers at an arbitrary moment is com-
puted by

Nbusy =
∞∑

i=1

min{i, 2}πie.
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The probability Pblocked that a server is blocked at an arbitrary moment is
computed by

Pblocked =
∞∑

i=2

π(i, 1)e.

The probability Ploss that an arbitrary customer will be lost (due to impa-
tience) is computed by

Ploss =
αNbuffer

λ
.

The average intensity λout of flow of customers who receive service is com-
puted by

λout = λ(1 − Ploss).

5 Conclusion

Two server queueing model with an infinite buffer and Markovian arrival process
is analysed. Service times by two servers have phase type distribution with coin-
ciding state spaces of underlying Markov chains. The phases of service times at
two servers are implemented independently if the underlying Markov chains of
services currently have different states (phases). If the required phases of ser-
vice coincide, service by one of the servers is postponed until the phase will be
released by the competitive server. Generator of multi-dimensional Markov chain
describing behavior of the system is written down. Formulas for computation of
the key performance measure of the system in terms of stationary probabilities
of the Markov chain are presented. It is planned to extend the results to the
cases when the number of servers is more than two, when the state spaces of
underlying processes of service coincide partially, when the vectors and subgen-
erators defining irreducible representations of service times may we selected in
such a way as to minimize possibility of conflicts, when the number of active
servers can be dynamically changed, etc.
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