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Abstract Particles passing through a crystal under planar
channeling are captured by a continuous potential and expe-
rience transverse oscillations in their motion. As channeled
particles approach the atomic planes, they are likely to be
dechanneled. This effect is being used in ion-beam analy-
sis with MeV energy. We study this effect in a bent crystal
for positive and negative particles within a wide range of
energies in sight of application of such crystals at accelera-
tors. We look for the conditions for the observation or not of
channeling oscillations in the deflection angle distribution in
experiments where the beam passes through the bent crystal.
Indeed a new kind of oscillations in the deflection angle distri-
bution, strictly related to the motion of over-barrier particles,
i.e. quasichanneled particles, is predicted. Such oscillations,
named planar quasichanneling oscillations, possess a differ-
ent nature than channeling oscillations. Through computer
simulation, we study this effect and provided a theoretical
interpretation for them. We show that channeling oscillations
can be observed only for positive particles while quasichan-
neling oscillations can exist for particles with either sign.
The conditions for experimental observation of channeling
and quasichanneling oscillations at existing accelerators with
available crystal are found and optimized.

1 Introduction

Channeling is a coherent effect of penetration of charged
particles in a crystal almost parallel to its axes or planes.
Charged particles under channeling conditions move in the
electric field of atoms, which builds up the averaged trans-
verse interplanar potential and electric field. This concept,
called the continuum potential, was proposed by Lindhard
[1], who developed the theory of the channeling effect. In
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the following we consider only motion along crystal planes
called planar channeling.

The interplanar electric field induces harmonic-like trans-
verse oscillations. These oscillations are called planar chan-
neling oscillations, which correspond to an under-barrier
motion along the crystal planes. The planar oscillation length
can be estimated using harmonic approximation:

λ = πd0

√
pv

2U0
, (1)

where d0 is the interplanar distance, p and v the particle
momentum and velocity respectively, U0 the potential well
height for a straight crystal.

For positive particles, the oscillation length is nearly the
same for most of particles with the same energy and differ-
ent amplitudes of channeling oscillations. This gives rise to
phase correlation of different trajectories. Depending on the
difference in the oscillation lengths, such correlation can be
conserved for several or, at certain conditions, even several
tens of oscillations.

Phase correlation has already been used in two circum-
stances. The first one is the so-called mirroring [2,3], i.e., the
charged particle reflection from crystal planes in a straight
crystal of the length of a half channeling oscillation. The
effect of mirroring of 400 GeV/c protons, recently observed
at the CERN SPS [3], can be applied to particle deflection at
future accelerators. It is also possible to observe the oscilla-
tions of over-barrier particles in the same thin crystal because
the crystal planes are capable to deflect over-barrier particles.
This was visualized as oscillations in a 2D simulated parti-
cle distribution on deflection and incidence angles [3]. The
second can be realized in making a narrow plane cut per-
pendicularly to the crystal planes, resulting in an increase in
channeling efficiency up to 99 % [4,5]. The idea consists in
focusing the particles in the cut to the centers of interplanar
channels and their consequent recapture under channeling
mode, far away from the crystal planes.
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The phase correlation of different trajectories is the main
condition for the observation of planar channeling oscilla-
tions in the angular distribution of particles passed through
the crystal. If different trajectories are well correlated in their
oscillations, they will synchronously approach the crystal
planes. The probability of either Coulomb or nuclear inter-
action causing an escape from the channeling mode, so-called
dechanneling, is the highest as the particle becomes closer to
the planes. Therefore, the distribution of penetration depth
of particles in a crystal under channeling mode will possess
a periodic-like structure of peaks and deeps. The distance
between them will be proportional to the channeling oscilla-
tion length.

Planar channeling oscillations at low energies in backscat-
tering were predicted by Barrett [6,7] in simulations. Later
they were observed in several experiments [8–14] with ion
beams of the energy of the order of MeV and well described
in [15,16].

Channeling in a bent crystal, as proposed by Tsyganov
[17], allowed the deflection of a charged particle beam of the
energy from hundreds of MeV up to tens of TeV in many
experiments [18–25]. However, the effects discussed in this
paper, connected with particle trajectories correlations, have
been never observed in the deflection angular distribution in
this energy range.

An example at high energies is planar channeling oscil-
lations in crystal transformed to dechanneling peaks in the
deflection angle distribution of the beam passed through the
crystal [26], as shown in Fig. 1. This method is applicable
only for a bent crystal, allowing to obtain the angular unfold-
ing of the dechanneling process. As we will show below, this
possibility can be realized only for positive particles.

The aim of this paper is the prediction of another kind of
oscillations in the angular distribution of the particles after
interaction with a bent crystal (Fig. 1). Differently from pla-
nar channeling oscillations, this effect regards the motion of
over-barrier particles at sufficiently small angles w.r.t. the
crystal planes. In analogy to the quasi-channeling motion in

Fig. 1 Sketch of the angular particle distribution of particles passed
through a bent crystal

[27–29], such kind of oscillations will be hereafter named
“planar quasichanneling oscillations in the deflection angle
distribution”. We predict the observation of the quasichan-
neling oscillations for both positive and negative particles.
The deflection peak angles are described by the same rela-
tion independently of particle charge and energy. We argue
that the quasichanneling peak structure is solely determined
by the crystal geometry and lattice. We provide simulation
results for different energies for different particles of both
charge signs interacting with different crystal planes and
dimensions and provide theoretical interpretation and com-
parison with our simulations. We also compare the simulated
pictures of channeling and quasichanneling oscillations as
well as observe their combination for positive particles. For
both cases, we propose an experimental setup as well as an
energy scaling of the setup. We finally provide the optimal
experimental conditions for both kinds of oscillations for
either channeling or volume-reflection orientations.

2 General background

2.1 Channeling in crystals

As mentioned above, channeling is determined as the effect of
penetration of charged particles in a crystal almost parallel to
its axes or planes. It is possible to use the continuous approx-
imation of the potential and electric field because of small
particle incidence angles w.r.t. to the crystal planes or axes
and large longitudinal velocities. In the case of planar chan-
neling, particles will accomplish an oscillatory transverse
under-barrier motion (the planar channeling oscillations) in
the transverse interplanar potentialU (x). This latter is shown
in Fig. 2 under Molière approximation [15,29–31] for both
(110) and (111) planes of a straight silicon crystal. This well
is for positive particles. For the negative ones it should be
taken with opposite sign −U (x), which inverts the picture.
The main condition for channeling is the initial angle of a par-
ticle θin to be less than the critical angle called the Lindhard
angle [1]:

θL =
√

2U0

pv
. (2)

Effective bent crystal potential is introduced in the co-
rotating reference system and contains a centrifugal term:

Uef f (x) = U (x) + pvx/R, (3)

where R is the transverse bending radius of the crystal. This
radius should exceed the critical value Rcr

R

Rcr
= R

U ′
max

pv
> 1, (4)
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Fig. 2 Interplanar potential well in a straight silicon crystal for (110)
(top) and (111) (bottom) planes for positive particles. The crystal planes
precisely coincide with the maxima of the potential for (110) or are close
to for (111)

whereU ′
max is the maximal electric field in a straight channel.

Otherwise the centrifugal force will exceed the electric one
and channeling will not occur any longer.

Channeled particles may escape the channeling mode due
to scattering on nuclei and electrons. This is the so-called
dechanneling effect. The probability of scattering depends
on the nuclear and electron densities, which are evidently
higher near the crystal planes [32,33]. For this reason, the
particles with higher amplitudes of the channeling oscilla-
tions are likely to dechannel more frequently than those with
smaller amplitude.

2.2 Channeling oscillations

An example of dechanneling peaks, corresponding to the pla-
nar channeling oscillations in the angular distribution of par-
ticles passed through the crystal, is shown in Fig. 3 for (110)
planes. This result was obtained by our simulations described
in the next section.

The origin of the dechanneling peaks consists in a
high-phase correlation of trajectories of different particles,
dechanneling close to the atomic planes where the nuclear

Fig. 3 Angular distribution of the 7 TeV proton beam after interaction
with the silicon crystal at the channeling orientation. The simulation
layout is: r.m.s. beam angular divergence θin = 0.5 µrad, crystal length
lcr = 2 mm, bending angle θb = 20 µrad, (110) planes

density is high. Note that the number of dechanneling peaks
corresponds to the number of particle approaches to a crys-
tal plane where the probability of scattering is high. In other
words, the dechanneling peak number in Fig. 3 is equal to the
number of channeling half oscillations. In particular, parti-
cles entering the crystal near the left (right) side of a channel,
bent to the right, are dechanneled after even (odd) number of
half oscillations.

It is important to underline that dechanneling effect
implies two stages: exceeding of the critical value of the
transverse energy and consequent escape from the channel.
However, when speaking about the dechanneling point and
probability of dechanneling, like in the previous paragraph,
we mean scattering of a particle leading to the transverse
energy rise, i.e. the first stage of dechanneling. Consequently,
if such particle is deflected toward the center of the channel
it will pass another oscillation length before the escape.

The channeling oscillation length can be evaluated directly
by integration of the equation of motion. Examples of the
dependence of this length on the coordinate of the left turning
point of the trajectory are shown in Fig. 4. The corresponding
potential wells are also drown in Fig. 4. These plots repre-
sent some cases considered in the next section. Note that the
particles dechannel with high probability only near the lower
potential maximum, to which the particles approach closer
as shown in Fig. 4.

Let us determine the dechanneling zone as an energy range
limited by the potential energy values in the following points.
The first point is the left potential maximum of a channel bent
to the right. The other one is to the right from this maximum
at the distance of one amplitude of atomic thermal vibrations
(0.075 Å for Si at room temperature [15]) from the nearest
crystal plane (see Fig. 4). In the space of transverse coor-
dinates the dechanneling zone covers the extreme points of
particle trajectories with transverse energies in the interval
defined above.
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Fig. 4 The channeling oscillation length versus the left turning point
of the trajectory (left column) and the corresponding potential wells
(right column) in a bent crystals: a, d 7 TeV protons, lcr = 2 mm,
θb = 20µrad, (110) planes; b, e 20.35 GeV positrons, lcr = 0.11
mm, θb = 1600µrad, (110) planes; c, f 7 TeV protons, lcr = 2 mm,

θb = 20µrad, (111) planes. Larger channeling oscillation length cor-
responds to the wider potential well. Horizontal lines correspond to
the channeling length estimation by (1). The left point placed at x = 0
indicates the coordinate of the crystal plane

It is shown in Fig. 4 that indeed the channeling oscillation
length varies rather weakly in the dechanneling zone and Eq.
(1) can be applied. Consequently there is a phase correlation
of different trajectories for positive particles in the dechan-
neling zone. Thus, such particles dechannel almost at the
same depths modulo λ/2.

The decrease of the ratio of the crystal bending radius
to its critical value R/Rcr reduces the phase correlation of
the trajectories, resulting in deterioration of the structure of

dechanneling peaks as will be shown below. The length esti-
mated by Eq. 1 becomes a bit overestimated at small radii
of curvature (see Fig. 4b). This results in a higher number of
dechanneling peaks.

The channeling oscillation length in Fig. 4 is proportional
to

√
pv [like in the formula (1)] for fixed form of the potential

well and fixed value of the transverse energy. Thereby, phase
correlation should take place at different lengths for different
energies of positive particles.
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Fig. 5 Channeling oscillation length for 20.35 GeV electrons, lcr =
0.11 mm, θb = 1600µrad, (110) planes

For the negative particles, the interplanar potential U (x)
becomes inverted, resulting in the atomic plane being in the
channel center. Thus, the dechanneling zone includes all the
amplitudes of oscillations. Depending on the amplitude, the
channeling oscillation length can differ several times as is
shown in Fig. 5. In addition, electrons cross crystal planes
in the middle of the channel when their angle θ is maximal
in magnitude [33]. Positrons, on the opposite, approach the
planes at the minimal angle values. Consequently the trans-
verse energy change �ε⊥ for electrons is proportional to the
scattering angle �θ while for positrons to its square �θ2

[33]:

�ε⊥ = pvθ�θ + pv
�θ2

2
→ pvθ�θ, if θ → θmax ;

pv �θ2

2 , if θ → 0.
(5)

Thereby, the amplitude of electron oscillations due to scat-
tering changes more for electrons than for positrons. Thus,
any phase correlation will quickly disappear and the planar
channeling oscillations for electrons will not be observable
in the angular distribution.

It is also important to explain why the pattern of peaks is
a sequence of a high peak followed by a lower one (see Fig.
3). This is explained by an asymmetry of the potential well
displayed in Fig. 4. In particular, in the space of transverse
coordinates the dechanneling zone close to the left side of
the potential is wider than the zone near the opposite reflec-
tion point. Indeed, if one takes the dechanneling zone width
to be equal to the thermal vibration amplitude [0.075 Å for
(110) silicon crystal planes], one obtains the corresponding
potential energy difference �U ∼ 2 eV. Its value as well as
the dechanneling zone width does not considerably change
for different crystal bending and beam energies. In contrast,
the width of the zone near the reflection point xre f (see Fig.
4) strongly depends on the crystal bending:

�x ≈ �U/U ′
e f f (xre f ). (6)

Through the use of the numerical parameters of the potential
in Fig. 4d, one obtains �x = 0.042 Å, which is almost two
times less than the thermal vibration amplitude. This ratio
explains the alternation of high and low peaks.

Planar channeling oscillations can also be observed for
(111) crystal planes. The main contribution here is due to
the wider channel because the dechanneling zone introduced
above is considerably narrower for the small channel as is
shown in Fig. 4f. This is because a potential maximum and
a crystal plane do not coincide due to both the centrifugal
force influence and non-equidistance of (111) crystal planes.
Therefore, the distance between the potential maximum and
the nearest crystal plane is less at the left side of the small
channel than of the large one. The channeling oscillation
length varies strongly in the case of the small channel, caus-
ing smearing of phase correlations. The oscillation length
value is also smaller for the small channel than for the larger
one. This causes reduction of the distance between the peaks,
resulting in complicated detection. Thereby, only the planar
channeling oscillations in the wider channels will be practi-
cally observable.

The appearance of dechanneling peaks is also possible for
volume-captured particles when the orientation of volume
reflection [28] is set up. In this case, the lower peaks will
completely disappear because volume capture occurs only
near the left potential maximum (see Fig. 4). For this reason,
the spacing between the peaks corresponds to one channeling
oscillation length for the volume reflection orientation.

The dechanneling peaks may be observed if the inter-peak
angular distance �ϕch exceeds the doubled incoherent scat-
tering angle θsc [26]:

�ϕch

2θsc
= λθb

4lcr

pv
√

Xr
lcr

13.6 MeV
(

1 + 0.038 ln
(
lcr
Xr

)) > 1, (7)

where lcr and θb are the crystal length and bending angle,
respectively, Xr is the radiation length equal to 9.36 cm for
silicon. The Coulomb scattering angle was estimated accord-
ing to [34]. For the volume reflection orientation this condi-
tion will be twice softer because half of the peaks will not
appear as mentioned above. Thus, volume-reflection orienta-
tion provides a still better conditions than that for channeling.

Another important condition is the crystal bending radius
R to be larger than the critical one, Rcr [29]:

R

Rcr
> 1. (8)

As mentioned above, this is the condition for the channeling
to occur in a bent crystal [17,29].

The third important condition is the angular divergence
of the incident beam should not be greater than half of the
critical channeling angle θL .
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θin r.m.s. < θL/2. (9)

Indeed, the angular divergence, approaching the critical
angle, results in a considerable oscillation phase shift. Such
trajectories are, of course, uncorrelated. This concerns both
channeling and volume reflection orientations.

Some sort of scaling of the channeling oscillation picture
with energy can readily be introduced. Such a scaling can be
assured by the conservation of both the peak number:

n peaks = 2lcr
λ

= Const; (10)

and of the ratio of the inter-peak interval to the Coulomb
scattering angle:

�ϕch

2θsc
= Const. (11)

By substituting Eqs. (1) into (10) one obtains:

lcr ∼ √
pv. (12)

Substituting further Eqs. (7) into (11), using (12) and neglect-
ing the logarithmic factor one obtains that:

θb ∼ 1/(pv)3/4. (13)

Finally the bending radius scaling can be simply obtained
from Eqs. (12) and (13):

R ∼ (pv)5/4. (14)

2.3 Quasichanneling oscillations

Planar channeling oscillations in backscattering experiments
at low energy were observed [8–14] while they have not been
observed yet at higher energy. However, there is another kind
of oscillations, which we predict in this paper that has not
still observed under neither regimes. This kind of oscillations
manifests itself as the peaks in the angular distribution which
are close to the channeling peak (Fig. 3). Hereafter, such new
kind of oscillations will be called planar quasichanneling
oscillations in the deflection angle distribution.

Such oscillations have a different nature than planar chan-
neling oscillations because the distance between them is
smaller than the lowest possible half channeling length. In
addition, the location of the peaks is almost the same for par-
ticles with different charge signs. As we will show below,
this indicates the involvement of over-barrier particles.

A qualitative explanation can be obtained from the anal-
ysis of the over-barrier trajectories, shown in Fig. 6, high-
lighting the dependence of the particle deflection angles in
the laboratory reference system on z:

θXde f l = z

R
−

√
2(ε⊥ −Uef f (x(z, ε⊥)))

pv
, (15)

where ε⊥ is the initial transverse particle energy, x and z the
particle transverse and longitudinal coordinates respectively.
At z = lcr , the first term in Eq. (15) becomes z/R = θb and
θXde f l is the observed particle deflection angle as in Fig. 3.

Let us consider the ideal trajectories without any inco-
herent scattering or energy losses. Also, only dechanneled
particles are considered because usually most of the parti-
cles initially not captured under channeling state will not
achieve the angles close to the channeling direction. Let us
also fix the starting point of the over-barrier trajectories in a
point above the potential barrier, neighboring the dechannel-
ing point (in Fig. 6 the point is indicated as x = 0). We vary
randomly only the longitudinal starting coordinate. Figure
6 demonstrates that the trajectories tend to group together
at certain phases into parallel lines separated by one over-
barrier oscillation. Such concentration will generate a new
series of peaks in the angular distribution at the crystal exit.

All the lines formed are parallel to the line representing
the angle of bending of a crystal plane:

θXde f l = z/R. (16)

The main reason for their appearance, is correlation of dif-
ferent over-barrier trajectories even in the first potential well
(see Fig. 6). These trajectories have almost the same oscilla-
tion lengths with the only exception of a small region near the
closest barrier to the point of dechanneling. Let us define the
n-th oscillation length λn of an over-barrier particle as a lon-
gitudinal distance passed by this particle traveling between
two neighboring potential barriers n and n + 1, the first of
which Uef f (0) is the closest to the value of the transverse
energy ε⊥ and Uef f (0) < ε⊥. Therefore, all the over-barrier
trajectories differ only by a starting longitudinal coordinate
which varies along a bent crystal plane parallel to the line
(16) according to Eq. (15).

The oscillation length of different trajectories is almost
the same by the reason that the main contribution to the
quasichanneling peaks is due to dechanneling process. The
transverse energy change �ε⊥ (Eq. 5) is mainly due to soft
Coulomb scattering and, therefore, ε⊥ can exceed the closest
potential barrier at most by several eV. The relative change
of the n-th over-barrier oscillation length can be calculated
by formula:

�λn

λn
= �ε⊥

2

∫ nd0
(n−1)d0

dx
(ε⊥−Uef f (x))3/2∫ nd0

(n−1)d0

dx√
ε⊥−Uef f (x)

. (17)

As a rule, this ratio does not exceed ∼10 % for dechanneled
particles. However, this also applies to the particles, initially
not captured under the channeling mode but achieved the
deflection angle close to the channeling direction. Thereby,
they must provide the peaks of quasichanneling oscillations
to the same locations as the dechanneled ones.
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Fig. 6 The effective potential Uef f (top) and the ideal over-barrier
trajectories (middle and bottom) [angle (15) versus longitudinal coor-
dinate] of 20.35 GeV electrons (left column) and for positrons (right
column) without scattering. The transverse starting point of trajectories
is fixed at x = 0, the longitudinal one varies randomly. The transverse

energy varies in the range of several eV above the potential barrier at
x = 0. The crystal parameters are: lcr = 60µrad, θb = 400µrad, (110)
planes. The longitudinal coordinates in bottom figures are close to the
crystal end

The location of parallel lines can be found by the condi-
tion that the tangent lines dθXde f l/dz to the trajectories are
parallel to the line (16). This condition transforms to:

dUef f

dx
= 0, (18)

which implies the locations of local minima and maxima of
the potential Uef f (see Fig. 6). Therefore, the trajectories
group between the minima and maxima as shown in Fig. 6
because dθXde f l/dz � z/R.

The same concept can be explained in a different way if
one builds a particle trajectory in the co-rotating reference
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All the conditions are the same as in Fig. 6

system starting in the point of the first crossing potential
barrier zb after dechanneling represented by:

θX = −
√

2(ε⊥ −Uef f (x(z − zb, ε⊥)))

pv
. (19)

An example of such trajectories is shown in Fig. 7. These
trajectories have a series of oscillations becoming shorter
and shorter and tending to the line (z − zb)/R. The oscilla-
tions correspond to accelerating ( dθX

dz < 0) and decelerating

phases ( dθX
dz > 0). The decelerating phases are indicated by

red strips in Fig. 6).
The particle angular distribution at this crystal exit (like

in Fig. 3) is given by:

dN

dθX
= dN

dz

∑
i

1

|dθX/dz|i , (20)

where the summation bears on the roots zi of the Eq. (19) at
the crystal exit. It has asymmetric peaks at dθX

dz = 0 corre-
sponding to extrema ofUef f . Indeed, when a particle crosses
one extremum, it keeps nearly the same angle θX for a long
distance. By application of the potential valuesUef f for min-
ima and maxima and using Eq. (15), one obtains the equations
of two parallel lines which are the boundaries of trajectory
concentrations:

θ ′
Xde f ln = z/R −

√
2V0n

pv
;

θ ′′
Xde f ln = z/R −

√
2(V0n + �V )

pv
,

(21)

for the potential maxima and minima respectively. �V is the
potential energy difference between the neighboring local
maximum and minimum while V0 is the difference between
two neighboring maxima of the potential [29]:

V0 = pvd0/R. (22)

By substituting Eqs. (22) in (23) and taking into account
z = lcr at the crystal exit one finally obtains the location of the
bounds containing the peaks of quasichanneling oscillations
in the deflection angle distribution:

θ ′
Xde f ln = θb −

√
2d0n

R
;

θ ′′
Xde f ln = θb −

√
2d0n

R
+ 2�V

pv
,

(23)

Negative particles tend to be closer to the first angle while the
positive to the second one, where the derivative dθXde f l/dz
is smoother.

However, under influence of scattering the peaks can be
blurred and overlapped because of close values of particle
deflection angles in the interval [θ ′

Xde f ln , θ ′′
Xde f ln]. Gen-

erally such pair of peaks will form a “combined” peak,
located between them. As it will be shown in our simulations,
the intervals (23) can also overlap depending on R, when
�V > V0, which approximately corresponds to R > 7Rcr .
Therefore, the peaks can be formed at the intersection of
these zones.

The angular difference between such neighboring peaks
�ϕqch can be found from these equations as:

�ϕqch =
√

2d0

R
+ (θb − θXde f l)2 − (θb − θXde f l). (24)

Both of Eq. (23) give the same result (24). Thus, having the
position of one peak of quasichanneling oscillations located
between boundaries (23), one can use the formula (24) to
obtain the next one on the left side from the previous (see
Fig. 3). For large n, the Eq. (24) reduces into:

�ϕqch ≈ d0

R(θb − θXde f l)
. (25)
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It is important to stress that such formula does not depend on
the particle energy but only on crystal characteristics, such
as interplanar distance and bending radius.

Being an over-barrier effect, quasichanneling oscillations
can be experimentally observed for any angular divergence
less, of course, than the crystal bending angle. The main con-
straint here is the limited statistics of the over-barrier particles
in the angular distribution, which depends in turn on chan-
neling efficiency. Therefore, short crystals are preferred to
provide the highest efficiency.

In order to find the extremal conditions where the observa-
tion of quasichanneling oscillations is still possible, one can
estimate only the first oscillation forming the closest peak to
the channeling one. For the initial angle θXde f l in (25) one
should take the left boundary of the channeling peak to be
θb − θL . In this case one obtains the highest possible angular
difference between the channeling peak and the peak of a
quasichanneling oscillation:

�ϕqch

2θsc2
= d0

2RθL

pv
√

Xr
λ1

13.6MeV
(

1 + 0.038 ln
(

λ1
Xr

)) > 1. (26)

λ1 can be roughly estimated to be equal to half of the chan-
neling oscillation length (1), i.e. λ1 ∼ λ/2, in contrast to (7)
representing the remaining particle distance in a crystal after
dechanneling.

In order to observe quasichanneling oscillations, one
should also satisfy the condition of the bending radius to
be larger than the critical one (8).

Since Eq. (26) for quasichanneling oscillations depends on
energy like Eq. (13) for channeling oscillations, they scale
on energy in the same way.

The ratio of maximal interpeak distance of quasichannel-
ing oscillations to that of channeling oscillations can be esti-
mated by using (1), (7), (9) and (26), resulting in:

�ϕqch

�ϕch
<

2

π
. (27)

For volume reflection, the analogous ratio will be two times
lower. Thus, the width between the peaks for channeling
oscillations is considerably higher than for the quasichan-
neling ones. However, the different role of multiple scatter-
ing [compare (7) and (26)] and angular divergence makes
the conditions for observation of quasichanneling generally
more preferable.

3 Simulation results

For a deeper understanding of both channeling and qua-
sichanneling oscillations we performed a numerical simu-
lation.

The program CRYSTAL [26,35] was applied for simula-
tions. This program was validated in particular in the simula-
tion of single-pass experiments at CERN SPS [36], in which
a good agreement of experimental and simulation results
was achieved [26]. The model implemented in this program
[4,32,33,37] was also successfully applied to the explanation
of different experiments on channeling radiation [24,25,37].
The effect of multiple volume reflection in a single-piece bent
crystal was also predicted in the frame of this model [38–40]
and demonstrated in several experiments [41–43]. The code
is based on charged particles trajectory Monte Carlo sim-
ulation in a continuum potential of crystal planes or axes.
Besides, Coulomb single- and multiple-scattering on either
nuclei or electrons is simulated. In addition, the simulation
of nuclear scattering is implemented. It is important to stress
that realistic trajectory simulation “from the first principles”
without any simplifications and approximations is essential
for dechanneling, rechanneling and volume-capture effects.
In fact, only realistic simulation allows one to predict the new
effects, in particular those, described in this paper.

The simulations were performed for a single passage of
charged particles through the crystal. The typical statistics
was 106 particles. The angular divergence of the initial beam
was set to be less than θL/4. The bent crystal parameters were
chosen to fulfil the conditions (7–8, 26) for clear observation
of both channeling and quasichanneling oscillations.

The simulation of the distributions of the particle angles
after interaction of particles with the crystal is shown in Figs.
8 and 9 for channeling and in Fig. 10 for volume reflec-
tion orientations. The energy in the simulation was chosen
in correspondence to the beam energy in currently operating
accelerators.

Both channeling and quasichanneling oscillations are
observable. Moreover, they are in a good agreement with
the estimations obtained above. In particular, the simulated
interpeak distance for channeling oscillations is consistent
with the estimation of channeling oscillation length (1). The
highest deviation is for 20.35 GeV because in that case the
bending radius is close to the critical radius. The correla-
tions quickly disappear also because of rather small bend-
ing radius. As mentioned above for volume reflection, the
interpeak distance corresponds to one oscillation length, in
contrast to channeling for which interpeak distance is half
of one oscillation length. As expected, the planar channeling
oscillations are not observed for negative particles.

Simulated quasichanneling oscillations agree with formu-
lae (23–24) for both signs of particles even for the first oscil-
lation, i.e., the closest one to the channeling peak. Vertical
lines calculated by (23) define the location of peaks for qua-
sichanneling oscillations and their agreement with the simu-
lations. It is important to underline that for the case of 7 TeV
the quasichanneling oscillations are revealed not in the zones
predicted by Eq. (23) but at intersections of such zones.
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Fig. 8 The angular distributions of particles after interaction with the
silicon crystal at the channeling orientation. Vertical lines indicate the
zone of quasichanneling oscillations manifestation calculated by Eq.
(23). The simulation layouts were as follows: a LHC, 7 TeV pro-
tons, r.m.s. beam angular divergence θin = 0.5µrad, lcr = 2 mm,
θb = 20µrad, (110) planes; b SPS, 150 GeV positrons and electrons,

θin = 3.5µrad, lcr = 0.29 mm, θb = 357µrad, (110) planes; c the
same as the previous except the angular divergence θin = 10.5µrad; d
SPS, 400 GeV protons, θin = 2µrad, lcr = 0.48 mm, θb = 170µrad,
(110) planes; e SLAC, 20.35 GeV positrons, θin = 10µrad, lcr = 0.11
mm, θb = 1600µrad, (110) planes; f the same as (b) for (111) planes

It is important to emphasize that the angular differ-
ence (24–25) is on the left of the peak located at θXde f l .
The angular distance between the peaks decreases w.r.t.
the angle measured from the channeling peak. In addition,
the particles in next peaks undergo more oscillations and
travel longer under over-barrier state, resulting in increased
scattering angle. Because of this, only the peaks of qua-
sichanneling oscillations near the channeling bump can be

observed. Qualitatively, this is the manifestation of condition
(26).

One can notice in Figs. 8, 9 and 10 the asymmetric peaks
due to the particles that remain channeled at the crystal exit. It
is explained by the particles with large amplitudes in channel-
ing oscillations, keeping the same angles for a long distance
near the potential bottom or top. For a straight crystal this
effect could also be observed.
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Fig. 9 a SLAC, 20.35 GeV positrons and electrons, θin = 10 µrad, lcr = 60 µm, θb = 400 µrad, (110); b the same as (a) for (111) planes

The angular distribution of particles after their interaction
with the crystal was obtained also with the increased angu-
lar divergence of the initial beam by approximately 3/4θL .
The corresponding cases are shown in Figs. 8 and 10 for
150 GeV. Indeed, too large an angular divergence leads to
the disappearance of the peaks of planar channeling oscilla-
tions. As mentioned above, quasichanneling oscillations do
not directly depend on the angular divergence. Thereby, such
peaks remain visible.

In Fig. 8 the four upper plots represent the scaling on
energy (12–13) introduced in the previous section. The same
scaling is represented in Fig. 10 for volume reflection.

Such scaling is good for the energies of the same order. In
the opposite case, the radius can approach to the critical one,
when the conditions for the observation of the planar chan-
neling oscillations are not optimal. This is shown in Fig. 8 for
channeling and in Fig. 10 for volume reflection. The obtained
scaling provides a similar picture for different energies from
hundreds of GeV up to 7 TeV. At the same time, the picture
for the case of 20.35 GeV is different and not so evident
because the bending radius approaches to its critical radius.

For the (111) crystal planes the picture observed is anal-
ogous to that for the (110) planes (see Figs. 8, 9). For planar
channeling oscillations the interpeak distance is proportional
to the channeling oscillation length in the larger channel as
shown in Fig. 4. The quasichanneling oscillations are well
described by formulae (23–24) if the interplanar distance is
determined as a transverse period being equal to 3.13 Å for
silicon.

4 On the experimental observation of channeling
and quasichanneling oscillations

In this section we provide information on possible exper-
imental set-ups for observation of planar channeling and
quasichanneling oscillations through existing accelerators

worldwide. In order to span over different energy and charge,
we considered the cases of both positrons and electrons at
SLAC (20.35 GeV) and SPS, CERN (150 GeV) and of elec-
trons at MAMI (855 MeV).

For successful observation, it is very important to choose
the proper parameters for the crystal geometry. They are pro-
vided by Eqs. (7–8) for channeling oscillations and by Eqs.
(26, 8) for quasichanneling. However, in a real experiment
the angular distance between the peaks should be as large as
possible to better resolve them. All these conditions can be
visually combined in the dependence of the distance between
the peaks on the crystal length and bending angle.

Such dependence is shown in Fig. 11 for the channeling
oscillations at the channeling orientation of the energy of
20.35 GeV. White crosses mark the crystal geometry simu-
lated in this paper and presented in Figs. 8 and 9. The con-
ditions (7–8) determine the area, where the observation of
planar channeling oscillations is allowed. In order to opti-
mize the crystal parameters the ratios (7–8) should be safely
taken as 2–3 times as much. For Eq. (7) this choice results
in a clearer picture of the peaks. At the same time, for the
ratio (8), it provides higher channeling efficiency for better
statistics of the experiment.

An example of optimized zone for crystal geometry for a
SLAC case is shown in Fig. 11b. The estimates (7–8) provide
a sufficiently narrow region of crystal parameters. However,
in any case a concrete experimental layout should be checked
by Monte-Carlo trajectory simulations.

Similar conclusion can be inferred by application of Eqs.
(26, 8) to the plots for quasichanneling oscillations. These
dependencies are represented in Fig. 11 for 20.35 GeV. White
crosses in the optimal zone indicate the parameters used in
this paper. Quasichanneling oscillations are indeed observed
for our simulations for all the cases considered.

The algorithm for crystal geometry optimization remains
the same as for the quasichanneling oscillations. The only
difference is that the initial angular divergence of the beam
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Fig. 10 The angular distributions of particles after interaction with
the silicon crystal at the volume reflection orientation for the crystal
tilt −θb/2. Vertical lines indicate the zone of quasichanneling oscil-
lations manifestation calculated by Eq. (23). The simulation layouts
were as follows: a LHC, 7 TeV protons, r.m.s. beam angular diver-
gence θin = 0.5µrad, lcr = 2 mm, θb = 20µrad, (110) planes; b

SPS, 150 GeV positrons and electrons, θin = 3.5µrad, lcr = 0.29
mm, θb = 357µrad, (110) planes; c the same as (b) for the angular
divergence θin = 10.5µrad for positrons; d SPS, 400 GeV protons,
θin = 2µrad, lcr = 0.48 mm, θb = 170µrad, (110) planes; e SLAC,
20.35 GeV positrons, θin = 10µrad, lcr = 0.11 mm, θb = 1600µrad,
(110) planes; f the same as (b) for (111) planes for positrons

should be much less important than for planar channel-
ing oscillations. The angular divergence in our simulations
was equal to 10µrad, a value which may be experimentally
achieved. Thus, the SLAC case satisfies all the conditions
of the observation of planar channeling and quasichanneling
oscillations.

For the SPS case, the crucial factor is the angular reso-
lution of the detector. At energies of the order of hundreds

GeV, the resolution of at least several microradians should
be provided. At the SPS, additional scattering by air and the
silicon strip detectors contributes to the measurements. This
contribution can be taken into account by including the cor-
responding r.m.s. scattering angle θdet to the denominator of
(7) and (26):
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a c

b d

Fig. 11 The dependence of the angular distance between the peaks cor-
responding to the channeling (a) and quasichanneling (c) oscillations
on the crystal length and the bending angle for the positrons of 20.35
GeV. The (110) silicon planes are considered. The zone for the dechan-

neling peaks observation is formed by (7–8). b, d The optimal zones
for the same cases for the channeling and quasichanneling oscillations
respectively, the ratios in (7–8) and (26, 8) exceed two

�ϕch

2
√

θ2
sc + θ2

det

> 1. (28)

The angular divergence at the SPS is expected to be higher
when using secondary beams of positrons or electrons. In
this case only quasichanneling oscillations can be observed.

For electrons only quasichanneling oscillations can be
observed as at the MAMI microtron [25]. The simulation
of such experiment is shown in Fig. 12. The main problem
for this experiment is crystal manufacturing. For operation
of sub-GeV energies, a very short and strongly bent crystal
is required, which is at the limit of existing technologies.

(111) crystal planes provide wider angular distance
between the peaks. Thus, they should be preferable. More-
over, it is simpler to manufacture (111) bent crystal than for

Fig. 12 The angular distributions of particles after interaction with the
silicon crystal at the channeling orientation. The simulation layout is:
855 MeV electrons, θin = 50µrad, lcr = 15µm, θb = 2000µrad,
(111) planes
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any direction, when strong bending is required [44]. The lat-
ter case especially relates to smaller energies of 1 GeV order
at which such crystals were successfully applied [23,25,45].
For electrons (111) planes provide a deeper potential well
than the (110) ones. This results in a higher channeling effi-
ciency which is also preferred.

5 Conclusions

The effect of planar quasichanneling oscillations in the
deflection angle distribution of particles passed through a
bent crystal has been predicted. The effect of planar chan-
neling oscillations was also analyzed. Both of them possess
a fine structure in the angular distribution as visualized by
Monte Carlo simulations for a wide range of energies.

The theoretical interpretation of both kinds of oscillations
was proposed. Quasichanneling oscillations appear near the
direction at which channeling particles leave the crystal.
They arise due to the correlations of over-barrier oscillation
lengths of dechanneled particles. Channeling oscillations can
be observed in all over the angular range of deflected parti-
cles after interaction with a crystal. This effect arises from
correlated dechanneling of particles moving along phase-
correlated trajectories under channeling mode. An equation
for the angular positions of quasichanneling peaks was found.
It demonstrates the independence of peak position on charge
sign and energy.

Since phase correlation for channeled particles is con-
served only for positive particles, the channeling oscillation
peaks can not be observed for negative charges. At the same
time, since both negatively and positively charged particles
may experience over-barrier oscillations, the effect of qua-
sichanneling oscillations can be observed for both of them.

The possibility to observe both channeling and quasichan-
neling oscillations is limited by incoherent scattering of parti-
cles under over-barrier states. Both of them can be observed if
only the r.m.s. angle of incoherent scattering is twice smaller
than the interpeak angular intervals. The angular resolution
of particle detectors is crucial for the observation of both
types of oscillations. However, the low angular divergence
of the incident beam is necessary only for an observation of
the channeling oscillations.

The optimal conditions for experimental observation of
both channeling and quasichanneling oscillations are also
proposed. These conditions are applied to elaborate the opti-
mal values of crystal thickness and bending angle (radius) at
SLAC, SPS, MAMI and LHC. A comparison of (110) and
(111) planar crystal orientation reveals the higher interpeak
distance and higher electron channeling efficiency in the case
of the latter. (111) orientation is also preferable from the point
of view of strong bending of thin crystals to observe the pre-
dicted effects at the SLAC and MAMI energies.

Similarly to channeling oscillations, which are used in
low-energy RBS experiments to assess the quality of a crys-
tal, channeling and quasichanneling oscillations could be
used to determine the precision of alignment of a high-energy
beam with a crystal. In fact, the pattern of the distribution of
particles after interaction with a bent crystal is highly sensi-
tive to the beam-to-crystal alignment. This information can
be used for all the applications for which bent crystals are
used in accelerators, such as beam collimation, extraction
and e.m. radiation generation.
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