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Abstract

The exact form of the exponential Foldy-Wouthuysen transformation operator applicable for a

particle with an arbitrary spin is determined. It can be successfully utilized for verifying any Foldy-

Wouthuysen transformation method based on the exponential operator. When a verified method is

relativistic, the relativistic exponential operator should be expanded in the semirelativistic power

series. The obtained exponential operator can be also used for a derivation of the Foldy-Wouthuysen

Hamiltonian and its comparison with Hamiltonians found by other methods. This procedure makes

it possible to check the validity of any other method of the Foldy-Wouthuysen transformation.
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The Foldy-Wouthuysen (FW) transformation [1] restoring the Schrödinger form of rel-

ativistic wave equations is one of the basic methods of contemporary quantum mechan-

ics (QM). An importance of the FW transformation for physics has significantly increased

nowadays due to the great progress of the art of analytic computer calculations. A great

advantage of the FW representation is the simple form of operators corresponding to clas-

sical observables. In this representation, the Hamiltonian and all operators are even, i.e.,

block-diagonal (diagonal in two spinors). The passage to the classical limit usually reduces

to a replacement of the operators in quantum-mechanical Hamiltonians and equations of

motion with the corresponding classical quantities. The possibility of such a replacement,

explicitly or implicitly used in practically all works devoted to the FW transformation, has

been rigorously proved for the stationary case in Ref. [2]. Thanks to these properties, the

FW representation provides the best possibility of obtaining a meaningful classical limit of

relativistic QM not only for the stationary case [1–4] but also for the nonstationary one

[5, 6].

Various properties and applications of the FW method have been considered in Refs.

[7–9]. The FW transformation is widely used in electrodynamics [10, 11], quantum field

theory [12], optics [13–15], condensed matter physics [16], nuclear physics [6, 17], gravity

[18–20], in the theory of the weak interaction [21] and also in quantum chemistry (see the

books [22, 23] and the reviews [24–31]). It is applicable not only for Dirac fermions but also

for particles with any spins [13, 32–38].

The general form of an initial Hamiltonian for arbitrary-spin particles is given by [39]

H = βM+ E +O, βM = Mβ, βE = Eβ, βO = −Oβ. (1)

The even operators M and E and the odd operator O are diagonal and off-diagonal in two

spinors, respectively. Equation (1) is applicable for a particle with any spin if the number

of components of a corresponding wave function is equal to 2(2s + 1), where s is the spin

quantum number. For a Dirac particle, the M operator usually reduces to the particle rest

energy mc2:

HD = βmc2 + E +O. (2)

The Hamiltonian H is Hermitian for fermions and pseudo-Hermitian (more exactly, β-

pseudo-Hermitian, H = H‡ ≡ βH†β) for bosons. We assume that the operators βM, E ,
and O also possess this property. The transformation operator for bosons is therefore β-
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pseudounitary (U † = βU−1β). We mention the existence of bosonic symmetries of the Dirac

equation [40].

The FW transformation operator can be presented in the two forms, nonexponential

(UFW ) and exponential (SFW ):

ΨFW = UFWΨ, UFW = exp (iSFW ). (3)

This operator transforms the initial Hamiltonian H to the FW representation:

HFW = i~
∂

∂t
+ UFW

(

H− i~
∂

∂t

)

U−1
FW . (4)

The FW Hamiltonian obtained with this operator is even. The FW transformation

vanishes either lower or upper spinor for positive and negative energy states, respectively.

There is an infinite set of representations different from the FW representation whose

distinctive feature is a block-diagonal form of the Hamiltonian. The FW transformation is

uniquely defined by the condition that the exponential operator SFW is odd,

βSFW = −SFWβ, (5)

and Hermitian [41, 42] (β-pseudo-Hermitian for bosons). This condition is equivalent to

[41, 42]

βUFW = U †
FWβ. (6)

Eriksen [41] has found the exact expression for the nonexponential FW transformation

operator. It is convenient to present this expression in the form [4]

UE = UFW =
1 + βλ√

2 + βλ+ λβ
, λ =

H
(H2)1/2

. (7)

The initial Hamiltonian operator H is arbitrary. It is easy to see that [41]

λ2 = 1, [βλ, λβ] = 0, [β, (βλ+ λβ)] = 0, (8)

where [. . . , . . . ] means a commutator.

The equivalent form of the operator UE [4] shows that it is properly unitary (β-

pseudounitary for bosons):

UE =
1 + βλ

√

(1 + βλ)†(1 + βλ)
. (9)
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The Eriksen formula is an important achievement of the theory of the FW transformation.

However, the FW transformation method proposed by Eriksen [41] is semirelativistic. We use

the term “semirelativistic” for methods applying an expansion of a derived block-diagonal

Hamiltonian in a series of even terms of ascending order in 1/c. For the semirelativistic

and the relativistic methods, the zeroth order Hamiltonian is the Schrödinger one and the

relativistic FW Hamiltonian of a free particle, respectively. The Eriksen method is not

practically used in specific calculations. Since the exact equation (7) contains the square

roots of Dirac matrices, it excludes a possibility to obtain a series of relativistic terms

with the relativistic FW Hamiltonian of a free particle [1] as the zero-order approximation

(see Ref. [43] for more details). Contemporary methods of the FW transformation are

relativistic. The use of all semirelativistic methods is restricted due to their divergence at

large momenta, when p/(mc) > 1. In this case (which takes place for an electron near a

nucleus), the semirelativistic methods become inapplicable [44] (see also Ref. [43]).

Nevertheless, the calculation of the FW Hamiltonian by the perfectly substantiated Erik-

sen method [45–47] is very important for checking results obtained by other semirelativistic

and relativistic methods (see the examples given in Ref. [43]).

We should mention that the condition (5) is used much more often than the condition

(6) to check the correspondence of the final Hamiltonian to the FW representation. For

example, this is one of thebasic conditions for the generalized Douglas-Kroll-Hess method

which is rather widely applied in quantum chemistry [31, 44, 48, 49]. This fact obviously

demonstrates the importance of the exact derivation of the exponential FW transformation

operator. However, the problem of the exact form of SFW was never investigated. In the

present study, we solve this problem.

Evidently, the exact form of SFW should be based on the operator λ. It is convenient to

use the following relations (see, e.g., Ref. [47]):

SFW = −iβΘ, UFW = cosSFW + i sinSFW = cosΘ + β sinΘ. (10)

To obtain an explicit expression for SFW , it is instructive to consider the special case

[O,M] = [O, E ] = [M, E ] = 0. When the operators M, E , and O do not explicitly

depend on time and

tan 2Θ =
O
M , (11)
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the odd terms are eliminated and the Hamiltonian H is transformed to the FW representa-

tion [47]. In the considered special case,

(

H2
)1/2

= ǫ+
(βM+O)E

ǫ
,

H = (βM+O)

[

1 +
(βM+O)E

ǫ2

]

,

ǫ =
√
M2 +O2,

and the operator λ is determined exactly [50]:

λ =
βM+O

ǫ
. (12)

Equation (11) has two solutions, Θ1 and Θ2, differing in π/2 [10]. Since

tan 2Θ =
2 tanΘ

1− tan2Θ
, tanΘ =

tan 2Θ

1±
√
1 + tan2 2Θ

,

they are defined by the relations

tanΘ1 =
O

ǫ+M , tanΘ2 = − O
ǫ−M . (13)

As

cos 2Θ =
1− tan2Θ

1 + tan2Θ
, sin 2Θ = tan 2Θ cos 2Θ, (14)

the needed trigonometrical operators are given by

cos 2Θ1 =
M
ǫ
, cos 2Θ2 = −M

ǫ
, sin 2Θ1 =

O
ǫ
, sin 2Θ2 = −O

ǫ
. (15)

This equation shows that cos 2Θ1 > 0, cos 2Θ2 < 0.

Thus, there are two unitary transformations of the operator H to an even form. They

are characterized by the angles Θ1 and Θ2, where the angle Θ1 corresponds to the FW

transformation. As a result of the both transformations, one of the spinors (lower for

Θ1 and upper for Θ2) becomes zero as for free particles [10]. Since we consider the FW

transformation, Θ = Θ1.

A comparison with Eq. (11) shows that

sin 2Θ =
1

2
(λ− βλβ) . (16)

The corresponding exponential FW transformation operator is given by

SFW = −iβ

2
arcsin

λ− βλβ

2
. (17)
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Let us check that Eqs. (16) and (17) obtained in the above-mentioned special case remain

valid in the general case of a relativistic particle in arbitrary stationary fields. We can utilize

the operator relations (cf. Ref. [47])

sin Θ =
sin 2Θ

√

2 (1 + cos 2Θ)
=

sin 2Θ
√

2
(

1 +
√

1− sin2 2Θ
)

,
(18)

cosΘ =
1 + cos 2Θ

√

2 (1 + cos 2Θ)
=

1 +
√

1− sin2 2Θ
√

2
(

1 +
√

1− sin2 2Θ
)

.
(19)

These relations repeat the corresponding trigonometrical ones. We can mention that the

FW transformation operator UFW is equal to unit when the initial Hamiltonian does not

contain odd terms (O = 0).

As follows from Eq. (10), the nonexponential FW transformation operator reads

UFW =
1 +

√

1− sin2 2Θ + β sin 2Θ
√

2
(

1 +
√

1− sin2 2Θ
)

.
(20)

Equations (8) and (16) result in

1− sin2 2Θ =
1

4
(βλ+ λβ)2 . (21)

The use of Eqs. (16) and (21) shows the equivalence of Eqs. (7) and (20). This equivalence

rigorously proves the validity of Eq. (17) in the general case.

Equation (17) cannot be used for a derivation of the FW Hamiltonian in the relativistic

case because the operator SFW contains the square root of Dirac matrices (or corresponding

matrices for particles with other spins). However, this equation opens a wonderful possibil-

ity to check a validity of semirelativistic and relativistic methods of the FW transformation.

Indeed, a calculation of a semirelativistic series for the exponential operator is straightfor-

ward.

The numerator and denominator in the formula for λ commute. Therefore, it is convenient

to present this quantity in the form

λ =
1

2

{

H,
(

H2
)−1/2

}

, (22)

where {. . . , . . . } means an anticommutator. Then, we apply the expansion of the square root

in the power series. It is important that this procedure can be performed for arbitrary-spin
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particles because the initial Hamiltonians can be presented in the form (2). For example,

the operator M for a spin-1 particle in a magnetic field reads [38, 46]

M = mc2 +
π2

2m
− e~

mc
S ·B, (23)

where S is the spin matrix for the spin-1 particle, π = p− (e/c)A is the kinetic momentum

operator, A is the vector potential, and e is the charge of a particle. For the electron, it is

negative (e = −|e|). The two last terms in Eq. (23) can be added to the operator E and

therefore the operator M can be reduced to mc2.

For analytic calculations with computer, one can use the formula

√
H2 = mc2

√

1 +
H2 −m2c4

m2c4
= mc2

√

1 +
2βmc2E +O2 + E2 + {O, E}

m2c4
(24)

and the well-known expansions

(1 + x)−1/2 = 1− 1

2
x+

1 · 3
2 · 4x

2 − 1 · 3 · 5
2 · 4 · 6x

3 + . . . ,

arcsin x = x+
1

2 · 3x
3 +

1 · 3
2 · 4 · 5x

5 +
1 · 3 · 5

2 · 4 · 6 · 7x
7 + . . .

(25)

The result of the expansion in the power series can be written as follows:

(

H2
)−1/2

=
1 + qE + qO

mc2
, βqE = qEβ, βqO = −qOβ, (26)

where qE and qO denote the sums of even and odd terms, respectively. The resulting expan-

sion of the operator (λ− βλβ)/2 in the semirelativistic power series is given by

λ− βλβ

2
=

1

2mc2
[

2O + {E , qO}+ {O, qE}
]

. (27)

The final equation for the exponential FW transformation operator takes the form

SFW = −iβ

2
arcsin

(

1

2mc2
[

2O + {E , qO}+ {O, qE}
]

)

. (28)

This operator can be calculated with any necessary precision while the computational effort

depends on this precision.

Equation (28) gives one a wonderful opportunity to verify any FW transformation method

based on the exponential operator. If the checked FW transformation method is rel-

ativistic, one needs to expand all terms of the relativistic series for SFW in powers of

E/(mc2), O/(mc2). Comparison with an explicit form of Eq. (28) verifies the checked
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method. Of course, any expansion can be performed only if the semirelativistic series is

convergent (see Refs. [43, 44]).

We should also add that the FW Hamiltonian can be calculated with the exponential

operator as follows (cf. Ref. [1]):

HFW = H + i[SFW ,G] + i2

2!
[SFW , [SFW ,G]] + i3

3!
[SFW , [SFW , [SFW ,G]]] + · · · , (29)

where

G = H− i~
∂

∂t
,

[

SFW ,
∂

∂t

]

≡ −∂SFW

∂t
. (30)

Unlike the original FW approach [1], this approach needs not subsequent iterations.

This result allows one to verify any other FW transformation method which is not based

on the exponential operator. For this purpose, one has to expand all terms of the rel-

ativistic series for the FW Hamiltonian calculated by the checked method in powers of

E/(mc2), O/(mc2) and then has to compare the obtained expression with the FW Hamil-

tonian given by Eqs. (29) and (30). The computational effort, of course, grows when the

maximum powers increase. However, any error usually manifests itself in noncoincidence of

the first few terms (see, for example, Refs. [43, 51]).

Let us verify the original method by Foldy and Wouthuysen [1] as an example of the

application of Eqs. (24) – (28). A calculation of the exponential FW transformation operator

in the stationary case with allowance for all terms up to the order of m−4 results in

SFW = − i

2mc2
βO − i

4m2c4
[O, E ] + i

6m3c6
βO3

− i

8m3c6
β[[O, E ], E ] + 3i

16m4c8
{O2, [O, E ]} − i

16m4c8
[

[[O, E ], E ], E
]

.
(31)

The original method [1] belongs to iterative methods. The result of successive iterations

expressed by the equation

U = . . . exp (iS(n)) . . . exp (iS ′′′) exp (iS ′′) exp (iS ′) exp (iS) (32)

can be presented in the exponential form with the use of the Baker-Campbell-Hausdorff

formula (see Ref. [43] and references therein). This formula defines the product of two

exponential operators:

exp(A) exp(B) = exp

(

A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]]

− 1

24

[

A, [B, [A,B]]
]

+ higher order commutators

)

. (33)

8



To verify the original method [1], it is sufficient to take into account three first iterations

and to hold terms up to the order of m−3. In the considered stationary case, they are given

by [7, 9, 43]

S = − i

2mc2
βO, S ′ = − i

4m2c4
[O, E ] + i

6m3c6
βO3,

S ′′ = − iβ

8m3c6
[[O, E ], E ].

(34)

The result of these iterations can be approximately presented as follows (see Ref. [43]):

U = exp (iS ′′) exp (iS ′) exp (iS) = exp (iS),

S = S ′′ + S ′ + S − i

2
[S, S ′] = − i

2mc2
βO − i

4m2c4
[O, E ] + i

6m3c6
βO3

− i

8m3c6
β[[O, E ], E ] + i

16m3c6
β[O2, E ].

(35)

The operator S differs from SFW due to the even last term. Therefore, the original

method of the FW transformation [1] does not lead to the FW representation. This paradox-

ical fact has been first mentioned by Eriksen and Korlsrud [42] (see also Refs. [9, 43, 45, 46]).

The original method [1] can be corrected due to an additional transformation [43]. This cor-

rection allows one to reach the FW representation.

Any representation which block-diagonalizes the Hamiltonian but differs from the FW

representation can be successfully used for a calculation of energy spectrum of particles

in stationary states. However, an application of such a representation for other purposes

is restricted. In particular, the representation which differs from the FW one is, at least,

inconvenient for description of spin processes (see, for example, Refs. [4, 18, 52]).

Thus, we have derived the exact exponential FW transformation operator which is appli-

cable for a particle with an arbitrary spin. This result provides an opportunity to verify any

FW transformation method based on the exponential operator. Moreover, the validity of

any other FW transformation method can also be checked. For this purpose, one has to use

Eq. (29) in order to calculate the FW Hamiltonian and to compare it with the correspond-

ing Hamiltonian found by the checked method. The latter possibility may need a greater

computational effort.
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