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Abstract. We present the results of a novel Mössbauer experiment in a rotating system, imple-

mented recently in Istanbul University, which yields the coefficient k=0.690.02 within the 

frame of the expression for the relative energy shift between emission and absorption lines 

E/E=ku
2
/c

2
. This result turned out to be in a quantitative agreement with an experiment 

achieved earlier on the subject matter (A.L. Kholmetskii et al. 2009 Phys. Scr. 79 065007), and 

once again strongly pointed to the inequality k>0.5, revealed originally in (A.L. Kholmetskii et 

al. 2008 Phys. Scr. 77, 035302 (2008)) via the re-analysis of Kündig’s experiment (W. Kündig. 

Phys. Rev. 129, 2371 (1963)). A possible explanation of the deviation of the coefficient k from 

the relativistic prediction k=0.5 is discussed. 

PACS: 03.30.+p 

1. Introduction 

It is known that the first (and major) series of Mössbauer experiments in rotating systems had 

been carried out at the early 1960’s (e.g. [1-6]) soon after the discovery of the Mössbauer effect. 

In these experiments, an absorber orbited around a source of resonant gamma-radiation (or vice 

versa). The goal was to verify the relativistic dilation of time for a moving resonant absorber 

(source), in rotation, which induces the relative energy shift between emission and absorption 

lines at the value 

E/E=ku
2
/c

2
,           (1) 

where k=0.5 according to relativity theory, u is the tangential velocity of absorber, c is the light 

velocity in vacuum; the sign “+” corresponds to the case, where a source orbits around an absor-

ber, and the sign “-” replies to the reverse case, where an absorber orbits around a source.  

Following Einstein, by then it was indeed anticipated that only the effect of tangential ve-

locity would matter, and the effect of acceleration particularly, would not affect the result [7].  

In any case, for sub-sound u300 m/s, the ratio u/c10
-12

, so that the energy shift (1) can 

be reliably measured with iron-57 Mössbauer spectroscopy, which allows us to reach the relative 

energy resolution 10
-14

 and higher. 

 All of the authors of the mentioned above papers [1-6] reported the value of k=0.5 within 

an accuracy about 1 %, confirming thus the original relativistic prediction with regards to the 

time dilation effect for a rotating object.  

Later the relativistic dilation of time, though with regards to uniform translational motion, 

had been confirmed with much better precision (10
-8

…10
-9

) in the experiments on ion beams [8, 

9], which deprived physicists of further interest in repetition of Mössbauer experiments in rotat-

ing systems. 

New wave of interest to the Mössbauer experiments in a rotating system emerged after 

publication of the paper [10], where serious methodological errors in the available experiments 

achieved in 1960’s were revealed. It is fair to recall that this latter work was stimulated by the 

predictions made by Yarman, and further developed by him and his colleagues [11, 12].  
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In the mentioned paper [10] Kholmetskii et al pointed out that almost all of the authors 

ignored the distortions in the measurement of coefficient k in eq. (1) due to the chaotic mechani-

cal vibrations in the rotor system, which are always present. There was a sole experiment by 

Kündig [1], which is free of the influence of mechanical vibrations on the measured value of k. 

For this purpose he applied the first order Doppler modulation of the energy of -quanta on a ro-

tor at each fixed rotation frequency , implementing a motion of the source along the radius of 

the rotor towards and backward to the resonant absorber. By such a way, Kündig recorded the 

shape and the position of resonant line on the energy scale versus the rotation frequency and thus 

his results were practically insensitive to the presence of possible mechanical vibrations in the 

rotor system, because such vibrations broaden resonant line, but do not affect its position on the 

energy scale due to their chaotic nature. In contrast, other authors [2-6] measured only the count-

rate of detected -quanta at a fixed rotational frequency , and their results were not protected 

from the distortions induced by vibrations.  

At any rate, via scrupulous analysis of the paper [1], the authors of ref. [10] found a num-

ber of computational errors committed by Kündig, and made their own estimation of the coeffi-

cient k in eq. (1), based on Kündig’s raw data presented in [1]. As a result, they obtained 

k=0.5960.006, which drastically deviates from the relativistic prediction, and exceeds many 

times (the order of magnitude and more) the reported uncertainty of the experiment [1].  

Based on this disclosure, Kholmetskii et al conjectured that in rotating systems, the ener-

gy shift between emission and absorption resonant lines is induced not only via the standard time 

dilation (which is measured alone in the experiments with ion beams [8, 9] dealing with an iner-

tial motion), but also via some additional effect (most likely, due to the direct effect of accelera-

tion, as originally advocated by Yarman et al), thus yielding an excess of E/E in comparison 

with the standard relativistic prediction. Our revelation stimulated the performance of our own 

experiment on the subject matter in 2008 [13], where a novel methodological approach was ap-

plied, which, just like in Kündig experiment, allowed eliminating the influence of mechanical 

vibrations of the rotor on the measured value of coefficient k in eq. (1). As a result, Kholmetskii 

et al. came up with k=0.680.03 [13], which later has been corrected to the precise values of the 

Debye temperatures of resonant absorbers [14] as 

k=0.660.03.            (2) 

 One should note that the extraordinary result k>0.5 is not related to any instrumental er-

ror, given that it has been obtained in two different experiments [1] (as re-analyzed in [10]) and 

[13], which were based on different measurement techniques and data processing procedures. 

Due to the high fundamental importance of this result, its further experimental verification was 

strongly required. 

 In the present paper we thus report the result of measurement of the coefficient k in a re-

cent experiment implemented in Istanbul University (IU), which is similar in its methodology to 

the previous experiment [13], but uses an enhanced rotor system. In this latter experiment we 

obtained  

kIU=0.690.02,           (3) 

which manifestly agrees with the result (2). 

 In section 2 we summarize the present experiment performed in Istanbul University, and 

the data proceesing procedure. In section 3 we present possible explanations of the extra energy 

shift between emission and absorption lines, which, to the accuracy c
-2

, is added to the shift 

caused by the relativistic dilation of time. In sub-section 3.1 we criticize a recent attempt to ex-

plain the inequality k>0.5 with the hypothesis about the existence of a universal maximal accele-

ration [15-18], and concurrently show that recent attempts to re-interpret the Mössbauer experi-

ments in rotating systems [18, 19] are, in fact, erroneous. In sub-section 3.2 we present a possible 

explanation of eqs. (2), (3) on the basis of “conservative” relativity principle [20], which predicts 
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the dependence of time rate of a charged particle on the electric potential at its location. Finally, 

we conclude in section 4.  

 

2. Experiment and data processing 

In comparison with the experiment [13], in the novel experiment we applied a rotor with a radius 

about 2 times smaller (see Table 1, 1
st
 line), which allowed us to increase about 4 times the de-

tector’s countrate and to insure a better statistic quality of the data obtained during a given period 

of measurement time. 

 In addition, we expanded the range of variation of tangential velocities of absorber (10-

260 m/s), which at a smaller rotor radius implies an essential increase of the range of rotational 

frequencies, thus an increased centrifugal acceleration (see Table 1, 2-4 lines).  

 Finally, we achieved the air pressure in the rotor chamber less than 1 mmHg (see Table 1, 

5 line), where the increase of temperature of rotor due to its heating did not exceed 10C.
1
 This 

allowed us to neglect any temperature corrections to the Mössbauer spectra of both of the reso-

nant source and resonant absorbers. 

 In order to detach from each other the contributions of the time dilation effect and me-

chanical vibrations in the rotor system to the measured countrate of detector at different rotation-

al frequencies, we applied the method, which had been tested and approved throughout the expe-

riment [13]. 

 This method is based on the collection of experimental data for two different resonant 

absorbers, whose resonant lines are shifted on the energy scale with respect to each other approx-

imately by their linewidth. As we have mentioned above, chaotic vibrations do not affect the po-

sition of resonant lines, and cause only their broadening. Hence an equal broadening of shifted 

lines of these absorbers, caused by vibration, should induce quite different variation of the detec-

tor’s countrate with the change of rotational frequency.  

 Therefore, implementing the joint processing of data obtained with both resonant absor-

bers, we can separate the variation of detector’s countrate, caused by the energy shift (1) from 

the distortions of countrate, caused by the broadening of resonant lines due to vibrations.  

 The general scheme of our experiment is shown in Fig. 1.  

The rotor represents a tube made of ultrastrong aluminium alloy B95 with the mass 64 g. 

The source
57

Co (Cr) and its lead collimating system, covered by thin cupper and aluminium lay-

ers, is located in the middle of the tube, while the absorber of resonant radiation is fixed at the 

egde of the tube. A balancing mass is placed on the opposite side of the tube. The value of this 

balancing mass is adjusted on the rotor balance machine, providing the sensitivity about  

10
-3

 Nm. This corresponds to the uncertainty in the determination of balancing mass less than 

1 mg, which, at the indicated rotor mass 64 g, provides equal level of vibrations in the rotor sys-

tem in the measurement cycles with both resonant absorbers. The rotor is rigidly connected with 

an asynchronous three-phase motor made by the company Hanning Electro (Austria), bearing a 

maximum rotation frequency 330 rps. The rotor chamber, connected with a vacuum pump, has a 

diameter of 350 mm and a height of 300 mm. For safety purpose, the walls of the rotor chamber 

were made of armor material. The beryllium window for output of resonant gamma-quanta from 

the rotor chamber has a diameter of 20 mm; the width of beryllium layer is 1 mm. The rotor sys-

tem has been developed by the company “Praks-M” (Minsk), and it allows a semi-automatic op-

eration with the accuracy of setting the rotational frequency less than 0.1 rps. 

The detector, an Ar-Xe proportional counter, is located outside the rotor system; its work-

ing window lies in the rotational plane. The detector has 90 % detection efficiency and 15 % 

relative energy resolution with respect to 14.4 keV resonant gamma-quanta.  

The diameter of the active part of the source 
57

Co (Cr) is 4 mm, the width is 0.1 mm. The 

source is located in the titanium shell of a cylindrical form with the diameter 6 mm and width 

                                                 
1
 The measurements of the rotor temperature were carried out by contact method after each measurement cycle, de-

scribed below. 
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6 mm. The activity of the source is 10 mCi, and its active part is adjusted to the axis of rotation 

with the accuracy 0.05 mm. 

 Like in the experiment [13], we carried out measurements with two resonant absorbers 

K4Fe(CN)63H2O (absorber 1), and Li3Fe2(PO4)3 (absorber 2), both enriched by 
57

Fe to 90 %. 

Each absorber represents a thin film packaged between two beryllium layers of the diameter 

19 mm and width 0.5 mm; the surface density of both absorbers is 135 mg/cm
2
. 

The Mössbauer spectra of the absorbers, obtained outside the rotor system with the 

Mössbauer instrument package MS-2000IP [21] (calibration measurements) are shown in Fig. 2, 

where we indicate the expected range of variation of the second order energy shift at k=0.5 and 

k=1.0. The width of the single resonant line for absorber 1 is equal to 0.2900.002  mm/s, the 

isomer shift with respect to zero relative velocity of source and absorber is 0.0950.001 mm/s. 

The value of quadrupole splitting of resonant lines of absorber 2 is equal to 0.3680.002 mm/s, 

the width of resonant lines for absorber 2 is equal to 0.2880.003  mm/s the isomer shift of qua-

drupole doublet with respect to zero relative velocity is 0.5700.002 mm/s. The left resonant line 

of absorber 2 is shifted with respect to the resonant line of absorber 1 at (0.2900.001) mm/s. 

The value of resonant effect for absorber 1 is 29.0 %, and for absorber 2 it is 22.1 % at a room 

temperature.  

In our measurements we applied the rotational frequencies 10, 160, 185, 200, 220, 240 

and 257 rps. At the rotor radius 16.11 cm (see Table 1), the rotational frequency expressed in rps, 

approximately corresponds to the tangential velocity of resonant absorber in m/s. In particular, 

the limited rotational frequency 257 rps exactly corresponds to the tangential velocity 260 m/s. 

Further, we assumed that at the lowest rotational frequency 10 rps, vibrations in the rotor system 

are still absent
2
, so that this value was taken as the reference point, and the numbers of counts of 

detectors N() measured at larger rotational frequencies were normalized to the number of counts 

N(=10). 

The measurements were carried out in a cycle mode for both resonant absorbers; each 

cycle consisted of the measurements of a number of counts of detector of resonant gamma-

quanta during 200 s at the rotational frequencies indicated above. In order to prevent heating of 

electromotor, driving the rotor (happened due to a friction of its bearings), a time break of about 

0.5 hour was applied between subsequent cycles. At the activity of the source 
57

Co (Cr) 10 mCi, 

the average detector’s countrate was about 5 pulses/s. Thus at each measurement we accumu-

lated about 10
3
 pulses. We applied 30 cycles for each resonant absorber; the total numbers of 

counts N() for each resonant absorber at different rotation frequencies and the corresponding 

ratios N()/N(=10) are shown in Table 2. At the mean value of measured counts for both absor-

bers 310
4
 pulses, the relative statistic error was %6.01 N . 

In the data processing procedure, we considered the coefficient k in eq. (1) and the widths 

of resonant lines , broadened due to vibrations at different rotation frequencies , as the un-

known parameters, and the coefficient k does not depend on tangential velocity within the mea-

surement precision. At the first stage, having measured the shapes of resonant lines for both ab-

sorbers (Fig. 2), we plotted the expected absorption curves for these absorbers at different rota-

tional frequencies  in the idealized case of absence of any vibrations in the rotor system
3
. Such 

idealized curves are shown in Fig. 3a-b at different hypotheses about the value of 0.5<k<1.0. In 

Fig. 3b we also present the measurement data for absorber 2 (black points), normalized to the 

number of counts at =10 rps, and their deviation from the corresponding idealized curve at the 

given k allows us to estimate the broadening of resonant line in comparison with its proper width 

                                                 
2
Indeed, a level of vibrations in rotor systems is approximately proportional to the rotation frequency in square and 

thus, it can be practically ignored at =10 rev/s in comparison with ≥160 rev/s.  
3
In the case, where the calculated energy shift at the given  corresponded to some fraction of the channel, we plot-

ted a straight line between nearest neighbouring channels of the experimental curves in Fig. 2. Anyway, the statistic 

uncertainty in determination of the shapes of resonant lines is practically negligible in comparison with other com-

ponents of uncertainty of measurement of k, indicated below. 
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at different , as described in ref. [13]. An analytical expression for the chaotic vibrations in the 

rotor system does not exist; correspondingly, the width of broadened resonant lines as the func-

tion of rotation frequency  at the adopted value of k (the two-component function Γk(ν)) can be 

determined only empirically in suitable discrete points by means of computer simulation accord-

ing to the algorithm described in ref. [13]. Specifically, at the chosen hypothesis about the value 

of k (which defines the corresponding idealized absorption curve) and the given rotation fre-

quency  (which defines the corresponding point of this curve), we simulate the broadening of 

resonant line due to vibration, keeping its area and position to be fixed. In such simulation, we 

simultaneously calculated the change of relative resonant absorption, caused by this broadening 

of resonant line. When the value of the relative resonant absorption becomes equal to the meas-

ured value of this absorption at the given , the corresponding width of the line Γk(ν) is fixed. In 

this case, the variation of the given value of Γk(ν), corresponding to the variation of detector’s 

countrate within its statistic uncertainly, defines the uncertainty of determination of Γ at each 

particular values of k and .  

As the result, we obtain a set of linewidths k(), which characterize the influence of vi-

brations on the shape of resonant lines at different  and k (see Table 3). As our computer simu-

lation shows, the uncertainty of the ratio ()/(=10) does not practically depend on k and  

and is equal 0.05.  

This result agrees with a rough estimation of the uncertainty in the determination of 

 k , which can be done in the following way. Consider, for simplicity, a point near the mini-

mum of resonant line. Then, the broadening of this line due to vibrations by 2.5…3.0 times re-

duces the original value of the resonant effect (about 30 %) to 10…12 %. The relative variation 

of  k  by 5 % (the value, which we obtained in computer simulation) induces the correspond-

ing variation of the height of resonant line by 5%, too. Hence, the relative variation of measured 

numbers of counts by detector is about (0.10…0.12)5 %=0.5…0.6 %, which corresponds to the 

actual relative uncertainty in measurement of number of counts %6.01 N . 

 Further, using the two-dimensional function k() obtained with the absorber 2, at the 

next stage we determined the corresponding distortions of the idealized curves for absorber 1 due 

to vibrations, at different values of  and k. The calculated absorption curves, distorted due to 

vibrations, are shown in Fig. 4, where the measurement data for absorber 1, normalized to the 

number of counts at =10 rps (black points), are also presented. 

The framed algorithm allows us to achieve practically the best fitting of experimental da-

ta with two sets of free parameters, i.e. the coefficient k in eq. (1), and the level of vibrations, 

manifesting as () dependence; the algorithm has been realized with the MathCad Professional 

software. 

 Finally, we calculated the standard deviation 

      
21

2









 



 rkNNkD ,     (4) 

at different k, where the summation is carried out over the values of =160, 185, 200, 220, 240, 

257 rps; N() denotes the experimental point (i.e. number of counts at the given ), and  rkN  

stands for the corresponding point of real curve for absorber 1. 

 Finally we plotted the values of D as the function of k, Fig. 5. We see that this function 

has a sharp minimum at k=0.69. 

The measurement uncertainty of coefficient k is determined by the following factors: 

1. Statistic measurement error of number of counts in Mössbauer spectra of both resonant 

absorbers (calibration data, see Fig. 2). 

3. Error of determination of line width  at various  and k, which, in return, is caused by 

the statistical uncertainty in the measurement of total numbers of counts for absorber 2, when we 

compare the measurement data for this absorber with the idealized curves (see Fig. 3b). 
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4. Error in determination of the coefficient k in comparison of real curves and collected 

data for absorber 1 (see Fig. 4). 

Since both Mössbauer spectra presented in Fig. 2 had been obtained with a high statistic 

quality, the first contribution to the total measurement uncertainly of k is negligible in compari-

son with factors 2 and 3. 

Factor 2 coins the uncertainty in the determination of the width of resonant lines k(), 

which at the relative statistic error of measurement of N() of about 0.6 %, is found to be equal 

0.05 mm/s. This leads to the corresponding variation of shapes of real curves for absorber 1, 

presented in Fig. 4. 

In order to model the variation of the shapes of these curves, we applied a procedure de-

veloped previously in the implementation of our experiment [13]. Namely, at the obtained value 

of k=0.69, we take six values of 0.69() at =160, 185, 200, 220, 240 and 260 rev/s, and for each 

such value we fix 5 sub-values 0.69-, 0.69-/2, 0.69, 0.69+/2, 0.69+ (where =0.05), 

prescribing to them numbers 1, 2, 3, 4, 5, respectively. We thence get six sets made of these 

numbers. Then, by a random choice, we select one number among {1, 2, 3, 4, 5} for each set to 

model the variation of linewidth at different rotation frequencies within their measurement un-

certainty. For the obtained set of numbers, we recalculated the real curve for absorber 1 and fur-

ther determined standard deviation between measured and calculated data according to equation 

(4), and fix the value of k, corresponding to the minimum of D(k). Repeating the random choice 

of numbers {1, 2, 3, 4, 5} for each set, we again recalculate D(k), fix its minimum and imple-

ment this procedure for 1000 times. Consequently, we obtain a distribution of the values of k, 

corresponding to minima of the functions D(k) at variable linewidths  within the uncertainty of 

their measurement. The half-width of the obtained distribution of values of k happens to be equal 

to  0.02. 

 Therefore, the final result of our measurement is expressed by eq. (3). 

 We stress that the method applied for the elimination of influence of chaotic vibrations to 

a measured value of k, suggested for the first time in ref. [13], furnishes an unbiased estimation 

of k, when the resonant line broadening due to vibrations keeps its shape approximately Lorent-

zian. As Kündig’s experiment shows, this is actually the case [1]. At the same time, the uncer-

tainty in the determination of k in our experiment is still 3.5 times larger, than the measurement 

uncertainty of Kündig experiment, as we reanalyzed (ref. [10]). Such is the cost, which we have 

paid for the elimination of influence of vibrations via the data processing procedure with two dif-

ferent resonant absorbers (we remind that in the Kündig experiment, the influence of vibrations 

had been eliminated at the instrumental level).  

Further we emphasize that the applied data processing procedure is self-consistent and 

reversible. This allows us to carry out a cross-check of the obtained result (3), comparing the 

idealized absorption curves for absorber 1 (Fig. 3a) with the measured absorption curves for this 

absorber (Fig. 4, black points), in order to get a new set of the values k()); this way the value 

of k is calculated via the comparison of measured absorption for absorber 2 with real curves for 

this absorber, corrected to the level of vibrations in the rotor system.  

Implementing this procedure, we obtained a new set of linewidths k(), which within the 

calculation uncertainty practically coincides with the data of Table 3.  

Having obtained the values of k(), next we plot the real absorption curves for absorber 

2 at different k (see Fig. 6, where the measured data for the second resonant absorber are also 

shown). 

Finally, using the data shown in Fig. 6, we again calculate the standard deviation (4), this 

time between the experimental points N() for absorber 2 and points  rkN  for the correspond-

ing real curve of this absorber. The obtained dependence of D on k for the absorber 2 is pre-

sented in Fig. 7. Like for the dependence D(k) in Fig. 5, a sharp minimum corresponds to k=0.69. 

The measurement uncertainty of k was calculated according to the algorithm, described 

above for absorber 1, and is equal to  0.02. Hence, we again arrive at eq. (3). 
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 Thus, like in the previous experiment [13], we have confirmed that k>0.5, as anticipated 

originally by Yarman [11, 12]. It is important to note that the deviation between the measured 

result and relativistic prediction k=0.5 exceeds very many times the measurement uncertainty. 

Therefore, a plausible physical explanation of this result becomes topical, which we discuss in 

the next section. 

 

3. Proposed explanations for the extra energy shift  

in Mössbauer rotor experiments 

3.1.Hypothesis about the existence of a universal maximal acceleration in nature 

An attempt to explain the inequality k>0.5 was done by Friedman et al on the basis of their gene-

ralization of special relativity (see [15-18]) with the negation of the clock hypothesis by Einstein 

(i.e., the independency of clock rate on its acceleration [22]). Thereby the authors postulated the 

presence of a universal maximal acceleration am of nature and proposed a modification of the 

space-time transformation between uniformly accelerated frames, which then reduces to the 

usual relativistic transformation in the limit am. In particular, with respect to the second order 

Doppler effect in rotating systems, they derived an expression (in the case, where the source of 

radiation is located on the rotational axis) [17]: 
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between emission and absorption lines can accordingly be written as 


















mmo Ra

c

c

u

c

R

a

R

E

EE

E

E 2

2

2

2

222

0

2

1

2


.      (5) 

 Thus, comparing eqs. (1) and (5), one comes up, based on the extended relativity of 

Friedman et al, with 

mRa

c
k

2

2

1
 .           (6) 

 The authors also pointed out that the Mössbauer experiments in rotating systems 

represent a convenient tool to test their hypothesis due to two reasons: 

- high sensitivity of Mössbauer effect to the relative energy shift of resonant lines; 

- large centrifugal acceleration achieving in these experiments (up to 10
6
 m/s

2
), which is 

directed along the line joining the resonant source and the absorber. 

Thanks to these features, the Mössbauer rotor experiments become much more sensitive 

to the assumed presence of a maximal acceleration am, than, for example, the experiments in par-

ticle physics with any kinds of accelerators. In particular, Friedman et al conjectured that the in-

equality k>0.5 can be explained via eq. (6). Taking the result of Kündig experiment, which we 

have reanalyzed and accordingly corrected in ref. [10] (k=0.5960.006), as the most reliable re-

sult, they estimated the maximal acceleration as [16] 

am10
19

 m/s
2
.            (7) 

 This is indeed a huge acceleration from the practical point of view, and it exceeds by 

many orders of magnitude the typical acceleration of particles in accelerators. However, we no-

tice that the hypothesis about a universal maximal acceleration implies the existence of a funda-

mental time unit mact lfundamenta , which for the estimated value (7) yields 

tfundamental310
-11

 s. 

This time interval corresponds to an electromagnetic radiation with a wavelength of about 1 cm, 

and this seems to be too large, in order to be considered as the basis of a fundamental time unit. 

 Rather one can suppose that the fundamental time unit is determined by the relationship 
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clt Plfundamenta , 

where lP1.61610
-35

 m is the Planck length. In this case, the universal maximal acceleration, if 

it exists, is defined via the equation 
2512 s/m105.5  Pm lca . Then eq. (6) reads as 

R

l
k P

2

1
, and the deviation of k from 0.5 becomes non-observable in the Mössbauer rotor ex-

periments. 

 One more concrete argumentation against the hypothesis by Friedman et al is related to 

the observation that, according to eq. (6), the measured value of k should depend on the rotor ra-

dius R. Therefore, if eq. (6) along with the estimation (7) is correct, then in the experiment by 

Kündig [1] (where R=9.3 cm) the value of k must be larger than in the experiment by Kholmets-

kii et al [13] (R=30.5 cm). However, this is not the case.  

 This observation is once again strongly against the hypothesis by Friedman et al, at least 

with the value of maximal acceleration (7).  

 Being not satisfied with this outcome, Friedman & Nowik [18] claimed that only the ex-

periment by Kündig is the correct one (because, as we mentioned above, he was the only one, 

who measured the shape of resonant lines at each rotational frequency), whereas, according to 

Friedman & Nowik, the results of all other Mössbauer rotor experiments, including Kholmetskii 

et al experiment [13], are erroneous. 

 In order to substantiate this assertion, Friedman & Nowik carried out in [18] their own 

calculation of the relative energy shift between emission and absorption lines for the configura-

tion, where a resonant absorber rotates, while a source of resonant radiation is at rest in a labora-

tory frame, and thus do not spin on the rotor axis. For this configuration, a strong aberration ef-

fect does emerge, which leads to the substantial broadening of resonant line as a function of fi-

nite sizes of source, absorber and the divergence of gamma-beam.  

 Based on this result, Friedman & Nowik claimed that the broadening of resonant line, 

observed directly in the experiment by Kündig, takes place due to this aberration effect, but not 

due to mechanical vibrations in the rotor system, on the contrary to what Kündig assumed. Fur-

thermore, Friedman & Nowik asserted that the experiment by Kholmetskii et al [13] as well as 

all other Mössbauer experiments in rotating systems [2-6] are all erroneous, due to the missed 

aberration effect, they introduced in ref. [18].  

 However, the calculations by Friedman & Nowik had been carried out for the configura-

tion, which was not realized in the performed Mössbauer experiments in rotating systems [1-6, 

13], where both the source and absorber were rigidly fixed on a rotor, and even if the source is 

located on the rotational axis, it is still to be considered along with the rotational motion. In other 

words, in the configuration, realized in the Mössbauer experiments [1-6, 13] (and in the present 

one as well), the source is at rest in the rotational frame, but not in the laboratory frame. 

 Let us show that for this configuration, the aberration effect, calculated by Friedman & 

Nowik and causing the component of relative energy shift proportional to (u/c), completely dis-

appears, and the entire energy shift between emission and absorption lines is proportional to the 

ratio u
2
/c

2
 (to the accuracy of calculations (u/c)

2
), regardless of sizes of source, absorber, and di-

vergence of gamma-beam. 

 In order to prove this statement, it is sufficient to show that for two arbitrary points A and 

B on the rotor surface (see Fig. 8, where A stands for the point-like source, and B for the point-

like absorber), the relative energy shift between emission and absorption lines does not contain 

the linear terms of order (u/c). 

 For a laboratory observer, the frequency of emitted gamma-quanta is equal to [23] 








 





c

cu

A

A

em
un

1

1 22

0 , 
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where 0 in the proper frequency of gamma-quanta, uA is the velocity of point A at the emission 

moment, and n is the unit vector along the line, joining point A at the emission time moment 

with point B at the absorption time moment.  

 Correspondingly, the frequency of absorbed radiation reads as 








 









 
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






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

 
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

c
cu

c
cu

cu

c

A
B

B
A

B

B
em

ab
un

unun

11

11

1

1

22

22

0

22



 ,      (8) 

where uB is the velocity of point B at the absorption moment. 

 In order to calculate the frequency (8), we designate rA, A the radial and angular coordi-

nate of the point A at the moment of emission of gamma-quantum, and rB, B the radial and an-

gular coordinates of the point B at the moment of absorption of gamma-quantum, corresponding-

ly, see Fig. 8. With these designations, we have the following components: 

 

AB

AABB

AB

xAB

x
r

rr

r

r
n

 coscos 
 , 

 

AB

AABB

AB

yAB

y
r

rr

r

r
n

 sinsin 
 ,   (9a-b) 

BBBx ru  sin , BBBy ru  cos , AAAx ru  sin , AAAy ru  cos ,   (10a-d) 

where rAB is the distance between the point A at the emission time moment and point B and ab-

sorption time moment. 

Hence, substituting eqs. (9) and (10) into eq. (8), we derive: 


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 Thus, we see that the terms of nominator and denominator, which contain the linear com-

ponents in (u/c), mutually cancel each other, so that the frequency (energy) shift is determined by 

the second order Doppler shift alone, if we do not include the extra energy shift, discussed in the 

present paper.  

 Since equation (11) was derived for two arbitrary points A and B on a rotor surface, it 

also remains in force for any spatially extended source and absorber, and does not depend on the 

divergence of the gamma-beam. The only point is that for such spatially extended source cen-

tered on the rotational axis, the tangential velocities uA at the edge of the source and at its center, 

differ from each other, which can cause the broadening of the emitting resonance line. However, 

for a source of resonant radiation, sufficiently compact and bearing typical configurations of 

Mössbauer rotor experiments, this effect is quite negligible. For example, in the present experi-

ment, with the diameter of source 
57

Co 4 mm, we have rA=2.0 mm on its periphery. For the max-

imal rotation frequency =260 rev/s, the corresponding velocity is equal to uA=2rA 3.3 m/s, 

and the ratio uA
2
/c

2
  1.210

-16
. This ratio is well below the sensitivity of iron Mössbauer spec-

troscopy to the relative energy shifts of resonant lines (10
-13.

...10
-15

) and can be completely ig-

nored. Thus for the practical purpose we can well put uA=0 for a compact source, so that the rela-

tive frequency (or energy) shift becomes: 
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


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when the extra energy shift is not included. 

 This result shows the irrelevance of the analysis by Friedman & Nowik [18] implemented 

for the case, where the source rests in the laboratory frame. For real configurations of all of the 

Mössbauer experiments in a rotating system, where both the source and the absorber are rigidly 

fixed on a rotor, eq. (1) remains valid, and confirms the correctness of the methodological ap-

proach of these experiments. Therefore, the result of Kholmetskii et al experiment [13], just like 

the result of Kündig experiment [1], appears to be correct and, taken together, does in effect, dis-

prove the hypothesis by Friedman et al about the existence of a universal maximal acceleration 

in nature, at least at its speculated numerical value (7). 

 We can add that one more recent attempt by Zanchini [19] to re-interpret the Mössbauer 

experiments in rotating systems, where a possible contribution of the first order Doppler shift to 

the measured effect is discussed, is also erroneous, as explained in ref. [24]. 

 Thus, we have to conclude that in the Mössbauer experiments in rotating systems, the 

energy shift between emission and absorption lines is fully determined by the time dilation effect 

between a source of resonant radiation and resonant absorber. Therefore, the result k>0.5 unam-

biguously indicates that the tame rate for the nuclei of orbiting absorber experiences an extra di-

lation (in addition to the classically presumed relativistic effect), and thus, we have to seek an 

origin of this effect.  

3.2 “Conservative” relativity principle and its experimental verification in  

Mössbauer experiments in rotating systems 

In our recent paper [20] Kholmetskii et al advanced a new relativity principle, we have named 

the “conservative relativity principle” (CRP). It represents a generalization of special relativity 

principle by Einstein to the case of combined action of fields of different nature (e.g., electro-

magnetic and gravitational) on a given particle, and it is postulated in the following form: 

- it is impossible to distinguish the state of rest of any system and the state of its motion 

with constant velocity, if this system receives no work during its motion. 

 In our opinion, this principle looks very attractive (and, we believe, natural), though, as 

any other postulate, it must anyway be verified experimentally. 

 In this respect we stress the principal implication of CRP; it is the dependence of the time 

rate of a charged particle on the electric potential  at its location. Namely, for a particle with the 

rest mass m and electric charge e, this dependence is expressed by the equation [20] 

 



dt

mced e

21 ,         (12) 

where dt is the time interval, measured in empty space for a resting charged particle outside the 

electric field, and  is the Lorentz factor. One has to recall that such an occurrence was originally 

predicted by Yarman [25], with regards to the bound muon decay rate retardation, which after-

wards was well checked out in ref. [26].  

 Eq. (12) can be subjected to experimental test in the analysis of numerous data of precise 

physics of simple atoms. As shown in [20], in all cases, where the results of QED calculations 

and experimental data are already in agreement with each other, the corrections to the atomic 

energy level, induced by CPR, either disappear, or exhibit values less than the measurement un-

certainty. However, the available long-standing discrepancies between QED calculations and ex-

periments (e.g., for 1S-2S interval in positronium and 1S hyperfine splitting in positronium) are 

fully eliminated via the consideration of the requirements imposed by CRP. We also should like 

to mention that eq. (12) yields the same estimation (though with different uncertainties) for the 

proton size in the classic 2S-2P Lamb shift in hydrogen, 1S Lamb shift in hydrogen, and 2S-2P 

Lamb shift in muonic hydrogen, with the mean value rE=0.841 fm [27], which is in a perfect 
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agreement with the latest experimental data [28]. Finally, eq. (12), as stated, straightforwardly 

eliminates the deviation between theory and experiment in the measurement of decay rate of 

bound muons in meso-atoms versus their atomic numbers Z [20, 26]. 

 With respect to Mössbauer experiments in rotating systems, we are inclined to assert that 

eq. (12) may provide a key regarding the understanding of the origin of the second order extra 

energy shift, originally revealed through the analysis by Kholmetskii et al of the experiment by 

Kündig [10], then our own subsequent previous experiment [13], and furthermore, our recent 

own experiment reported here. The specific feature of such experiments is the huge centrifugal 

acceleration of resonant absorber, located on the rotor rim (of about 10
5
-10

6
 m

2
/s), which is nev-

er achieved in any other experiments with condensed matter, both in laboratory and cosmologi-

cal scales. Therefore, the resonant nuclei of absorber are expected to experience the effect of a 

local electric field, that would be created to counteract the centrifugal force with the appearance 

of corresponding local electric potential on the nuclei, never achievable in usual conditions (i.e., 

outside the rotor system).  

 Our calculations based on CRP, with regards to the additional second order energy shift 

for resonant nuclei of absorber are given in ref. [20], and they yield the approximate value k0.7 

in a good agreement with our measurements. 

 Finally, paying attention on some deviation between Kündig result k=0.5960.006 as we 

re-estimated [10] and the result of the present experiment (3), we point out that Kündig did not 

estimate possible variation of characteristics of oscillating piezo-element driving the source [1] 

due to centrifugal forces, which could lead to a systematic error of his measurements. In contrast, 

we like to emphasize that our own estimate (3) appears to be unbiased. 

 

4. Conclusion 

We emphasize that the observed substantial deviation of the coefficient k in eq. (1) from the rela-

tivistic value k=0.5 in Mössbauer experiments in rotating systems does not yet bear any explana-

tion in the framework of the standard approach. At the same time, it is highly unbelievable that 

the experimental results of [1] (as re-analyzed in [10]), [13], and the present experiment as well, 

all giving the substantial excess of k over the relativistic value 0.5, indicate any violation of the 

well-developed and recognized special theory of relativity. Rather we assume the presence of 

some missing points in relativistic physics; one of them could be the “conservative” relativity 

principle, representing the generalization of special relativity principle, and postulated in the 

form easily adopted by plain intuition. A principal implication of this novel relativity principle is 

the dependence of time rate of a charged particle on the electric potential at its location. As we 

have shown in ref. [20], this effect can play an essential role in the Mössbauer experiments in 

rotating systems, and finally explains the observed inequality k>0.5.  
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 Fig. 1. General scheme of Mössbauer experiments in rotating systems. A source of resonant radiation is 

located on the rotational axis; an absorber is located on the rotor rim, while a detector of gamma-quanta is placed 

outside the rotor system, and it counts gamma-quanta at the time moment, when source, absorber and detector are 

aligned in a straight line. 
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Fig. 2. Mössbauer spectra of absorber 1 K4
57

Fe(CN)63H2O (a) and absorber 2 Li3
57

Fe2(PO4)3 (b), obtained with the 

source 
57

Co(Cr) at room temperature TR=2952 K (calibration data), and the expected range of variation of energy 

shift between emission and absorption lines in our rotor experiment for two limited hypotheses about k. 
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Fig. 3. Idealized absorption curves for absorber 1 (a) and absorber 2 (b) calculated via eq. (1) for the shapes 

of resonant lines of both absorbers presented in Fig. 2 (no vibration case). Black points show the experimental data 

obtained with absorber 2, plotted in the relative units, where the error bar has a purely statistic origin. 
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Fig. 4. Real absorption curves for absorber 1 at different k in comparison with the experimental data, plotted in the 

relative units (black points, where the error bar has a purely statistic origin). 

 

 

 

 



 17 

 

 
 

0.02 

. . 

. 
0.01 

. 

Standar deviation D 

0.5 0.6 0.7 0.8 0.9 1.0 k 
0 

. 
. . 

. 
 

 

Fig. 5. Standard deviation between measured and calculated data for absorber 1 versus k.  
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Fig. 6. Real absorption curves for absorber 2 at different k in comparison with the experimental data for this 

absorber (black points). 
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Fig. 7. Standard deviation between measured and calculated data for absorber 2 versus k. 
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Fig. 8. Diagram for calculation of the Doppler effect in a rotating system between a point-like emitter 

(located in the point A at the emittance moment) and point-like receiver (located in the point B at the receiving 

moment). 
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Table. Comparative characteristics of the rotors systems in the present experiment and in experiment [13] 

 
Present experiment Experiment [13] 

Rotor radius, cm 16.11 30.10 

The range of rotational frequencıes, rev/s 10-260 70-110 

Velocıty range of absorber, m/s  10-260 140-220 

Maxımal centrifugal acceleration, m/s
2
  4.210

5
 1.410

5
 

Pressure in the rotor chamber, mmHg  < 1 < 50 

 

 

 
Table 2. Measured number of counts N() or absorbers 1 and 2 at different rotational frequencies  and 

corresponding relative values N()/N(=10) 

Rotation frequency 10 160 185 200 220 240 260 

Absorber 1 
N() 30865 35379 35128 35065 35010 35558 35931 

N()/N(=10) 1.000 1.146 1.138 1.136 1.134 1.152 1.164 

Absorber 2 
N() 30551 30732 30644 30547 30562 30688 30710 

N()/N(=10) 1.000 1.006 1.003 1.000 1.000 1.004 1.005 

 

 
Table 3. Broadening of resonant line for absorber 2 expressed as the ratio r=()/(=10) at different rotational 

frequencies  and different coefficients k. The uncertainty in the determination of ratio ()/(=10) is equal to 

0.05 

 

k=0.5 k=0.6 k=0.7 k=0.8 k=0.9 k=1.0 

 r  r  r  r  r  r 

10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 10 1.0 

160 2.85 160 2.90 160 2.95 160 3.05 160 3.05 160 3.10 

185 2.75 185 2.75 185 2.80 185 2.95 185 3.05 185 3.05 

200 2.55 200 2.60 200 2.80 200 2.90 200 3.05 200 3.00 

220 2.70 220 2.75 220 2.80 220 2.90 220 3.05 220 3.05 

240 3.00 240 3.10 240 3.20 240 3.20 240 3.40 240 3.45 

257 3.20 257 3.25 257 3.45 257 3.45 257 3.45 257 3.50 

 

 


