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Introduction

Interactions involving more than one pair of incident partons in the same collision have

been discussed on theoretical grounds since the introduction of the parton model to the

description of particle production in hadron-hadron collisions [1-3]. These first studies

were followed by the generalization of the Altarelli-Parisi evolution equations to the case

of multi-parton states in refs. [4, 5] and a discussion of possible correlations in the colour and

spin degrees of freedom of the incident partons [6]. In the first phenomenological studies

of such effects, the most prominent role was played by processes known as double-parton

scattering (DPS), which is the simplest case of multi-parton interactions (MPI), leading to



final states such as four leptons, four jets, three jets plus a photon, or a leptonically decaying
gauge boson accompanied by two jets [7-15]. These studies have been supplemented by
experimental measurements of DPS effects in hadron collisions at different centre-of-mass
energies, which now range over two orders of magnitude, from 63 GeV to 8 TeV [16-30],
and which have firmly established the existence of this mechanism. The abundance of MPI
phenomena at the LHC and their importance for the full picture of hadronic collisions
have reignited the phenomenological interest in DPS and have led to a deepening of its
theoretical understanding [31-39]. Despite this progress, quantitative measurements of the
effect of DPS on distributions of observables sensitive to it are affected by large systematic
uncertainties. This is a clear indication of the experimental challenges and of the complexity
of the analysis related to such measurements. Therefore, the cross-section of DPS continues
to be estimated by ignoring the likely existence of complicated correlation effects. For a
process in which a final state A + B is produced at a hadronic centre-of-mass energy /s,
the simplified formalism of refs. [12, 13] yields

. (DPS) 1 déa(s)dog(s)
= . 1.1
dO-A—Q—B ( ) 1+ 5AB O'eff(S) ( )

The quantity dap is the Kronecker delta used to construct a symmetry factor such that for
identical final states with identical phase space, the DPS cross-section is divided by two.
The ou, usually referred to as the effective cross-section, is a purely phenomenological
parameter describing the effective overlap of the spatial distribution of partons in the plane
perpendicular to the direction of motion. In hadronic collisions it was typically found to
range between 10 and 25 mb [16-30]. In eq. (1.1), the various ¢ are the parton-level cross-
sections, either for the DPS events, indicated by the subscript A 4+ B, or for the production
of a final state A or B in a single parton scatter (SPS), given by
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Here the functions f;(x, ur) are the single parton distribution functions (PDFs) which at
leading order parameterize the probability of finding a parton ¢ at a momentum fraction
x at a given factorization scale ur in the incident hadron; d®p is the invariant differential
phase-space element for the final state A; M is the perturbative matrix element for the
process ij — A; and up is the renormalization scale at which the couplings are evaluated.
To constrain the phase space to that allowed by the energy of each incoming proton, a
simple two-parton PDF is defined as

fij(b,zi, zj, pp) = T(b) filwi, pr) fi(zj, pr) O(1 — 2 — x5), (1.3)

where ©(z) is the Heaviside step function, I'(b) the area overlap function, and the = and
scale dependence of the PDF are assumed to be independent of the impact parameter b.
Eq. (1.3) reflects the omission of correlations between the partons in the proton. At high
energy, eq. (1.1) can be derived using eq. (1.3) by neglecting the contribution of the step
function.



Typically, the main challenge in measurements of DPS is to determine if the A + B
final state was produced in an SPS via the 2 — 4 process or in DPS through two inde-
pendent 2 — 2 interactions. In one of the first studies of DPS in four-jet production at
hadron colliders [10] the kinematic configuration in which there is a pairwise balance of
the transverse momenta (pr) of the jets was identified as increasing the contribution of the
DPS mechanism relative to the perturbative QCD production of four jets in SPS. The idea
is that in typical 2 — 2 scattering processes the two outgoing particles — here the partons
identified as jets — are oriented back-to-back in transverse plane such that their net trans-
verse momentum is zero. Corrections to this simple picture include initial- and final-state
radiation as well as fragmentation and hadronization. In addition, recoil against the under-
lying event can modify the four-momentum of the overall final-state particle configuration.
In attempting to describe all of these features, Monte Carlo (MC) event generators form
an integral part, providing a link between the experimentally observed jets and the simple
partonic picture of DPS as two almost independent 2 — 2 scatters.

An analysis of inclusive four-jet events produced in proton-proton collisions at a centre-
of-mass energy of /s = 7 TeV at the LHC and collected during 2010 with the ATLAS
detector is presented here. The topology of the four jets is exploited to construct observ-
ables sensitive to the DPS contribution. The DPS contribution to the four-jet final state is
estimated and combined with the measured inclusive dijet and four-jet cross-sections in the
appropriate phase space regions to determine o.. The normalized differential four-jet cross-
sections as a function of DPS-sensitive observables are measured and presented here as well.

2 Analysis strategy

To extract oug in the four-jet final state, eq. (1.1) is rearranged as follows. The differential
cross-sections in eq. (1.1) are rewritten for the four-jet and dijet final states and integrated
over the phase space defined by the selection requirements of the dijet phase space regions
A and B. This yields the following expression for the DPS cross-section in the four-jet final

state: N
B
opps — 1 7% (2.1)
4 14+ 0AB Ouit

where cr% and 0123j are the cross-sections for dijet events in the phase space regions labelled A
and B respectively. The assumed dependence of the cross-sections and g.g on s is omitted
for simplicity. The DPS cross-section may be expressed as

JEJ-PS = fops - 04j, (2.2)
where o0y is the inclusive cross-section for four-jet events in the phase-space region A @ B,
including all four-jet final states, namely both the SPS and DPS topologies, and where
fpps represents the fraction of DPS events in these four-jet final states. The expression
for o, then becomes,
1 1 oy03,

14 daB fops 04
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To extract o, it is therefore necessary to measure three cross-sections, O'2Aj, 0'2Bj and oy,
and estimate fppg .

The four-jet and dijet final states are defined inclusively [40, 41] such that at least four
jets or two jets respectively are required in the event, while no restrictions are applied to
additional jets. When measuring the cross-section of n-jet events, the leading (highest-pr)
n jets in the event are considered. The general expression for the measured four-jet and
dijet cross-sections may be written as

JR— Nn j
Coilny

Onj

(2.4)

where the subscript nj denotes either dijet (2j) or four-jet (4j) topologies. For each nj
channel, N,; is the number of observed events, C,; is the correction for detector effects,
particularly due to the jet energy scale and resolution, and L,; is the corresponding proton-
proton integrated luminosity.

The DPS model contributes in two ways to the production of events with at least
four jets, leading to two separate event classifications. In one contribution, the secondary
scatter produces two of the four leading jets in the event; such events are classified as
complete-DPS (¢DPS). In the second contribution of DPS to four-jet production, three of
the four leading jets are produced in the hardest scatter, and the fourth jet is produced in
the secondary scatter; such events are classified as semi-DPS (sDPS). The DPS fraction is
therefore rewritten as fpps = fepps + fspps, and fopps and fspps are both determined
from data. The dijet cross-sections in eq. (2.3) do not require any modification since they
are all inclusive cross-sections, i.e., the three-jet cross-section accounting for the production
of an sDPS event is already included in the dijet cross-sections.

Denoting the observed cross-section at the detector level by

N,
Snj = ETJJ , (2.5)

and the ratio of the corrections for detector effects by

4 Cyj
2 = GROB - (2.6)
yields the expression from which o.¢ is determined,
1 ay]  S4S)
Oeft ! 1 (2.7)
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The main challenge of the measurement is the extraction of fpps = fepps + fspps from
optimally selected measured observables. An artificial neural network (NN) is used for the
classification of events [42], using as input various observables sensitive to the contribution
of DPS. The differential distributions of these observables are also presented here.



3 The ATLAS detector

The ATLAS detector is described in detail in ref. [43]. In this analysis, the tracking
detectors are used to define candidate collision events by constructing vertices from tracks,
and the calorimeters are used to reconstruct jets.

The inner detector used for tracking and particle identification has complete azimuthal
coverage and spans the pseudorapidity region |n| < 2.5.! It consists of layers of silicon
pixel detectors, silicon microstrip detectors, and transition-radiation tracking detectors,
surrounded by a solenoid magnet that provides a uniform axial field of 2 T.

The electromagnetic calorimetry is provided by the liquid argon (LAr) calorimeters
that are split into three regions: the barrel (|n| < 1.475) and the endcap (1.375 < || < 3.2)
regions which consist LAr/Pb calorimeter modules, and the forward (FCal: 3.1 < |n| < 4.9)
region which utilizes LAr/Cu modules. The hadronic calorimeter is divided into four
distinct regions: the barrel (|n| < 0.8), the extended barrel (0.8 < |n| < 1.7), both of
which are scintillator /steel sampling calorimeters, the hadronic endcap (1.5 < |n| < 3.2),
which has LAr/Cu calorimeter modules, and the hadronic FCal (same n-range as for the
EM-FCal) which uses LAr/W modules. The calorimeter covers the range |n| < 4.9.

The trigger system for the ATLAS detector consists of a hardware-based level-1 trigger
(L1) and the software-based high-level trigger (HLT) [44]. Jets are first identified at L1
using a sliding-window algorithm from coarse granularity calorimeter towers. This is refined
using jets reconstructed from calorimeter cells in the HLT. Three different triggers are used
to select events for this measurement: the minimum-bias trigger scintillators, the central
jet trigger (|n| < 3.2) and the forward jet trigger (3.1 < |n| < 4.9). The jet triggers require
at least one jet in the event.

4 Monte Carlo simulation

Multi-jet events were generated using fixed-order QCD matrix elements (2 — n, with
n = 2,3,4,5,6) with ALPGEN 2.14 [45] utilizing the CTEQ6L1 PDF set [46], interfaced
to JIMMY [47] and HERWIG 6.520 [48]. The events were generated using the AUET2 [49]
set of parameters (tune), optimized to describe underlying-event distributions obtained
from a subsample of the 2010, 7 TeV ATLAS data as well as from the Tevatron and LEP
experiments. The MLM [50] matching scale, which divides the parton emission phase
space into regions modelled either by the perturbative matrix-element calculation or by
the shower resummation, was set to 15 GeV. The implication of this choice is that partons
with pr > 15 GeV in the final state originate from matrix elements, and not from the
parton shower. Event-record information was used to extract a sample of SPS candidate

LATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis along the beam pipe. The z-axis points from the IP to the centre
of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ¢) are used in the transverse
plane, ¢ being the azimuthal angle around the beam pipe, referred to the x-axis. The pseudorapidity is

defined in terms of the polar angle 6 with respect to the beamline as 7 = — Intan(8/2). When dealing with

E+p-

Eﬁpz) is used, where E is the jet energy and p. is the

massive jets and particles, the rapidity y = %ln (

z-component of the jet momentum.



events from the sample generated with the ALPGEN + HERWIG 4+ JIMMY MC combination
(AHJ). A sample of candidate DPS events was also extracted from AHJ in order to study
the topology of such events and validate the measurement methodology.

An additional AHJ sample was available that differed only in its use of the earlier
AUET1 [51] tune. Because this sample contained three times as many events, it was used
to derive the corrections for detector effects in all differential distributions in the data.

Tree-level matrix elements with up to five outgoing partons were used to generate a
sample of multi-jet events without multi-parton interactions using SHERPA 1.4.2 [52, 53]
with the CT10 PDF set [54] and the default SHERPA tune. The CKKW [55, 56] matching
scale, similarly to the MLM one, was set to 15 GeV. This SPS sample was compared to
the SPS sample extracted from the AHJ sample for validation purposes.

In addition, a sample of multi-jet events was generated with PYTHIA 6.425 [57] using
a 2 — 2 matrix element at leading order with additional radiation modelled in the leading-
logarithmic approximation by pr-ordered parton showers. The sample was generated uti-
lizing the modified leading-order PDF set MRST LO* [58] with the AMBT1 [59] tune.

To account for the effects of multiple proton-proton interactions in the LHC (pile-
up), the multi-jet events were overlaid with inelastic soft QCD events generated with
PyTHIA 6.423 using the MRST LO* PDF set with the AMBT1 tune. All the events
were processed through the ATLAS detector simulation framework [60], which is based on
GEANT4 [61]. They were then reconstructed and analysed by the same program chain used
for the data.

5 Cross-section measurements

5.1 Data set and event selection

The measurement presented here is based on the full ATLAS 2010 data sample from proton-
proton collisions at /s = 7 TeV. The trigger conditions evolved during the year with
changing thresholds and prescales. A full description of the trigger strategy, developed and
used for the measurement of the dijet cross-section using 2010 data, is given in ref. [62]. For
the events in the samples used in this study, the trigger was fully efficient. In total, the data
used correspond to a luminosity of 37.3 pb™!, with a systematic uncertainty of 3.5% [63].
This data set was chosen because it has a low number of proton-proton interactions per
bunch crossing, averaging to approximately 0.4. It was therefore possible to collect multi-jet
events with low pr thresholds and to efficiently select events with exactly one reconstructed
vertex (single-vertex events), thereby removing any contribution from pile-up collisions to
the four-jet final-state topologies.

To reject events initiated by cosmic-ray muons and other non-collision backgrounds,
events were required to have at least one reconstructed primary vertex, defined as a vertex
that is consistent with the beam spot and is associated with at least five tracks with
transverse momentum p%faCk > 150 MeV. The efficiency for collision events to pass these
requirements was over 99%, while the contribution from fake vertices was negligible [62, 64].

Jets were identified using the anti-k; jet algorithm [65], implemented in the FAST-
JET [66] package, with radius parameter R = 0.6. The inputs to jet reconstruction are



the energies in three-dimensional topological clusters [67, 68] built from calorimeter cells,
calibrated at the electromagnetic (EM) scale.? A jet energy calibration was subsequently
applied at the jet level, relating the jet energy measured with the ATLAS calorimeter to the
true energy of the stable particles entering the detector. A full description of the jet energy
calibration is given in ref. [64]. For the MC samples, particle jets were built from particles
with a lifetime longer than 30 ps in the Monte Carlo event record, excluding muons and
neutrinos.

For the purpose of measuring o.g in the four-jet final state, three samples of events
were selected, two dijet samples and one four-jet sample. The former two samples have at
least two, and the latter at least four, jets in the final state, where each jet was required
to have pr > 20 GeV and |n| < 4.4. In each event, jets were sorted in decreasing order of
their transverse momenta. The transverse momentum of the i jet is denoted by p?r and
the jet with the highest pr (p%) is referred to as the leading jet. To ensure 100% trigger
efficiency, the leading jet in four-jet events was required to have pt > 42.5 GeV.

The selection requirements for the dijet samples were dictated by those used to select
four-jet events. In one class of dijet events, the requirement on the transverse momentum of
the leading jet must be equivalent to the requirement on the leading jet in four-jet events,
prlF > 42.5 GeV. The other type of dijet event corresponds to the sub-leading pair of jets in
the four-jet event, with a requirement of pt > 20 GeV. In the following, the cross-section
for dijets selected with plT > 20 GeV is denoted by a% and the cross-section for dijets with
plT > 42.5 GeV is denoted by O'QBj.

To summarize, the measurement was performed using the dijet A sample and its two
subsamples (dijet B and four-jet), selected using the following requirements:

Dijet A: Njet > 2, pp > 20 GeV ph > 20 GeV | Imo| < 4.4,
Dijet B: Njet > 2, pp>425GeV,  pf > 20 GeV, Mol <44, (5.1)
Four-jet: Nijex >4, ph > 425 GeV | p?f’3’4 >20 GeV, |masal <44,

where Nje; denotes the number of reconstructed jets. All of the selected events were cor-
rected for jet reconstruction and trigger inefficiencies, the corrections ranging from 2%-4%
for low-pr jets to less than 1% for jets with pp > 60 GeV. The observed distributions of the
pr and y of the four leading jets in the events are shown in figures 1(a) and 1(b) respectively.

5.2 Correction for detector effects

The correction for detector effects was estimated separately for each class of events using
the PyTHIA6 MC sample. The same restrictions on the phase space of reconstructed jets,
defined in eq. (5.1), were applied to particle jets. The correction is given by

A B reco
L (5.2)
nj NA,B particle :
nj

2The electromagnetic scale is the basic calorimeter signal scale to which the ATLAS calorimeters are
calibrated. It was established using test-beam measurements for electrons and muons to give the correct
response for the energy deposited by electromagnetic showers, while it does not correct for the lower response
to hadrons.
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Figure 1. Distributions of the (a) transverse momentum, pr, and (b) rapidity, y, of the four

highest-pr jets, denoted by p%2’3’4 and 1 23,4, in four-jet events in data selected in the phase space

as defined in the legend.

where N:Z-’B reco (N;Z.’B particley i¢ the number of n-jet events passing the A-or-B selection
requirements using reconstructed (particle) jets.

This correction is sensitive to the migration of events into and out of the phase space
of the measurement. Due to the very steep jet-pt spectrum in dijet and four-jet events, it
is crucial to have good agreement between the jet pr spectra in data and in MC simulation
close to the selection threshold before calculating the correction. Therefore, the jet pr
threshold was lowered to 10 GeV and the fiducial |n| range was increased to 4.5 for both
the reconstructed and particle jets, and the MC events were reweighted such that the jet
pr—y distributions reproduced those measured in data. The value of a;lj: (see eq. (2.6)), as

determined from the reweighted MC events, is
ayl =0.93+0.01 (stat.) , (5.3)

where the uncertainty is statistical. The systematic uncertainties are discussed in section 7.

6 Determination of the fraction of DPS events

The main challenge in the measurement of . is to estimate the DPS contribution to the
four-jet data sample. It is impossible to extract ¢cDPS and sDPS candidate events on an
event-by-event basis. Therefore, the usual approach adopted is to fit the distributions of
variables sensitive to cDPS and sDPS in the data to a combination of templates for the
expected SPS, ¢cDPS and sDPS contributions. The template for the SPS contribution is
extracted from the AHJ MC sample, while the cDPS and sDPS templates are obtained
by overlaying two events from the data. In addition to assuming that the two interactions



producing the four-jet final state in a DPS event are kinematically decoupled, the analysis
relies on the assumption that the SPS template from AHJ properly describes the expected
topology of four-jet production in a single interaction. The latter assumption is supported
by the observation of good agreement between various distributions in the SPS samples
in AHJ and in SHERPA. To exploit the full spectrum of variables sensitive to the various
contributions and their correlations, the classification was performed with an artificial
neural network.

6.1 Template samples

Differences were observed when comparing the pr and y distributions in data with those
in AHJ. Therefore, before extracting template samples, the events in the four-jet AHJ
sample selected with the requirements detailed in eq. (5.1) are reweighted such that they
reproduce the distributions in data.

In events generated in AHJ, the outgoing partons can be assigned to the primary
interaction from the ALPGEN generator or to a secondary interaction, generated by JIMMY,
based on the MC generator’s event record. The former are referred to as primary-scatter
partons and the latter as secondary-scatter partons. The pr of secondary-scatter partons
was required to be pr > 15 GeV in order to match the minimum prt of primary-scatter
partons set by the MLM matching scale in AHJ. Once the outgoing partons were classified,
the jets in the event were matched to outgoing partons and the event was classified as an
SPS, ¢cDPS or sDPS event.

The matching of jets to partons is done in the ¢—y plane by calculating the angular
distance, ARparton—jet; between the jet and the outgoing parton as

A‘Rparton—jet = \/(yparton - yjet)2 + (d’parton - ¢jet)2 . (61)

For 99% of the primary-scatter partons, the parton can be matched to a jet within
ARparton—jet < 1.0, which was therefore used as a requirement for the matching of jets
and partons. Jets were first matched to primary-scatter partons and the remaining jets
were matched to secondary-scatter partons.

Events in which none of the leading four jets match a secondary-scatter parton were
assigned to the SPS sample. This method of obtaining an SPS sample is preferred over
turning off the MPI module in the generator since it retains all of the soft MPI and
underlying activity in the selected SPS events. Events were classified as cDPS events if two
of the four leading jets match primary-scatter partons and the other two match secondary-
scatter partons. Events in which three of the leading jets match primary-scatter partons
and the fourth jet matches a secondary-scatter parton were classified as sDPS events.

Four-jet DPS events were modelled by overlaying two different events. To reduce any
dependence of the measurement on the modelling of jet production, this construction used
events from data rather than MC simulation. Complete-DPS events were built using dijet
events from the A and B samples selected from data (see eq. (5.1)). To build sDPS events,



two other samples were selected with the following requirements:

One-jet: Njg > 1, pp>20GeV, |g| <44,

(6.2)
Three-jet: Nijet > 3, pr > 425 GeV | p%’?’ >20GeV, |mag| <44.

The overlay was performed at the reconstructed jet level. When constructing cDPS and
sDPS events the following conditions were imposed for a given pair of events to be overlaid:

e none of the four jets contains the axis of one of the other jets, i.e., ARjet—jet > 0.6;
e the vertices of the two overlaid events are no more than 10 mm apart in the z direction;

e when building cDPS events, each of the overlaid events contributes two jets to the
four leading jets in the constructed event;

e when building sDPS events, one of the overlaid events contributes three jets to the
four leading jets in the constructed event and the other contributes one jet.

The first condition ensures that none of the jets would be merged if the four-jet event had
been reconstructed as a real event; the second condition avoids possible kinematic bias
due to events where two jet pairs originate from far-away vertices; the last two conditions
enforce the appropriate composition of the four leading jets in the constructed event.

As is discussed in section 6.4, the topology of ¢cDPS and sDPS events constructed by
overlaying two events is compared to the topology of cDPS and sDPS events extracted
from the AHJ sample respectively.

6.2 Kinematic characteristics of event classes

In ¢cDPS, double dijet production should result in pairwise pp-balanced jets with a distance
|1 — ¢2| &= 7 between the jets in each pair. In addition, the azimuthal angle between the
two planes of interactions is expected to have a uniform random distribution. In SPS,
the pairwise pt balancing of jets is not as likely; therefore the topology of the four jets is
expected to be different for cDPS and SPS.

The topology of three of the jets in sDPS events would resemble the topology of the
jets in SPS interactions. The fourth jet initiated by the primary interaction in an SPS
is expected to be closer, in the ¢—y plane, to the other three jets originating from that
interaction. In an sDPS event, the jet produced in the secondary interaction would be
emitted in a random direction relative to the other three jets.

In constructing possible differentiating variables, three guiding principles were followed:

1. use pairwise relations that have the potential to differentiate between SPS and cDPS
topologies;

2. include angular relations between all jets in light of the expected topology of sDPS
events;

3. attempt to construct variables least sensitive to systematic uncertainties.

~10 -



The first two guidelines encapsulate the different characteristics of SPS and DPS events.
The third guideline led to the usage of ratios of pr in order to avoid large dependencies
on the jet energy scale (JES) uncertainty. Various studies, including the use of a principal
component analysis [69], led to the following list of candidate variables for distinguishing
event topologies:

APT L% P A¢ |pi — @5 A | |

pr _ |7 . =i — bil: Ayir = |yi — vl

] pzf —i—p]T v ? J v 2 J (6.3)
|p112 — P344]; |p143 — d214]; |p144 — P243];

where pif, ﬁ{}, y; and ¢; stand for the scalar and vectorial transverse momentum, the
rapidity and the azimuthal angle of jet i respectively, with i = 1,2, 3,4. The variables with
the subscript ij are calculated for all possible jet combinations. The term ¢;; denotes the
azimuthal angle of the four-vector obtained by the sum of jets i and j.

In the following, the pairing notation {(i,7)(k,[)} is used to describe a ¢cDPS event in
which jets ¢ and j originate from one interaction and jets k and [ originate from the other.
In around 85% of ¢DPS events, the two leading jets originate from one interaction and
jets 3 and 4 originate from the other.

Normalized distributions of the A} and AL} variables in the three samples (SPS,
cDPS and sDPS) are shown in figures 2(a) and 2(b). In the ¢cDPS sample, the AT and
AET distributions peak at low values, indicating that both the leading and the sub-leading
jet pairs are balanced in pp. The small peak around unity is due to events in which the
appropriate pairing of the jets is {(1,3)(2,4)} or {(1,4)(2,3)}. In the SPS and sDPS
samples, the leading jet-pair exhibits a wider peak at higher values of A}J compared to
that in the cDPS sample. This indicates that the two leading jets are not well balanced in
pr since a significant fraction of the hard-scatter momentum is carried by additional jets.

The A¢sy distributions in the three samples are shown in figure 2(c). The pr balance
between the jets seen in the Af] distribution in the ¢cDPS sample is reflected in the Agsy
distribution. The Ag¢34 distribution is almost uniform for the SPS and sDPS samples.
The correlation between the distributions of the AL] and Agsy variables can be readily
understood through the following approximation: p‘:} R~ p4T ~ pr. The expression for ALY
then becomes

o ’ﬁ% +ﬁ%} N \/QpT + 2p7 cos(Adsq) _ \/1 + cos(Adgsq)

APT — . 6.4
M pl 4k 2pr V2 (6.4)

The peak around unity observed in the AL} distributions in the SPS and sDPS samples is
thus a direct consequence of the Jacobian of the relation between AL and Agss.

The set of variables quantifying the distance between jets in rapidity, Ay;;, is partic-
ularly important for the sDPS topology. The colour flow is different in SPS leading to the
four-jet final state and results in smaller angles between the sub-leading jets. Hence, on
average, smaller distances between non-leading jets are expected in the SPS sample com-
pared to the sDPS sample. This is observed in the comparison of the Ays4 distributions
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Figure 2. Normalized distributions of the variables, (a) ATT, (b) ALL, (¢) Ag¢sq and (d) Aysa,
defined in eq. (6.3), for the SPS, ¢cDPS and sDPS samples as indicated in the legend. The hatched
areas, where visible, represent the statistical uncertainties for each sample.

shown in figure 2(d), where the distribution in the sDPS sample is slightly wider than in
the other two samples.

The study of the various distributions in the three samples is summed up as follows:

e Strong correlations between all variables are observed. The AZ.T and Ag;; variables
are correlated in a non-linear way, while geometrical constraints correlate the Ay;;
and A¢;; variables. Transverse momentum conservation correlates the ¢;; — ¢4
variables with the Aij and Ag¢;; variables.
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e None of the variables displays a clear separation between all three samples. The vari-
ables in which a large difference is observed between the SPS and ¢cDPS distributions,
e.g., AL}, do not provide any differentiating power between SPS and sDPS.

e All variables are important — in cDPS events, where the pairing of the jets is different
from {(1,2)(3,4)}, variables relating the other possible pairs, e.g., A¢13, may indicate
which is the correct pairing.

These conclusions led to the decision to use a multivariate technique in the form of an NN
to perform event classification.

6.3 Extraction of the fraction of DPS events using an artificial neural network

For the purpose of training the NN, events from each sample were divided into two sta-
tistically independent subsamples, the training sample and the test sample. The former
was used to train the NN and the latter to test the robustness of the result. To avoid bias
during training, the events in the SPS, cDPS and sDPS training samples were reweighted
such that each sample contributed a third of the total sum of weights. In all subsequent
figures, only the test samples are shown.

The NN used is a feed-forward multilayer perceptron with two hidden layers, imple-
mented in the ROOT analysis framework [70]. The input layer has 21 neurons, corre-
sponding to the variables defined in eq. (6.3), and the first and second hidden layers have
42 and 12 neurons respectively. These choices represent the product of a study conducted
to optimize the performance of the NN and balance the complexity of the network with the
computation time of the training. The output of the NN consists of three variables, which
are interpreted as the probability for an event to be more like SPS (ésps), cDPS (&{cpps) or
sDPS (&pps). During training, each event is marked as belonging to one of the samples;
e.g., an event from the cDPS sample is marked as

Esps =0, &epps =1, &pps = 0. (6.5)

For each event, the three outputs are plotted as a single point inside an equilateral triangle
(ternary plot) using the constraint £sps+&.pps+E&spps = 1. A point in the triangle expresses
the three probabilities as three distances from each of the sides of the triangle. The vertices
would therefore be populated by events with high probability to belong to a single sample.
Figure 3 shows an illustration of the ternary plot, where the horizontal axis corresponds to
%stPS + %SCDPS and the vertical axis to the value of &pps. The coloured areas illustrate
where each of the three classes of events is expected to populate the ternary plot.

Figures 4(a), 4(b) and 4(c) show the NN output distribution for the test samples in the
ternary plot, presenting the separation power of the NN. The SPS-type events are mostly
found in the bottom left corner in figure 4(a). However, a ridge of SPS events extending
towards the sDPS corner is observed as well. A contribution from SPS events is also visible
in the bottom right corner. The clearest peak is seen for events from the cDPS sample in
the bottom right corner in figure 4(b). A visible cluster of sDPS events is seen in figure 4(c)
concentrated around &pps ~ 0.75 and there is a tail of events along the side connecting
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gﬂDPS

cDPS

\/%stPs + %SCDPS

Figure 3. Illustration of the ternary plot constructed from three NN outputs, sps, &epps,
and &pps, with the constraint, £sps + Ecpps + &pps = 1. The vertical and horizontal axes are
defined in the figure. The coloured areas illustrate the classes of events expected to populate the
corresponding vertices.

the SPS and sDPS corners. The NN output distribution in the data, shown in figure 4(d),
is visually consistent with a superposition of the three components, SPS, cDPS and sDPS.

Based on these observations, it is clear that event classification on an event-by-event
basis is not possible. However, the differences between the SPS, cDPS and sDPS distri-
butions suggest that an estimation of the different contributions can be performed. To
estimate the cDPS and sDPS fractions in four-jet events, the ternary distribution in data
(D) is fitted to a weighted sum of the ternary distributions in the SPS (Msgpg), cDPS
(Mcpps) and sDPS (Mgpps) samples, each normalized to the measured four-jet cross-
section in data, with the fractions as free parameters. The optimal fractions were obtained
using a fit of the form,

D = (1 — feops — fspps)Msps + feprsMepps + fspPsMespps (6.6)

where a x? minimization was performed, as implemented in the MINUIT [71] package in
ROOQT, taking into account the statistical uncertainties of all the samples in each bin. The
results of the fit are presented in section 8, after the methodology validation and discussion
of systematic uncertainties.

6.4 Methodology validation

A sizeable discrepancy was found in the AL} and Aggy distributions between the data
and AHJ (See section 9 for details), suggesting that there are more sub-leading jets
(jets 3 and 4) that are back-to-back in AHJ than in the data. In order to test that
the discrepancies are not from mis-modelling of SPS in AHJ, the AL} and Agsy distribu-
tions in the SPS sample extracted from AHJ were compared to the distributions in the
SPS sample generated in SHERPA. Good agreement between the shapes of the distributions
was observed for both variables. This and further studies indicate that the excess of events
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Figure 4. Normalized distributions of the NN outputs, mapped to a ternary plot as described in
the text, in the (a) SPS, (b) ¢cDPS, (¢) sDPS test samples and (d) in the data.

with jets 3 and 4 in the back-to-back topology is due to an excess of DPS events in the

AHJ sample compared to the data.

In order to verify that the topologies of cDPS and sDPS events can be reproduced by

overlaying two events, the overlay samples are compared to the cDPS and sDPS samples

extracted from AHJ. An extensive comparison between the distributions of the variables

used as input to the NN in the overlay samples and in AHJ was performed and good

agreement was observed. This can be summarized by comparing the NN output distribu-
tions. The NN is applied to the cDPS and sDPS samples extracted from AHJ and the
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Figure 5. Comparison between the normalized distributions of the NN outputs %stps—F%fCDps,
integrated over all {sppg values 0.0 < &pps < 1.0, in DPS events extracted from AHJ and in the
DPS samples constructed by overlaying events from data, for (a) cDPS events and (b) sDPS events.
In the AHJ distributions, statistical uncertainties are shown as the hatched area and the shaded
area represents the sum in quadrature of the statistical and systematic uncertainties.

output distributions are compared to the output distributions in the corresponding sam-
ples constructed by overlaying events selected from data. Normalized distributions of the
projection of the full ternary plot on the horizontal axis are shown in figures 5(a) and 5(b)
for the cDPS and sDPS samples respectively. Good agreement is observed between the
distributions. Based on these results, it is concluded that the topology of the four jets in
the overlaid events is comparable to that of the four leading jets in DPS events extracted
from AHJ. The added advantage of using overlaid events from data to construct the DPS
samples is that the jets are at the same JES as the jets in four-jet events in data, leading
to a smaller systematic uncertainty in the final result.

As an additional validation step, the NN is applied to the inclusive AHJ sample and
the resulting distribution is fitted with the NN output distributions of the SPS, ¢cDPS and
sDPS samples. The fraction obtained from the fit, f]gl\gg) , is compared to the fraction at

parton level, f]gl;)s , extracted from the event record,
fé“ﬁg) = 0.129 £ 0.007 (stat.), f](;)s = 0.142 4 0.001 (stat.). (6.7)

Fair agreement is observed between the value obtained from the fit and that at parton

)

statistical power due to the use of a template fit to estimate the former.

level. The larger statistical uncertainty in fl()l\l/)[g compared to fl()ﬁ;)s reflects the loss of

7 Systematic uncertainties

For jets with 20 < pr < 30 GeV, the fractional JES uncertainty is about 4.5% in the
central region of the detector, rising to about 10% in the forward region [64]. The overall
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Source of systematic uncertainty A fpps Aag JANA:

Luminosity +3.5%
Model dependence for detector corrections +2% +2%
Reweighting of AHJ +6 % +6 %
Jet reconstruction efficiency +0.1%
Single-vertex events selection +0.1%
Jet energy and angular resolution +15% +£3% £15%
JES uncertainty fgg % *12% f% %
Total systematic uncertainty fig % +13% fgg %

Table 1. Summary of the relative systematic uncertainties in fppg , agg and ouf.

impact of the JES on the distributions, fpps and 0/21;: was estimated by shifting the jet
energy upwards and downwards in the MC samples by the JES uncertainty and repeating
the analysis. Similarly, the overall impact of the jet energy and angular resolution was
determined by varying the jet energy and angular resolution in the MC samples by the
corresponding resolution uncertainty [72].

The systematic uncertainties in the measured cross-sections due to the integrated lu-
minosity measurement uncertainty (£3.5%), the jet reconstruction efficiency uncertainty
(+£2%) and the uncertainty as a result of selecting single-vertex events (+0.5%) were prop-
agated to the uncertainty in geg.

The statistical uncertainty in the AHJ sample was translated to a systematic uncer-
tainty in fppg by varying the reweighting function used to reweight AHJ and repeating
the analysis.

The statistical uncertainty in 0/2% (~1%) was propagated as a systematic uncertainty

in oe. The systematic uncertainty in 0/2? arising from model-dependence (+2%) was de-

termined from deriving 0/21;: using SHERPA.

The stability of the value of g relative to the various parameter values used in the
measurement was studied. Parameters such as p%arton and ARje;—jet were varied and the
requirement A Rparton—jet < 0.6 was applied, leading to a relative change in oeg of the order
of a few percent. Since the observed relative changes are small compared to the statistical
uncertainty in o, no systematic uncertainty was assigned due to these parameters.

The relative systematic uncertainties in fppg, 0/21;: and o.g are summarized in table 1.
The dominant systematic uncertainty on fppg originates from the JES variation. A varia-
tion in the JES results in a modification of the NN output distribution for the SPS template

used in the fit, which directly impacts the value of fpps.

8 Determination of o.g

To determine fpps and oo and their statistical uncertainties taking into account all of the
correlations, many replica fits were performed by random sampling from the NN output
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distributions. The systematic uncertainties were obtained by propagating the expected
variations into this analysis, and the resulting shifts were added in quadrature. The result
for fDPS is
fops = 0.092 1009 (stat.) T0635 (syst.), (8.1)

where the contribution of fspps to fpps was found to be about 40%. The fraction of DPS
estimated in data is 651%?% of the fraction in AHJ as extracted from the event record
(see eq. (6.7)). Taking into account the systematic uncertainties in the calculation of the
goodness-of-fit x2, a value for x?/Npr of 112/84 = 1.3 is obtained, where Npp is the
number of degrees of freedom in the fit.

In order to visualize the results of the fit, the ternary distribution is divided into five
slices,

e 0.0 <¢&pps < 0.1,

e 0.1 <¢&5pps < 0.3,

0.3 < &pps < 0.5,

0.5 < &pps < 0.7,
o 0.7 < ¢&pps < 1.0.

A comparison of the fit distributions with the distributions in data in the five slices of
the ternary plot is shown in figure 6. Considering the systematic uncertainties, the most
significant difference between the data and the fit is seen for the two left-most bins in
the range 0.0 < &pps < 0.1 (figure 6(a)) of the ternary plot. These bins are dominated
by the SPS contribution. Thus, a discrepancy between the data and the fit result in
these bins is expected to have a negligible effect on the measurement of the DPS rate. A
discrepancy between the data and the fit result is also observed in the three rightmost bins
in figure 6(a). These bins have about a 30% contribution from c¢DPS. To test the effect of
this discrepancy on the description of observables in data, the distributions of the various
variables in data were compared to a combination of the distributions in the SPS, cDPS
and sDPS samples, normalizing the latter three distributions to their respective fractions
in the data as obtained in the fit. This comparison for the AL} and Agsy variables is shown
in figure 7, where a good description of the data is observed. The same level of agreement
is seen for all the variables.

Before calculating oe, the symmetry factor in eq. (2.3) has to be adjusted because
there is an overlap in the cross-sections a‘;j and og’j when the leading jet in sample A has
pr > 42.5 GeV (see eq. (5.1)). The adjusted symmetry factor is

1 105

— 1 — ——% =0.9353 £ 0.0003 (stat.), 8.2
1+ o 20} (stat.) (82)

as determined from the measured dijet cross-sections. This factor was also determined
using PYTHIA6 and good agreement was observed between the two values. The relative
difference in the value of oo obtained by using the symmetry factors extracted from the
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data and from PYTHIAG was of the order of 0.2%, a negligible difference compared to the
statistical uncertainty of oug.

An additional correction of +4% is applied to the measured DPS cross-section due to
the probability of jets from the secondary interaction overlapping with jets from the primary
interaction. In this configuration, the anti-k; algorithm merges the two overlapping jets
into one, and hence the event cannot pass the four-jet requirement. The value of this
correction was determined from the fraction of phase space occupied by a jet. It was also
determined directly in AHJ and good agreement between the two values was observed.

Finally, the measurements of the dijet and four-jet cross-sections can be used to cal-
culate the effective cross-section, yielding

Oott = 14.9 T3 (stat.) T34 (syst.) mb. (8.3)

This value is consistent within the quoted uncertainties with previous measurements, per-
formed by the ATLAS collaboration and by other experiments [16-30], all of which are
summarized in figure 8. Figure 9 shows o.g as a function of /s, where the AFS result
and some of the LHCD results are omitted for clarity. Within the large uncertainties, the
measurements are consistent with no /s dependence of .. The oo value obtained is
21fg% of the inelastic cross-section, oipel, measured by ATLAS at /s =7 TeV [73].

9 Normalized differential cross-sections

To allow the results of this study to be used in future comparisons with MPI models,
the distributions of the variables used as input to the NN were corrected for detector
effects. The corrections were derived using an iterative unfolding, producing an unfolding
matrix for each observable, relating the particle-level and reconstructed-level quantities.
These matrices were derived using samples of four-jet events selected from the AHJ and
PYTHIA6 samples by imposing the cuts detailed in eq. (5.1) on particle jets. The AHJ
sample generated with the AUET1 tune was used to derive the unfolding matrix. The
distributions were unfolded with the Bayesian unfolding algorithm, implemented in the
RooUnfold package [74], using two iterations.

The unfolding matrices derived from AHJ were taken as the nominal matrices and
the differences observed when using the matrices derived from PYTHIAG were used as an
additional systematic uncertainty, typically of the order of a few percent in each bin.
The total systematic uncertainty of the differential distributions in data was obtained by
summing in quadrature the uncertainty due to MC modelling in a given bin with the
systematic uncertainties in this bin due to the JES and jet energy and angular resolution
uncertainties, while preserving correlations between bins. Figure 10 shows the normalized
differential cross-section distribution in data for the A} and Aggy variables compared
to the particle-level distributions in the AHJ samples generated with the AUET1 and
AUET?2 tunes. The particle-level distributions in the AUET2 AHJ sample overestimate
the normalized differential cross-section distributions in data in the regions AL} < 0.15 and
Agsy > 2.8, demonstrating the excess of the DPS contribution in this sample compared
to the data. On the other hand, the DPS contribution in the data is underestimated by
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Figure 8. The effective cross-section, o.g, determined in various final states and in different exper-
iments [16-30]. The inner error bars (where visible) correspond to the statistical uncertainties and
the outer error bars represent the sum in quadrature of the statistical and systematic uncertainties.
Dashed arrows indicate lower limits and the vertical line represents the AFS measurement published
without uncertainties.

the prediction obtained with the AUET1 tune. These comparisons demonstrate the power
of these distributions to constrain MPI models and tunes. In section A, the normalized
differential cross-sections in data for the remaining variables are compared to the particle-
level distributions in the AHJ samples generated using the AUET1 and AUET?2 tunes.

10 Summary and conclusions

A measurement of the rate of hard double-parton scattering in four-jet events was per-
formed using a sample of data collected with the ATLAS experiment at the LHC in 2010,
with an average of approximately 0.4 proton-proton interactions per bunch crossing, cor-
responding to an integrated luminosity of 37.3 + 1.3 pb~!. Three different samples were
selected, all consisting of single-vertex events from proton-proton collisions at a centre-
of-mass energy of /s = 7 TeV. Four-jet events were defined as those containing at least
four reconstructed jets with pr > 20 GeV and |n| < 4.4, and at least one jet having
pr > 42.5 GeV. Two additional dijet samples were selected with the requirement of having
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at least two jets with ppr > 20 GeV and || < 4.4. One of the dijet samples was further
constrained such that it contained at least one jet with pt > 42.5 GeV.

The contribution of hard double-parton scattering to the production of four-jet events
was extracted using an artificial neural network. The four-jet topology originating from
hard double-parton scattering was represented by a random combination of events selected
in data. The fraction of events corresponding to the contribution made by hard double-
parton scattering in four-jet events was determined to be,

fops = 0.092 1909 (stat.) T0932 (syst.). (10.1)

After combining this result with measurements of the dijet and four-jet cross-sections in
the appropriate phase space regions, the effective cross-section was determined to be

Oot = 14.9 T2 (stat.) T34 (syst.) mb.

This value is 2177% of the measured value of Oinel at /s = 7 TeV and is consistent with
previous measurements performed at various centre-of-mass energies and in various final
states. It is compatible with a model in which . is a universal parameter that does
not depend on the process or phase space. To facilitate future studies of the dynamics
of multi-parton interactions, distributions of observables sensitive to the presence of hard
double-parton scattering are also presented.
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Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff
from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhl, Armenia; ARC, Aus-
tralia; BMWEFW and FWEF, Austria; ANAS, Agerbaijan; SSTC, Belarus; CNPq and
FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST
and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR,
Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France;
GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong
SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS,
Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN,
Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Fed-
eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF,
South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF
and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC,
United Kingdom; DOE and NSF, United States of America. In addition, individual groups
and members have received support from BCKDF, the Canada Council, CANARIE, CRC,
Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC,
FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements

— 24 —



d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France;
DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-
financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway;
Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Lever-
hulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully,
in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF
(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF
(Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL
(U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Ma-
jor contributors of computing resources are listed in ref. [75].

A Normalized differential cross-sections

Figures 11-15 show the normalized differential cross-sections in data for all the observables
used as input to the NN, compared to the particle-level distributions in the AHJ samples
generated using the AUET1 and AUET2 tunes. The hatched areas in the distributions
represent the total uncertainty of the normalized differential cross-section, obtained by
adding in quadrature the statistical and systematic uncertainties.
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particle-level distribution to the normalized differential cross-section is shown in the bottom panels,
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eq. (6.3), in data after unfolding to particle level, compared to the MC prediction from AHJ at
the particle level, generated using the AUET1 and AUET?2 tunes, as indicated in the legend. The
hatched areas represent the sum in quadrature of the statistical and systematic uncertainties in the
normalized differential cross-sections and all histograms are normalized to unity. The ratio of the
particle-level distribution to the normalized differential cross-section is shown in the bottom panels,
where the shaded areas represent statistical uncertainties.
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defined in eq. (6.3), in data after unfolding to particle level, compared to the MC prediction from
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