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1 Introduction

For decades, the Higgs boson [1–4] of the Standard Model (SM) remained an unconfirmed

prediction. In July 2012, the ATLAS and CMS experiments at the LHC reported the

observation of a new particle with a mass of about 125 GeV and with properties consistent

with those expected for the SM Higgs boson [5, 6]. Since then, more precise measurements

have strengthened the hypothesis that the new particle is indeed a Higgs boson [7–9].

These measurements, however, have been mainly performed in the bosonic decay modes

of the new particle (H → γγ, H → ZZ, and H → WW ). It is also essential to verify

whether it decays into fermions as predicted by the Standard Model. Recently, the CMS

Collaboration reported evidence for the ττ decay mode of the Higgs boson at a level of

significance of 3.4 standard deviations (σ) for mH = 125 GeV [10].

The H → bb decay mode is predicted in the SM to have a branching ratio of 58%

for mH = 125 GeV [11]. Accessing H → bb decays is therefore crucial for constraining,

under fairly general assumptions [12], the overall Higgs boson decay width and, in a global

fit to all accessible combinations of Higgs boson production and decay modes, to allow

for measurements of absolute Higgs boson couplings. An inclusive search for H → bb is

not feasible at hadron colliders because of the overwhelming background from multijet

production. In spite of a cross section more than an order of magnitude lower than the

dominant gluon-fusion process, associated production of a Higgs boson with a vector boson,

W or Z [13], offers a viable alternative because leptonic decays of the vector boson, W → `ν,

Z → `` (` = e, µ), and Z → νν, can be efficiently used for triggering and background

reduction purposes [14, 15]. The CDF and D0 experiments at the Tevatron reported an

excess of events in their search for associated (W/Z)H production in the H → bb decay

mode at a significance level of 2.8σ for mH = 125 GeV [16]. Recently, the CMS experiment

reported an excess of events in the H → bb decay mode with a significance of 2.1σ for

mH = 125 GeV [17].

In this paper, a search for associated (W/Z)H production of the SM Higgs boson

in the bb decay mode is presented, using the full integrated luminosity accumulated by

ATLAS during Run 1 of the LHC: 4.7 and 20.3 fb−1 from proton-proton (pp) collisions at

centre-of-mass energies of 7 and 8 TeV in 2011 and 2012, respectively. An analysis of the

7 TeV dataset has already been published by ATLAS [18]. In addition to the increase in

the amount of data analysed, the update presented in this paper benefits from numerous

analysis improvements. Some of the improvements to the object reconstruction, however,

are available only for the 8 TeV dataset, which leads to separate analysis strategies for the

two datasets.
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The analysis is performed for events containing zero, one, or two charged leptons

(electrons or muons), targeting the Z → νν, W → `ν, or Z → `` decay modes of the vector

boson, respectively. In addition to Z → νν decays, the 0-lepton channel has a smaller but

not insignificant contribution from leptonic W decays when the lepton is produced outside

of the detector acceptance or not identified. A b-tagging algorithm is used to identify the

jets consistent with originating from an H → bb decay. To improve the sensitivity, the three

channels are each split according to the vector-boson transverse momentum, the number of

jets (two or three), and the number of b-tagged jets. Topological and kinematic selection

criteria are applied within each of the resulting categories.

A binned maximum likelihood fit is used to extract the signal yield and the background

normalisations. Systematic uncertainties on the signal and background modelling are im-

plemented as deviations in their respective models in the form of “nuisance” parameters

that are varied in the fit. Each nuisance parameter is constrained by a penalty term in

the likelihood, associated with its uncertainty. Two versions of the analysis are presented

in this paper: in the first, referred to as the dijet-mass analysis, the mass of the dijet

system of b-tagged jets is the final discriminating variable used in the statistical analysis;

in the other, a multivariate analysis (MVA) incorporating various kinematic variables in

addition to the dijet mass, as well as b-tagging information, provides the final discrimi-

nating variable. Because the latter information is not available in similar detail for the

7 TeV dataset, the MVA is used only for the 8 TeV dataset. In both analyses, dedicated

control samples, typically with loosened b-tagging requirements, constrain the contribu-

tions of the dominant background processes. The most significant background sources are

(W/Z)+heavy-flavour-jet production and tt production. The normalisations of these back-

grounds are fully determined by the likelihood fit. Other significant background sources

are single-top-quark and diboson (WZ and ZZ) production, with normalisations taken

from theory, as well as multijet events, normalised using multijet-enriched control samples.

Since the MVA has higher expected sensitivity, it is chosen as the nominal analysis for the

8 TeV dataset to extract the final results. To validate the analysis procedures, both for

the dijet-mass and MVA approaches, a measurement of the yield of (W/Z)Z production is

performed in the same final states and with the same event selection, with H → bb replaced

by Z → bb.

This paper is organised as follows. A brief description of the ATLAS detector is

given in section 2. Details of the data and simulated samples used in this analysis are

provided in section 3. This is followed by sections describing the dijet-mass and multivariate

analyses applied to the 8 TeV data. The reconstruction of physics objects such as leptons

and jets is addressed in section 4. Section 5 details the event selections applied to the

dijet-mass and multivariate analyses, while section 6 explains the construction of the final

discriminating variable of the MVA. Section 7 discusses the background composition in the

various analysis regions, while the systematic uncertainties are addressed in section 8. The

statistical procedure used to extract the results is described in section 9. For the 7 TeV

data, only a dijet-mass analysis is used, and differences with respect to the 8 TeV data

analysis are specified in section 10. The results are presented and discussed in section 11,

and a summary of the paper is given in section 12.
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2 The ATLAS detector

The ATLAS detector [19] is cylindrically symmetric around the beam axis and is structured

in a barrel and two endcaps. It consists of three main subsystems. The inner tracking de-

tector is immersed in the 2 T axial magnetic field produced by a superconducting solenoid.

Charged-particle position and momentum measurements are made by pixel detectors fol-

lowed by silicon-strip detectors in the pseudorapidity1 range |η| < 2.5 and by a straw-tube

transition-radiation tracker (TRT) in the range |η| < 2.0. The pixel detectors are crucial

for b-tagging, and the TRT also contributes to electron identification. The calorimeters, lo-

cated beyond the solenoid, cover the range |η| < 4.9 with a variety of detector technologies.

The liquid-argon electromagnetic calorimeters are divided into barrel (|η| < 1.475), endcap

(1.375 < |η| < 3.2), and forward (3.1 < |η| < 4.9) sections. The hadronic calorimeters

(using scintillator tiles or liquid argon as active materials) surround the electromagnetic

calorimeters with a coverage of |η| < 4.9. The muon spectrometer measures the deflection

of muon tracks in the field of three large air-core toroidal magnets, each containing eight

superconducting coils. It is instrumented with separate trigger and high-precision tracking

chambers covering the |η| < 2.4 and |η| < 2.7 ranges, respectively.

The trigger system is organised in three levels. The first level is based on custom-made

hardware and uses coarse-granularity calorimeter and muon information. The second and

third levels are implemented as software algorithms and use the full detector granularity.

At the second level, only regions deemed interesting at the first level are analysed, while the

third level, called the event filter, makes use of the full detector read-out to reconstruct and

select events, which are then logged for offline analysis at a rate of up to 400 Hz averaged

over an accelerator fill.

3 Data and simulated samples

The datasets used in this analysis include only pp collision data recorded in stable beam con-

ditions and with all relevant sub-detectors providing high-quality data. The corresponding

integrated luminosities are 4.7 and 20.3 fb−1 [20] for the 7 and 8 TeV data, respectively.

Events in the 0-lepton channel are selected by triggers based on the magnitude Emiss
T of

the missing transverse momentum vector. The Emiss
T trigger configuration evolved during

data taking to cope with the increasing luminosity, and the trigger efficiency was improved

for the 8 TeV data. The dependence of the Emiss
T trigger efficiency on the Emiss

T recon-

structed offline is measured in W → µν+jets and Z → µµ+jets events collected with

single-muon triggers, with the offline Emiss
T calculated without the muon contribution. As

there was a brief period of data-taking in which the Emiss
T triggers were not available for

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the

centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP

towards the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,φ) are used in

the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms

of the polar angle θ as η = − ln tan(θ/2). The distance in (η,φ) coordinates, ∆R =
√

(∆φ)2 + (∆η)2, is also

used to define cone sizes. Transverse momentum and energy are defined as pT = p sin θ and ET = E sin θ,

respectively. For the purpose of object selections, η is calculated relative to the geometric centre of the

detector; otherwise, it is relative to the reconstructed primary vertex of each event.

– 3 –
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the first bunch crossings of two bunch trains, the integrated luminosity for the 0-lepton

channel in the 7 TeV dataset is reduced to 4.6 fb−1. Events in the 1-lepton channel are

primarily selected by single-lepton triggers. The ET threshold of the single-electron trig-

ger was raised from 20 to 22 GeV during the 7 TeV data-taking period, and to 24 GeV for

the 8 TeV data. The pT threshold of the single-muon trigger was similarly increased from

18 GeV for the 7 TeV data to 24 GeV at 8 TeV. As the single-lepton triggers for the 8 TeV

data include isolation criteria, triggers with higher thresholds (60 GeV for electrons and

36 GeV for muons) but no isolation requirements are used in addition. Single-lepton trigger

efficiencies are measured using a tag-and-probe method applied to Z → ee and Z → µµ

events. In the 1-muon sub-channel, Emiss
T triggers are also used to compensate for the lim-

ited muon trigger-chamber coverage in some regions of the detector. Events in the 2-lepton

channel are selected by a combination of single-lepton, dielectron and dimuon triggers. The

thresholds of the dilepton triggers are 12 GeV for electrons and 13 GeV for muons.

Monte Carlo (MC) simulated samples are produced for signal and background pro-

cesses using the atlfast-II simulation [21], which includes a full simulation of the ATLAS

detector based on the geant4 program [22], except for the response of the calorimeters

for which a parameterised simulation is used. A list of the generators used for signal and

background simulations is given in table 1.

The MC generator used for qq-initiated WH and ZH production is pythia8 [23] with

the CTEQ6L1 [24] parton distribution functions (PDFs). The AU2 tune [25, 26] is used

for the parton shower, hadronisation, and multiple parton interactions. The photos pro-

gram [27] is used for QED final-state radiation. The powheg generator [28–30] is used

within the MiNLO approach [31] with the CT10 PDFs [32], interfaced to pythia8 with the

AU2 tune, as a cross-check and to evaluate systematic uncertainties on the signal accep-

tance and kinematic properties. It is also used for the generation of gluon-gluon-initiated

ZH production at leading order (LO) in QCD, with results cross-checked by an indepen-

dent computation [33]. (For the analysis of the 7 TeV data, the pythia8 generator is used

for gg → ZH.) The transverse momentum distributions of the Higgs boson show substan-

tial differences between the two ZH production processes. For qq-initiated WH and ZH

production, the total production cross sections and associated uncertainties are computed

at next-to-next-to-leading order (NNLO) in QCD [34–36], and with electroweak correc-

tions at next-to-leading order (NLO) [37]. Additional normalisation-preserving differential

electroweak NLO corrections are applied as a function of the transverse momentum of the

vector boson [38]. For gluon-gluon-initiated ZH production, NLO corrections [39], which

increase the total ZH production cross section by about 5%, are taken into account. The

Higgs boson decay branching ratios are calculated with hdecay [11]. Signal samples are

simulated for Higgs boson masses from 100 to 150 GeV in steps of 5 GeV. All charged-lepton

flavours are simulated in the W and Z decays, as leptonic decays of the τ leptons can also

be selected in the analysis. For the Higgs boson, only the bb decay mode is considered in

the analysis.

The main background processes are (W/Z)+jets and tt production. Version 1.4.1 of

the sherpa generator [40] is used with the CT10 PDFs to simulate W+jets and Z+jets at

leading-order in QCD, with massive c- and b-quarks. For tt production, the simulation is

– 4 –
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Process Generator

Signal(?)

qq → ZH → ννbb/``bb pythia8

gg → ZH → ννbb/``bb powheg+pythia8

qq →WH → `νbb pythia8

Vector boson + jets

W → `ν Sherpa 1.4.1

Z/γ∗ → `` Sherpa 1.4.1

Z → νν Sherpa 1.4.1

Top-quark

tt̄ powheg+pythia

t-channel AcerMC+pythia

s-channel powheg+pythia

Wt powheg+pythia

Diboson(?) powheg+pythia8

WW powheg+pythia8

WZ powheg+pythia8

ZZ powheg+pythia8

Table 1. The generators used for the simulation of the signal and background processes. (?) For

the analysis of the 7 TeV data, pythia8 is used for the simulation of the gg → ZH process, and

herwig for the simulation of diboson processes.

performed with the powheg generator with the CT10 PDFs, interfaced with pythia6 [41],

for which the CTEQ6L1 PDFs and the Perugia2011C tune [25, 26] are used. In this

analysis, the final normalisations of these dominant backgrounds are constrained by the

data, but theoretical cross sections are used to optimise the selection. The cross sections

are calculated at NNLO for (W/Z)+jets [42] and at NNLO, including resummations of

next-to-next-to-leading logarithmic (NNLL) soft gluon terms, for tt [43].

Additional backgrounds arise from single-top-quark and diboson (WW , WZ, and ZZ)

production. For single-top-quark production, the s-channel exchange process and Wt pro-

duction are simulated with powheg, as for tt, while the t-channel exchange process is

simulated with the AcerMC generator [44] interfaced with pythia6, using the CTEQ6L1

PDFs and the Perugia2011C tune. The cross sections are taken from refs. [45–47]. The

powheg generator with the CT10 PDFs, interfaced to pythia8 with the AU2 tune, is used

for diboson processes [48]. (For the analysis of the 7 TeV data, the herwig generator [49]

is used instead with the CTEQ6L1 PDFs and the AUET2 tune [25, 26], and the cross

sections are obtained at NLO from mcfm [50] with the MSTW2008NLO PDFs [51].)

Events from minimum-bias interactions are simulated with the pythia8 generator with

the MSTW2008LO PDFs [52] and the A2 tune [25, 26]. They are overlaid on the simulated

– 5 –
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signal and background events according to the luminosity profile of the recorded data. The

contributions from these “pile-up” interactions are simulated both within the same bunch

crossing as the hard-scattering process and in neighbouring bunch crossings. The resulting

events are then processed through the same reconstruction programs as the data.

Additional generators are used for the assessment of systematic uncertainties as ex-

plained in section 8.

Simulated jets are labelled according to which generated hadrons with pT > 5 GeV

are found within a cone of size ∆R = 0.4 around the reconstructed jet axis. If a b-hadron

is found, the jet is labelled as a b-jet. If not and a c-hadron is found, the jet is labelled

as a c-jet. If neither a b- nor a c-hadron is found, the jet is labelled as a light (i.e., u-,

d-, or s-quark, or gluon) jet. Simulated V+jet events, where V stands for W or Z, are

then categorised according to the labels of the two jets that are used to reconstruct the

Higgs boson candidate. If one of those jets is labelled as a b-jet, the event belongs to the

V b category. If not and one of the jets is labelled as a c-jet, the event belongs to the

V c category. Otherwise, the event belongs to the V l category. Further subdivisions are

defined according to the flavour of the other jet from the pair, using the same precedence

order: V bb, V bc, V bl, V cc, V cl. The combination of V bb, V bc, V bl and V cc is denoted

V+hf. The V cl final state is not included in V+hf because the main production process is

gs→Wc rather than gluon splitting.

4 Object reconstruction

In this section, the reconstruction of physics objects used in the analysis of the 8 TeV

data is presented. Differences relevant for the analysis of the 7 TeV data are reported in

section 10.

Charged-particle tracks are reconstructed with a pT threshold of 400 MeV. The pri-

mary vertex is selected from amongst all reconstructed vertices as the one with the largest

sum of associated-track squared transverse momenta Σp2T and is required to have at least

three associated tracks.

Three categories of electrons [53, 54] and muons [55] are used in the analysis, referred to

as loose, medium and tight leptons in order of increasing purity. Loose leptons are selected

with transverse energy ET > 7 GeV. Loose electrons are required to have |η| < 2.47

and to fulfil the “very loose likelihood” identification criteria defined in ref. [54]. The

likelihood-based electron identification combines shower-shape information, track-quality

criteria, the matching quality between the track and its associated energy cluster in the

calorimeter (direction and momentum/energy), TRT information and a criterion to help

identify electrons originating from photon conversions. The electron energies are calibrated

by making use of reference processes such as Z → ee [56]. Three types of muons are included

in the loose definition to maximise the acceptance: (1) muons reconstructed in both the

muon spectrometer and the inner detector (ID); (2) muons with pT > 20 GeV identified in

the calorimeter and associated with an ID track with |η| < 0.1, where there is limited muon-

chamber coverage; and (3) muons with |η| > 2.5 identified in the muon spectrometer, and

which do not match full ID tracks due to the limited inner-detector coverage. For muons of

– 6 –
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the first and second type, the muon-track impact parameters with respect to the primary

vertex must be smaller than 0.1 mm and 10 mm in the transverse plane and along the

z-axis, respectively. Finally, the scalar sum of the transverse momenta of tracks within a

cone of size ∆R = 0.2 centred on the lepton-candidate track, excluding the lepton track,

is required to be less than 10% of the transverse momentum of the lepton.

Medium leptons must meet the loose identification criteria and have ET > 25 GeV.

Medium muons must be reconstructed in both the muon spectrometer and the inner de-

tector and have |η| < 2.5. Tight electrons are required to additionally fulfil the “very tight

likelihood” identification criteria [54]. For both the tight electrons and the tight muons,

more stringent isolation criteria must be satisfied: the sum of the calorimeter energy de-

posits in a cone of size ∆R = 0.3 around the lepton, excluding energy associated with the

lepton candidate, must be less than 4% of the lepton energy, and the track-based isolation

requirement is tightened from 10% to 4%.

Jets are reconstructed from noise-suppressed topological clusters of energy in the calori-

meters [57] using the anti-kt algorithm [58] with a radius parameter of 0.4. Jet energies are

corrected for the contribution of pile-up interactions using a jet-area-based technique [59]

and calibrated using pT- and η-dependent correction factors determined from simulation,

with residual corrections from in situ measurements applied to data [60, 61]. Further

adjustments are made based on jet internal properties, which improve the energy resolution

without changing the average calibration (global sequential calibration [60]). To reduce the

contamination by jets from pile-up interactions, the scalar sum of the pT of tracks matched

to the jet and originating from the primary vertex must be at least 50% of the scalar sum

of the pT of all tracks matched to the jet. This requirement is only applied to jets with

pT < 50 GeV and |η| < 2.4. Jets without any matched track are retained. The jets kept

for the analysis must have pT > 20 GeV and |η| < 4.5.

To avoid double-counting, the following procedure is applied to loose leptons and jets.

First, if a jet and an electron are separated by ∆R < 0.4, the jet is discarded. Next, if

a jet and a muon are separated by ∆R < 0.4, the jet is discarded if it has three or fewer

matched tracks since in this case it is likely to originate from a muon having showered in

the calorimeter; otherwise the muon is discarded. (Such muons are nevertheless included

in the computation of the Emiss
T and in the jet energy corrections described in section 5.)

Finally, if an electron and a muon are separated by ∆R < 0.2, the muon is kept unless it

is identified only in the calorimeter, in which case the electron is kept.

The MV1c b-tagging algorithm is used to identify jets originating from b-quark frag-

mentation. This algorithm combines in a neural network the information from various

algorithms based on track impact-parameter significance or explicit reconstruction of b-

and c-hadron decay vertices. It is an improved version of the MV1 algorithm [62–64] with

higher c-jet rejection. Four b-tagging selection criteria (or operating points) are calibrated

and used in the analysis, corresponding to average efficiencies of 80%, 70%, 60% and 50%

for b-jets with pT > 20 GeV, as measured in simulated tt events. In this analysis, the 80%,

70% and 50% operating points are denoted loose, medium and tight, respectively. For the

tight (loose) operating point, the rejection factors are 26 (3) and 1400 (30) against c-jets

and light jets, respectively. For the tight operating point, the c-jet rejection factor is 1.9

times larger than obtained with the MV1 algorithm.

– 7 –
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The b-tagging efficiencies for b-jets, c-jets and light jets are measured in both data and

simulation using dedicated event samples such as tt events for b-jets, events with identified

D∗ mesons for c-jets, or multijet events for light jets. The small differences observed are

used to correct the simulation by so-called “scale factors” (SFs) within intervals between

two operating points. These SFs are parameterised as a function of the jet pT and, for light

jets, also |η|. The SFs are, however, strictly valid only for the generator used to derive

them. The differences observed when the efficiencies are measured with different generators

are taken into account by additional “MC-to-MC” SFs. Such differences can be caused by,

e.g., different production fractions of heavy-flavour hadrons or modelling of their decays.

Because of the large cross sections of V l and V c production, these backgrounds remain

significant despite the powerful rejection of non-b-jets by the b-tagging algorithm. It is im-

practical to simulate a sufficiently large number of V l and V c events to provide a reliable

description of these backgrounds in the analysis samples for which two b-tagged jets are

required. An alternative procedure, parameterised tagging, is therefore used. Here, instead

of directly tagging the c- and l-labelled jets with the MV1c algorithm, parameterisations

as functions of pT and |η| of their probabilities to be b-tagged are used for the V l, V c

and WW processes in all analysis samples in which two b-tagged jets are required. These

parameterisations are, however, integrated over other variables that can affect the c- and

light-jet tagging efficiencies. In particular, a strong dependence of these efficiencies is ob-

served on ∆R, the angular separation from the closest other jet, and a significant difference

is seen between direct and parameterised tagging for V cc events with ∆R < 1. No such

difference is seen for V cl, V l and WW events. A dedicated correction, depending on ∆R,

is therefore applied to the V cc events.

The missing transverse momentum vector Emiss
T [65, 66] is measured as the negative

vector sum of the transverse momenta associated with energy clusters in the calorimeters

with |η| < 4.9. Corrections are applied to the energies of clusters associated with recon-

structed objects (jets, electrons, τ leptons, and photons), using the calibrations of these

objects. The transverse momenta of reconstructed muons are included, with the energy

deposited by these muons in the calorimeters properly removed to avoid double-counting.

In addition, a track-based missing transverse momentum vector, pmiss
T , is calculated as the

negative vector sum of the transverse momenta of tracks with |η| < 2.4 associated with the

primary vertex.

Additional corrections are applied to the simulation to account for small differences

from data for trigger efficiencies, for lepton reconstruction and identification efficiencies, as

well as for lepton energy and momentum resolutions.

5 Event selection

In this section, the event selection applied in the analysis of the 8 TeV data is presented.

Differences in the analysis of the 7 TeV data are reported in section 10.

The analysis is optimised for a Higgs boson mass of 125 GeV. Events are first cate-

gorised according to the numbers of leptons, jets, and b-tagged jets.

– 8 –
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Events containing no loose leptons are assigned to the 0-lepton channel. Events con-

taining one tight lepton and no additional loose leptons are assigned to the 1-lepton channel.

Events containing one medium lepton and one additional loose lepton of the same flavour,

and no other loose leptons, are assigned to the 2-lepton channel. In the 1- and 2-lepton

channels, for at least one of the lepton triggers by which the event was selected, the objects

that satisfied the trigger are required to be associated with the selected leptons.

The jets used in this analysis, called “selected jets”, must have pT > 20 GeV and

|η| < 2.5, the η range within which b-tagging can be applied. There must be exactly two

or three such selected jets. Events containing an additional jet with pT > 30 GeV and

|η| > 2.5 are discarded to reduce the tt background. Only selected jets are considered

further, e.g., to define the jet multiplicity, or to calculate kinematic variables.

The b-tagging algorithm is applied to all selected jets. There must be no more than two

such jets loosely b-tagged, and 3-jet events in which the lowest-pT jet is loosely b-tagged

are discarded. At least one of the two b-tagged jets must have pT > 45 GeV. The following

b-tagging categories are then defined as shown in figure 1. Events with two jets satisfying

the tight b-tagging criterion form the TT (or Tight) category; those not classified as TT,

but with two jets satisfying the medium b-tagging criterion, form the MM (or Medium)

category; those not classified as TT or MM, but with two jets satisfying the loose b-tagging

criterion, form the LL (or Loose) category. This categorisation improves the sensitivity

with respect to what would be obtained using a single category, such as TT+MM, with

the LL category providing constraints on the backgrounds not containing two real b-jets.

Events with exactly one jet loosely b-tagged form the 1-tag category, and those with no

loosely b-tagged jet form the 0-tag category. In the 3-jet categories, the dijet system is

formed by the two b-tagged jets in any of the 2-tag categories, by the b-tagged jet and

the leading (highest-pT) non-b-tagged jet for events in the 1-tag category, and by the two

leading jets in the 0-tag category.

Additional topological and kinematic criteria are applied to reject background events

and enhance the sensitivity of the search. They are outlined in table 2 and detailed below.

In general, the selection criteria are looser in the MVA than in the dijet-mass analysis in

order to maximise the information available to the final discriminant.

Further categorisation is performed according to the transverse momentum of the

vector boson, pVT , to take advantage of the better signal-to-background ratio at high pVT .

The transverse momentum of the vector boson is reconstructed as the Emiss
T in the 0-lepton

channel, the magnitude pWT of the vector sum of the lepton transverse momentum and the

Emiss
T in the 1-lepton channel, and the magnitude pZT of the vector sum of the transverse

momenta of the two leptons in the 2-lepton channel. In the dijet-mass analysis, the events

are categorised in five pVT intervals, with boundaries at 0, 90, 120, 160, and 200 GeV. In the

0-lepton channel and for events fulfilling the condition on
∑
p
jeti
T mentioned in table 2, the

Emiss
T trigger is fully efficient for Emiss

T > 160 GeV, 97% efficient for Emiss
T = 120 GeV, and

80% efficient for Emiss
T = 100 GeV, with an efficiency that decreases rapidly for lower Emiss

T .

Only four intervals are therefore used in the 0-lepton channel, with a minimum Emiss
T value

of 100 GeV. In the 1-muon sub-channel, the Emiss
T trigger is used for pWT > 120 GeV to

recover events not selected by the single-muon trigger, thus increasing the signal acceptance

– 9 –
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Figure 1. Event classification as a function of the output of the MV1c b-tagging algorithm for the

two highest pT jets. The bin boundaries denote the operating points (MV1c(jet) OP) as defined

in section 4, corresponding to b-tagging efficiencies of 100%, 80%, 70%, 50%, i.e., the b-jet purity

increases from left (bottom) to right (top). The event categories are 0-tag, 1-tag, and TT, MM and

LL for 2-tag, as explained in the text.

in this channel by 8%. In the MVA, only two intervals are defined, with pVT below or above

120 GeV, but the detailed pVT information is used in the final discriminant.

In the dijet-mass analysis, requirements are applied to the angular separation between

the two jets of the dijet system, ∆R(jet1, jet2), which depend on the pVT interval. The

requirement on the minimum value reduces the background from V+jet production, while

the requirement on the maximum value, which reduces the background from tt production,

is tightened with increasing pVT to take advantage of the increasing collimation of the dijet

system for the signal. To increase the signal acceptance, the requirement on the minimum

value is removed in the highest pVT interval, where the amount of background is smallest.

In the MVA, where the ∆R(jet1, jet2) information is used in the final discriminant, only a

minimum value is required, a requirement which is also removed for pVT > 200 GeV.

In the 0-lepton channel, the multijet (MJ) background is suppressed by imposing

requirements on the magnitude pmiss
T of the track-based missing transverse momentum

vector pmiss
T , the azimuthal angle between Emiss

T and pmiss
T , ∆φ(Emiss

T ,pmiss
T ), the az-

imuthal angle between Emiss
T and the nearest jet, min[∆φ(Emiss

T , jet)], and the azimuthal

angle between Emiss
T and the dijet system, ∆φ(Emiss

T , dijet). In addition, a minimum

value is required for the scalar sum of the jet transverse momenta,
∑
p
jeti
T , which depends

on the jet multiplicity. Additional requirements are applied in the lowest pVT interval of

the 0-lepton channel, where the MJ background is largest: Njet = 2; Emiss
T > 100 GeV;

∆φ(jet1, jet2) < 2.7; S > 7; and L > 0.5. Here, ∆φ(jet1, jet2) is the azimuthal angle be-
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Variable Dijet-mass analysis Multivariate analysis

Common selection

pVT [GeV] 0–90 90(∗)–120 120–160 160–200 > 200 0–120 > 120

∆R(jet1, jet2) 0.7–3.4 0.7–3.0 0.7–2.3 0.7–1.8 < 1.4 > 0.7 (pVT<200 GeV)

0-lepton selection

pmiss
T [GeV]

NU

> 30 > 30

NU

> 30

∆φ(Emiss
T ,pmiss

T ) < π/2 < π/2 < π/2

min[∆φ(Emiss
T , jet)] – > 1.5 > 1.5

∆φ(Emiss
T , dijet) > 2.2 > 2.8 –

Njet=2(3)∑
i=1

p
jeti
T [GeV] > 120 (NU) > 120 (150) > 120 (150)

1-lepton selection

mW
T [GeV] < 120 –

HT [GeV] > 180 – > 180 –

Emiss
T [GeV] – > 20 > 50 – > 20

2-lepton selection

m`` [GeV] 83-99 71-121

Emiss
T [GeV] < 60 –

Table 2. Event topological and kinematic selections. NU stands for ‘Not Used’. (∗) In the 0-

lepton channel, the lower edge of the second pVT interval is set at 100 GeV instead of 90 GeV. For

the 1-lepton channel, only the 1-muon sub-channel is used in the pVT < 120 GeV intervals.

tween the two jets, S is the Emiss
T significance, defined as the ratio of Emiss

T to the square

root of
∑
p
jeti
T ; and L is a likelihood ratio constructed to discriminate further against the

MJ background.2

In the 1-lepton channel, a requirement is imposed on the transverse mass3 mW
T in the

dijet-mass analysis. This requirement reduces the contamination from the tt background.

Requirements are also imposed on HT (Emiss
T ) for pVT < (>)120 GeV, where HT is the

scalar sum of Emiss
T and the transverse momenta of the two leading jets and the lepton.

This mainly reduces the MJ background. As discussed in section 7.1, the MJ background

is difficult to model and remains substantial in the 1-electron sub-channel in the pVT <

120 GeV intervals. Therefore, only the 1-muon sub-channel is used in these intervals.

In the 2-lepton channel, criteria are imposed on the dilepton invariant mass, m``, which

2The likelihood ratio uses the following inputs: ∆φ(Emiss
T ,dijet); ∆φ(jet1, jet2); the magnitude of the

vector sum of the two jet transverse momenta, Hmiss
T ; Hmiss

T divided by
∑
p
jeti
T ; and the cosine of the helicity

angle in the dijet rest frame as defined in ref. [67]. For the MJ background, the probability density functions

used in the likelihood ratio are constructed from data events selected with ∆φ(Emiss
T ,pmiss

T ) > π/2.
3The transverse mass mW

T is calculated from the transverse momentum and the azimuthal angle of the

charged lepton, p`T and φ`, and from the missing transverse momentum magnitude, Emiss
T , and azimuthal

angle, φmiss: mW
T =

√
2p`TE

miss
T (1 − cos(φ` − φmiss)).
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must be consistent with the mass of the Z boson. In the dijet-mass analysis a requirement

is imposed on Emiss
T ; this variable is used in the final discriminant of the MVA.

For events in which two jets are loosely b-tagged, these selection criteria define a set of

“2-tag signal regions”, categorised in terms of channel (0, 1, or 2 leptons), pVT interval, and

jet multiplicity (2 or 3). In the dijet-mass analysis, a further division is performed into the

TT, MM and LL b-tagging categories. In the MVA, where the b-tagging information is used

in the final discriminant, a similar subdivision is performed with the difference that the

TT and MM categories are merged in the 0- and 2-lepton channels. Similarly defined 1-tag

and 0-tag “control regions” are used in the analysis to constrain the main backgrounds.

In the 1-lepton channel, the 2-tag signal regions with a third selected jet act in practice

as control regions because they are largely dominated by tt events. All 2-tag signal and

1-tag control regions are used simultaneously in the global fit (described in section 9) used

to extract the results. The 0-tag control regions are used only for background modelling

studies (reported in section 7).

After event selection, the energy calibration of the b-tagged jets is improved as follows.

The energy from muons within a jet is added to the calorimeter-based jet energy after

removing the energy deposited by the muon in the calorimeter (muon-in-jet correction), and

a pT-dependent correction is applied to account for biases in the response due to resolution

effects (resolution correction). This latter correction is determined for the pT spectrum of

jets from the decay of a Higgs boson with mH = 125 GeV in simulated (W/Z)H events.

The dijet mass resolution for the signal is improved by 14% after these corrections and is

typically 11% (figure 2(a)). In the 2-lepton channel, wherein there is no true Emiss
T involved

except possibly from semileptonic heavy-flavour decays, the energy calibration of the jets

is further improved by a kinematic likelihood fit, which includes a Breit-Wigner constraint

on the dilepton mass, Gaussian constraints on each of the transverse components of the

``bb system momentum (with a width of 9 GeV, as determined from ZH simulated events),

dedicated transfer functions relating the true jet transverse momenta to their reconstructed

values (after the muon-in-jet correction, but without the resolution correction) as well as

a prior built from the expected true jet pT spectrum in ZH events (playing a role similar

to the resolution correction). Overall, the bb mass resolution is improved by 30% in the

2-lepton channel (figure 2(b)).

The cross sections times branching ratios for (W/Z)H with W → `ν, Z → ``, Z → νν,

and H → bb, as well as the acceptances in the three channels after full selection are given in

table 3 for the MVA and the dijet-mass analysis. The acceptance for other production and

decay modes of the Higgs boson is negligible. The 0-lepton channel adds 7% in acceptance

for theW → `ν process with respect to the 1-lepton channel. Similarly, the 1-lepton channel

adds 10% in acceptance for the Z → `` process with respect to the 2-lepton channel.
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Figure 2. Dijet-invariant-mass distribution for the decay products of a Higgs boson with mH =

125 GeV in the 2-lepton MVA selection. The distributions are shown (a) using jets after global

sequential calibration (GSC, solid), and after adding muons inside jets (dotted) and after correcting

for resolution effects specific to the kinematics of the decay of a Higgs boson with mH = 125 GeV

(dash-dotted); (b) using jets after global sequential calibration (GSC, solid), and after adding

muons inside jets and applying the kinematic fit (dash-dotted). The distributions are fit to the

Bukin function [68] and the parameter representing the width of the core of the distribution is

shown in the figures, as well as the relative improvement in the resolution with respect to jets after

the global sequential calibration.

mH = 125 GeV at
√
s = 8TeV

Process Cross section × BR [fb]
Acceptance [%]

0-lepton 1-lepton 2-lepton

qq → (Z → ``)(H → bb) 14.9 – 1.3 (1.1) 13.4 (10.9)

gg → (Z → ``)(H → bb) 1.3 – 0.9 (0.7) 10.5 (8.1)

qq → (W → `ν)(H → bb) 131.7 0.3 (0.3) 4.2 (3.7) –

qq → (Z → νν)(H → bb) 44.2 4.0 (3.8) – –

gg → (Z → νν)(H → bb) 3.8 5.5 (5.0) – –

Table 3. The cross section times branching ratio (BR) and acceptance for the three channels at

8 TeV. For ZH, the qq- and gg-initiated processes are shown separately. The branching ratios are

calculated considering only decays to muons and electrons for Z → ``, decays to all three lepton

flavours for W → `ν and decays to neutrinos for Z → νν. The acceptance is calculated as the

fraction of events remaining in the combined 2-tag signal regions of the MVA (dijet-mass analysis)

after the full event selection.
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6 Multivariate analysis

Although the dijet mass is the kinematic variable that provides the best discrimination

between signal and backgrounds, the sensitivity of the search is improved by making use of

additional kinematic, topological and b-tagging properties of the selected events in a multi-

variate analysis. The Boosted Decision Tree (BDT) technique [69, 70] is used, which, sim-

ilarly to other multivariate methods, properly accounts for correlations between variables.

Dedicated BDTs are constructed, trained and evaluated in each of the 0-, 1- and 2-

lepton channels in the 2-tag regions (with the LL, MM and TT categories combined) and

separately for the events with two and three jets. In the 0-lepton channel, only events with

pVT > 120 GeV are used, whereas for the 1- and 2-lepton channels individual BDTs are

used for pVT < 120 GeV and pVT > 120 GeV. Events in the electron and muon sub-channels

are combined since none of the variables used are lepton-flavour specific. In the 0-lepton

channel, the final results are obtained using the MVA for pVT > 120 GeV. For the small

100 < pVT < 120 GeV interval, which has reduced sensitivity, no dedicated BDT is trained

and only the dijet-mass distribution is used.

The BDTs are trained to separate the (V H,H → bb) signal from the sum of the

expected background processes. The input variables used to construct the BDTs are chosen

in order to maximise the separation, while avoiding the use of variables not improving the

performance significantly. Starting from the dijet mass, additional variables are tried one

at a time and the one yielding the best separation gain is kept. This procedure is repeated

until adding more variables does not result in a significant performance gain. The final sets

of variables for the different channels are listed in table 4. The b-tagged jets belonging to the

dijet system (with mass denoted mbb) are labelled in decreasing pT as b1 and b2, and their

separation in pseudorapidity is |∆η(b1, b2)|. The b-tagging information is provided by the

outputs of the MV1c neural network, MV 1c(b1) and MV 1c(b2). The angular separation,

in the transverse plane, of the vector boson and the dijet system of b-tagged jets and their

pseudorapidity separation are denoted ∆φ(V, bb) and |∆η(V, bb)|, respectively. In the 0-

lepton channel, HT is defined as the scalar sum of the transverse momenta of all jets and

Emiss
T . In the 1-lepton channel, the angle between the lepton and the closest b-tagged jet

in the transverse plane is denoted min[∆φ(`, b)]. The other variables were defined in the

previous sections. In 3-jet events, the third jet is labelled as jet3 and the mass of the 3-jet

system is denoted mbbj .

The input variables of the BDTs are compared between data and simulation, and good

agreement is found within the assessed uncertainties. Selected input-variable distributions

are shown in figure 3.4 In this figure, as for all figures in this section, the MJ background

is estimated as described in section 7.1, corrections to the simulation as explained in sec-

tion 7.2 are applied, and background normalisations and shapes are adjusted by the global

fit of the MVA as outlined at the beginning of section 7 and presented in more detail in

section 9. A similarly good agreement is found for the correlations between pairs of input

variables, as can be seen in figure 4.

4In this and all similar figures, all backgrounds are taken into account, but those contributing less than

1% are omitted from the legend.

– 14 –



J
H
E
P
0
1
(
2
0
1
5
)
0
6
9

Variable 0-Lepton 1-Lepton 2-Lepton

pVT × ×
Emiss

T × × ×
pb1T × × ×
pb2T × × ×
mbb × × ×
∆R(b1, b2) × × ×
|∆η(b1, b2)| × ×
∆φ(V, bb) × × ×
|∆η(V, bb)| ×
HT ×
min[∆φ(`, b)] ×
mW

T ×
m`` ×
MV 1c(b1) × × ×
MV 1c(b2) × × ×

Only in 3-jet events

p
jet3
T × × ×
mbbj × × ×

Table 4. Variables used in the multivariate analysis for the 0-, 1- and 2-lepton channels.

The Toolkit for Multivariate Data Analysis, TMVA [71], is used to train the BDTs.

The values for the training parameters are found by determining the configuration with

the best separation between signal and background in a coarsely binned multi-dimensional

training parameter space, followed by more finely grained one-dimensional scans of individ-

ual training parameters. In order to make use of the complete set of simulated MC events

for the BDT training and evaluation in an unbiased way, the MC events are split into two

samples of equal size, A and B. The performance of the BDTs trained on sample A (B)

is evaluated with sample B (A) in order to avoid using identical events for both training

and evaluation of the same BDT. Half of the data are analysed with the BDTs trained on

sample A, and the other half with the BDTs trained on sample B. At the end, the output

distributions of the BDTs trained on samples A and B are merged for both the simulated

and data events.

The values of the BDT outputs do not have a well-defined interpretation. A dedicated

procedure is applied to transform the BDT-output distributions to obtain a smoother dis-

tribution for the background processes and a finer binning in the regions with the largest

signal contribution, while at the same time preserving a sufficiently large number of back-

ground events in each bin. Starting from a very fine-binned histogram of the BDT-output

distribution, the procedure merges histogram bins, from high to low BDT-output values,

until a certain requirement, based on the fractions of signal and background events in the

merged bin, is satisfied. To limit the number of bins and to reduce the impact of sta-

tistical fluctuations, a further condition is that the statistical uncertainty of the expected
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total background contribution has to be smaller than 10% in each merged bin. The free

parameters of the transformation algorithm are optimised to maximise the expected signal

sensitivity. For simplicity, these transformed outputs, which are used for the analysis, are

called “BDTV H discriminants” in the following. An optimisation of the number of bins and

bin boundaries is also performed for the mbb distribution used in the dijet-mass analysis

in a similar way, where the free parameters of the transformation algorithm are optimised

separately for the different analysis regions. The effect of the transformation on the BDT-

output and dijet-mass distributions can be seen in figure 5 for the 1-lepton channel and one

signal region. The transformation groups into few bins the mbb regions that are far from

the signal on each of the low and high mass sides, while it expands the region close to the

signal mass, where the signal-to-background ratio is largest. The effect on the BDT out-

put is similar, but simpler to visualise because the signal and the background accumulate

initially on the high and the low sides of the distribution, respectively.

Correlations between input variables and the BDTV H discriminant can provide in-

formation on the impact of individual variables on the classification. Figure 6 shows such

correlations for the dijet mass, which is the BDT input that provides the best single-variable

discriminating power.
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Figure 5. Top: the dijet-mass distributions for the expected background and signal contributions

in the 1-lepton channel and the 2-jet 2-tag TT category for 160 GeV < pWT ≤ 200 GeV (a) before and

(b) after applying the transformation of the histogram bins. Bottom: the BDT-output distribution

for the expected background and signal contributions in the 1-lepton channel and the 2-jet 2-tag TT

category for pWT > 120 GeV (c) before and (d) after applying the transformation of the histogram

bins. The background contributions after the relevant global fit (of the dijet-mass analysis in (a)

and (b) and of the MVA in (c) and (d)) are shown as filled histograms. The Higgs boson signal

(mH = 125 GeV) is shown as a filled histogram on top of the fitted backgrounds, as expected

from the SM (indicated as µ = 1.0), and, unstacked as an unfilled histogram, scaled by the factor

indicated in the legend. The dashed histogram shows the total background as expected from the

pre-fit MC simulation. The entries in overflow are included in the last bin. The size of the combined

statistical and systematic uncertainty on the sum of the signal and fitted background is indicated

by the hatched band. The ratio of the data to the sum of the signal and fitted background is shown

in the lower panel.
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7 Background composition and modelling

This section describes the modelling of individual backgrounds. In many cases, the data

are able to constrain the normalisations and shapes better than the a priori estimates. A

likelihood fit (also called “global fit”) is used to simultaneously extract both the signal yield

and constraints on the background normalisations and shapes. The distributions used by

the fit are those of the dijet mass or BDTV H discriminant in the 2-tag signal regions, as

appropriate, as well as those of the MV 1c value of the b-tagged jet in the 1-tag control

regions. More details are provided in section 9.

For the multijet (MJ) backgrounds, the normalisations and shapes provided as inputs

to the fit are estimated from data, as explained below. For the other backgrounds the

inputs are taken from the simulation, except for the normalisations of the V+jets and tt

backgrounds that are left free to float in the fit. The corrections to these two backgrounds,

described below, are applied prior to the fit.

In all distributions presented in this section, unless otherwise specified, the normalisa-

tions of the various backgrounds are those extracted from the global fit for the dijet-mass

or multivariate analysis, as appropriate. The fit also adjusts the background shapes in

those distributions within the constraints from the systematic uncertainties discussed in

section 8.

7.1 Multijet background

Multijet events are produced with a huge cross section via the strong interaction, and there-

fore give rise to potentially large backgrounds. A first class of MJ background arises from

jets or photon conversions misidentified as electrons, or from semileptonic heavy-flavour

decays; the 1- and 2-lepton channels are especially sensitive to this class of background.

Another class, which affects mostly the 0-lepton channel, arises from large fluctuations in

jet energy measurements in the calorimeters, which create “fake” Emiss
T . These MJ back-

grounds cannot be determined reliably by simulation, and are estimated from data in each

of the 0-, 1-, and 2-lepton channels, and in each of the 2- and 3-jet, 0-, 1-, and 2-tag regions.

The MJ background is estimated in the 0-lepton channel using an “ABCD method”,

within which the data are divided into four regions based on the min[∆φ(Emiss
T , jet)]

and ∆φ(Emiss
T ,pmiss

T ) variables, such that three of the regions are dominated by back-

ground. (In the 100–120 GeV pVT interval, the likelihood ratio L designed to suppress the

MJ background is used instead of min[∆φ(Emiss
T , jet)].) For events with real Emiss

T , it

is expected that the directions of the calorimeter-based and track-based missing trans-

verse momenta, Emiss
T and pmiss

T , are similar. In events with fake Emiss
T arising from

a jet energy fluctuation, it is expected that the direction of Emiss
T is close to the di-

rection of the poorly measured jet. The signal region (A) is therefore selected with

min[∆φ(Emiss
T , jet)] > 1.5 and ∆φ(Emiss

T ,pmiss
T ) < π/2. In region C, the requirement on

∆φ(Emiss
T ,pmiss

T ) is reversed. In regions B and D, min[∆φ(Emiss
T , jet)] < 0.4 is required,

with requirements on ∆φ(Emiss
T ,pmiss

T ) as in regions A and C, respectively. A comparison

of the min[∆φ(Emiss
T , jet)] distributions for ∆φ(Emiss

T ,pmiss
T ) above and below π/2 shows

that these two variables are only weakly correlated, and this observation is confirmed in a
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multijet event sample simulated with pythia8. An MJ template in region A is obtained

using events in region C after subtracting the contribution of other backgrounds, taken

from simulation. The template is normalised by the ratio of the number of events in region

B to that in region D, again after subtracting other backgrounds from those regions. The

populations of events in the various regions suffer from low statistical precision after the

2-tag requirement. The b-tagging requirement is therefore dropped in regions B, C and

D, and an additional b-tagging normalisation factor is applied to the resulting template,

taken as the fraction of 2-tag events in region D. The MJ background in the signal regions

is found to amount to ∼ 1% of the total background.

In the 1-lepton channel, the MJ background is determined separately for the electron

and muon sub-channels. For each signal or control region, an MJ-background template is

obtained in an MJ-dominated region after subtracting the small remaining contribution

from the other backgrounds. The other backgrounds are taken from a simulation improved

by scale factors for the various contributions obtained from a preliminary global fit. The

MJ-dominated region is obtained by modifying the nominal selection to use medium, in-

stead of tight, leptons and loosening both the track and calorimeter-based isolation criteria.

The track-based isolation is changed to the intervals 5%–12% and 7%–50% for electrons

and muons respectively, instead of < 4%; and the calorimeter-based isolation is loosened

to < 7% from < 4%. The sample sizes of the MJ-templates are however rather low in the

2-tag regions. Since it is observed that the kinematic properties of the 1-tag and 2-tag

events in the MJ-dominated regions are similar, 1-tag events are used to enrich the 2-tag

MJ templates. Events in the 1-tag category are promoted to the 2-tag category by as-

signing to the untagged jet an emulated MV 1c value drawn from the appropriate MV 1c

distribution observed in the corresponding 2-tag MJ template. This distribution depends

on the rank (leading or sub-leading) of the untagged jet and on the MV 1c value of the

tagged jet. To cope with residual differences observed in some distributions between these

pseudo-2-tag MJ events and the actual 2-tag MJ events, a reweighting is applied according

to the MV 1c of the tagged jet and, for the electron sub-channel, according to ∆R(jet1, jet2)

and pWT . This procedure is applied in each of the 2- and 3-jet, LL, MM and TT categories.

The normalisations of the MJ templates are then obtained from “multijet fits” to the Emiss
T

distributions in the 2- and 3-jet, 1- and 2-tag (LL, MM and TT combined) categories,

with floating normalisations for the templates of the other background processes. The

templates for these other background processes are taken from the improved simulation

mentioned above.

The MJ background in the 1-lepton channel is concentrated at low pWT , and in the

2-jet 2-tag sample with pWT < 120 GeV it ranges from 11% of the total background in the

LL category to 6% in the TT category. The main purpose of including the pWT < 120 GeV

intervals is to provide constraints on the largest backgrounds (V+jets and tt) in the global

fit. Since the MJ background is twice as large for pWT < 120 GeV in the 1-electron sub-

channel than in the 1-muon sub-channel, only the 1-muon sub-channel is kept for pWT <

120 GeV so as to provide the most reliable constraints on the non-MJ backgrounds. The

resulting loss in sensitivity is 0.6%. For pWT > 120 GeV, the MJ background is much

smaller: 4% and 2% in the LL and TT categories, respectively, for 2-jet events.
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A template for the MJ background in the 2-electron sub-channel is obtained in a similar

way, by loosening identification and isolation requirements. The normalisation is performed

by a fit to the dilepton-mass distribution, where the Z+jets and MJ components are free

parameters, while the other backgrounds (mostly tt) are taken from the simulation. The

MJ normalisation factors are found to be consistent in the 0-, 1- and 2-tag regions. To cope

with the reduced size of the 2-tag MJ event sample, a procedure similar to that used in the

1-lepton channel is used, wherein the pretag MJ sample is weighted by its 2-tag fraction

and combinations of MV 1c values are randomly assigned to the jets according to their

distribution in the 2-tag MJ template. In the 2-muon sub-channel, the MJ background

is found to be negligible from a comparison between data and MC prediction in the side-

bands of the Z mass peak. Altogether, the MJ background amounts to <1% of the total

background in the 2-lepton channel.

7.2 Corrections to the simulation

The large number of events in the 0-tag samples allows for detailed investigations of the

modelling of the V+jet backgrounds by the version of the sherpa generator used in this

analysis. Given that the search is performed in intervals of pVT , with the higher intervals

providing most of the sensitivity, an accurate modelling of the pVT distribution is important.

Figure 7(a) shows that the pWT spectrum for W+jets production in the 1-muon sub-

channel is softer in the data than in the simulation. It is found that this mismodelling

is strongly correlated with a mismodelling of the ∆φ(jet1, jet2) distribution,5 shown in

figure 8(a).6 In order to address this mismodelling, the Wl and Wcl simulations are

reweighted based on parameterised fits to the ratio of data to simulation in the ∆φ(jet1, jet2)

variable in the 0-tag region, where these backgrounds dominate. Four separate functions

are derived: for the 2- and 3-jet categories and for pWT above and below 120 GeV. The

reweighted ∆φ(jet1, jet2) distributions show good agreement between data and simulation

(figure 8(b)). This reweighting increases (reduces) by 0.7% (5.6%) the normalisation of the

pWT < (>) 120 GeV region. After this reweighting, the modelling of the whole pWT distri-

bution is greatly improved, as can be seen in figure 7(b). This reweighting also improves

the modelling of other distributions, most notably the dijet mass. It also improves the

modelling in the 1-tag control regions and is therefore applied to the Wl and Wcl back-

grounds in all regions of all channels. The numbers of Wcc and Wb background events in

the 0- and 1-tag regions are too small to allow conclusive studies of their modelling, so no

reweighting is applied to these backgrounds, but an associated systematic uncertainty is

assessed instead, as explained in section 8.

A similar, but not identical, procedure is used for the Z+jet events in the 2-lepton

channel. A ∆φ(jet1, jet2) reweighting is found to improve the modelling of the pZT distri-

bution in the 0-tag regions. In the signal-depleted 2-tag regions obtained by the exclusion

5It has indeed been observed that the shape of the ∆φ(jet1, jet2) distribution in data is better reproduced

by NLO generators than by the baseline sherpa generator used in this analysis [72].
6The peak around ∆φ(jet1, jet2)=0.7 comes from the combination of two effects: a rise towards low

∆φ(jet1, jet2) due to gluon splitting, and a drop towards low ∆φ(jet1, jet2) due to the two jets becoming

unresolved.
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Figure 7. The pWT distribution observed in data (points with error bars) and expected (histograms)

for the 2-jet 0-tag control region of the 1-muon sub-channel (MVA selection), (a) before and (b) after

∆φ(jet1, jet2) reweighting. The multijet and simulated-background normalisations are provided by

the multijet fits. The size of the statistical uncertainty is indicated by the shaded band. The

data-to-background ratio is shown in the lower panel.
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Figure 8. The ∆φ(jet1, jet2) distribution observed in data (points with error bars) and expected

(histograms) for the 2-jet 0-tag control region of the 1-muon sub-channel (MVA selection), (a) before

and (b) after reweighting. All pWT intervals are combined. The multijet and simulated-background

normalisations are provided by the multijet fits. The size of the statistical uncertainty is indicated

by the shaded band. The data-to-background ratio is shown in the lower panel.
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of the 100–150 GeV dijet mass interval, there is no evidence of a need for a ∆φ(jet1, jet2)

correction, but the pZT distribution is mismodelled. A dedicated pZT reweighting is therefore

determined in the 2-tag regions. Applying the ∆φ(jet1, jet2) reweighting to the Zl compo-

nent and the pZT reweighting to the Zc and Zb components leads to good modelling also in

the 1-tag regions. This procedure is therefore used in all regions of all channels.

It has been observed in an unfolded measurement of the pT distribution of top quarks

from pair production that the powheg generator interfaced to pythia predicts too hard

a spectrum [73]. A correction accounting for this discrepancy is therefore applied at the

level of generated top quarks in the tt production process.

7.3 Distributions in the dijet-mass analysis

Distributions of pVT and dijet mass are shown in figure 9 and in figures 10 and 11, respec-

tively, for a selection of 2-tag signal regions of the dijet-mass analysis. It can be seen that

the background composition in the signal regions varies greatly from channel to channel,

with the pVT interval, with the jet multiplicity, and with the b-tagging category considered.

The signal-to-background ratio is larger in the 2-jet and tighter b-tagging categories, and

lower in the 3-jet and loose b-tagging categories.

In the 2-lepton channel, the dominant background is always Zbb. There is also a signif-

icant contribution from tt in the lower pZT intervals, and the relative diboson contribution

increases with pZT.

For the 1-lepton channel and in the 2-jet samples the combination of Wbb and tt

accounts for most of the background in the most sensitive MM and TT categories, with the

relative contribution of Wbb and dibosons being largest in the tighter b-tagging categories

and increasing with pWT . The flavours of the two selected jets from tt depend on the

reconstructed pWT interval. In particular, at high pWT , when the b-quark and the W from a

top-quark decay are collimated, there is a large bc contribution, where the c-quark comes

from the W → cs decay. A significant contribution from single-top-quark production

processes is also seen. In the 3-jet category, the tt contribution is in general dominant,

but there are significant contributions from single-top-quark production (mostly in the Wt

channel) and from Wbb, the latter increasing with pWT . A non-negligible contribution of

MJ background can be seen in the lowest pWT intervals of the 2-jet category.

In the 0-lepton channel, the main backgrounds arise from Zbb and tt, but the Wbb

background is also significant. The relative tt contribution is largest in the lowest pVT
intervals, and larger in the 3-jet than in the 2-jet category.

The variations in the background composition between categories allow the global fit to

disentangle the rates of the various background sources. The non-negligible contributions

from the V cl and, to a lesser extent, the V l backgrounds are constrained in the global fit

by the LL b-tagging categories, and also by the MV 1c distributions of the b-tagged jet in

the 1-tag control regions. The 0-tag control regions are not taken into account in the global

fit, but are mainly used to improve the modelling of the V+jets backgrounds, as explained

in section 7.2.
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Figure 11. The dijet-mass distribution observed in data (points with error bars) and expected

(histograms) with the Medium and Tight b-tagging categories (also referred to as MM and TT in

the text) combined and the three intervals with pVT > 120 GeV combined for (a) the 2-jet signal

regions of the 1-lepton channel, (b) the 3-jet signal regions of the 1-lepton channel, (c) the 2-jet

signal regions of the 2-lepton channel, and (d) the 3-jet signal regions of the 2-lepton channel.

The background contributions after the global fit of the dijet-mass analysis are shown as filled

histograms. The Higgs boson signal (mH = 125 GeV) is shown as a filled histogram on top of the

fitted backgrounds, as expected from the SM (indicated as µ = 1.0), and, unstacked as an unfilled

histogram, scaled by the factor indicated in the legend. The dashed histogram shows the total

background as expected from the pre-fit MC simulation. The entries in overflow are included in the

last bin. The size of the combined statistical and systematic uncertainty on the sum of the signal

and fitted background is indicated by the hatched band. The ratio of the data to the sum of the

signal and fitted background is shown in the lower panel.
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7.4 Distributions in the multivariate analysis

Distributions of the BDTV H discriminants of the MVA are shown in figures 12 to 14 for

2-tag signal regions in the 2- and 3-jet categories of the 0-, 1- and 2-lepton channels.

It can be seen that the backgrounds dominated by light jets and, to a lesser extent, c-

jets accumulate at lower values of the BDTV H discriminants, due to the inclusion of the

MV1c information as inputs to the BDTs. The composition of the dominant backgrounds

accumulating at higher values of the BDTV H discriminant is similar to what was already

observed in the 2-tag signal regions of the dijet-mass analysis, namely V bb and tt, however

with a larger contribution of the latter due to the looser requirement on ∆R(jet1, jet2) in

the MVA selection.

Distributions of the output of the MV1c b-tagging algorithm are shown in figure 15

for the b-tagged jet in the 1-tag control regions of the MVA, in the 2-jet category and

for pVT > 120 GeV. In these distributions, the four bins correspond to the four b-tagging

operating points and are ordered from left to right in increasing b-jet purity. It can be seen

that these distributions, which are used in the global fit, provide strong constraints on the

V c and V l backgrounds. As in the dijet-mass analysis, the 0-tag control regions are not

used in the global fit.
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Figure 12. The BDTV H -discriminant distribution observed in data (points with error bars) and

expected (histograms) for the 0-lepton channel combining the 2-tag Medium and Tight b-tagging

categories (also referred to as MM and TT in the text) for pVT > 120 GeV for (a) 2-jet events and

(b) 3-jet events. The background contributions after the global fit of the MVA are shown as filled

histograms. The Higgs boson signal (mH = 125 GeV) is shown as a filled histogram on top of

the fitted backgrounds, as expected from the SM (indicated as µ = 1.0), and, unstacked as an

unfilled histogram, scaled by the factor indicated in the legend. The dashed histogram shows the

total background as expected from the pre-fit MC simulation. The size of the combined statistical

and systematic uncertainty on the sum of the signal and fitted background is indicated by the

hatched band. The ratio of the data to the sum of the signal and fitted background is shown in the

lower panel.
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Figure 13. The BDTV H -discriminant distribution observed in data (points with error bars) and

expected (histograms) for the 2-tag signal regions of the 1-lepton channel for (a) 2-jet events with

the Medium and Tight b-tagging categories (also referred to as MM and TT in the text) combined

and with pWT ≤ 120 GeV, (b) MM 2-jet events with pWT > 120 GeV, (c) TT 2-jet events with

pWT > 120 GeV, and (d) MM and TT combined 3-jet events with pWT > 120 GeV. The background

contributions after the global fit of the MVA are shown as filled histograms. The Higgs boson

signal (mH = 125 GeV) is shown as a filled histogram on top of the fitted backgrounds, as expected

from the SM (indicated as µ = 1.0), and, unstacked as an unfilled histogram, scaled by the factor

indicated in the legend. The dashed histogram shows the total background as expected from the

pre-fit MC simulation. The size of the combined statistical and systematic uncertainty on the sum

of the signal and fitted background is indicated by the hatched band. The ratio of the data to the

sum of the signal and fitted background is shown in the lower panel.
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8 Systematic uncertainties

The systematic uncertainties discussed in this section are: those of experimental origin;

those related to the multijet background estimation; and those associated with the mod-

elling of the simulated backgrounds and Higgs boson signal.

8.1 Experimental uncertainties

All relevant experimental systematic uncertainties are considered, such as those affecting

the trigger selection, the object reconstruction and identification, and the object energy

and momentum calibrations and resolutions. The most relevant ones are discussed in

the following.

For the Emiss
T trigger, an efficiency correction is derived from W → µν+jets and Z →

µ+µ−+jets events. This correction amounts to 4.5% for events with an Emiss
T of 100 GeV,

the threshold required in the analysis, and is below 1% for Emiss
T > 120 GeV. The associated

uncertainties arise from the statistical uncertainties of this method and differences observed

in the two event classes. They are very small (below 1%) for the high Emiss
T (and thus

high pVT) intervals, and reach about 3% for the low Emiss
T interval of the 0-lepton channel

(100–120 GeV).

For electrons and muons, uncertainties associated with the corrections for the trigger,

reconstruction, identification and isolation efficiencies are taken into account. Uncertainties

on energy and resolution corrections of the leptons are also considered. The impact of these

uncertainties is very small, typically less than 1%.

Several sources contribute to the uncertainty of the jet energy scale (JES) [61] related

e.g. to uncertainties from in situ calibration analyses, pile-up-dependent corrections and

the flavour composition of jets in different event classes. After being decomposed into un-

correlated components, these are treated as independent sources in the analysis. The total

relative systematic uncertainties on the JES range from about 3% to 1% for central jets

with a pT of 20 GeV and 1 TeV, respectively. An additional specific uncertainty of about

1%–2% affects the energy calibration of b-jets. Small uncertainties on the corrections ap-

plied to improve the dijet-mass resolution are also included. Corrections and uncertainties

are also considered for the jet energy resolution (JER) [74], with a separate contribution

for b-jets. The total relative systematic uncertainty on the JER ranges from about 10% to

20%, depending on the η range, for jets with pT = 20 GeV to less than 5% for jets with

pT > 200 GeV.

The JES uncertainties are propagated to the Emiss
T , as are the much smaller uncer-

tainties related to the energy and momentum calibration of leptons. An uncertainty on

the Emiss
T also comes from the uncertainties on the energy calibration (8%) and resolution

(2.5%) of calorimeter energy clusters not associated with any reconstructed object [66].

The b-tagging efficiencies for the different jet flavours are measured in both data and

simulation using dedicated event samples [63, 64]. The b-tagging efficiencies for simulated

jets are corrected within intervals between operating points by MC-to-data SFs, which

depend on the jet kinematics. For b-jets, the precision is driven by an analysis of tt

events in final states containing two leptons. The MC-to-data SFs are close to unity,
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with uncertainties at the level of 2–3% over most of the jet pT range, reaching 5% for

pT = 20 GeV and 8% above 200 GeV. The uncertainties, which depend on pT and on

the interval between operating points, are decomposed into uncorrelated components and

the ten most significant ones are kept in the analysis. It was checked that the neglected

components have a negligible impact. The uncertainties on c-jets are decomposed into 15

components, and the uncertainties on light jets, to which the analysis is much less sensitive,

are decomposed into ten components, accounted for in pT and η ranges. For b- and c-jets

further uncertainties are added for the application of the additional MC-to-MC SFs to

obtain generator specific MC-to-data SFs as explained in section 4. Half of the correction

is used as systematic uncertainty. As discussed in section 4, a correction to c-jets in the

V cc samples, for which parameterised tagging is used, is applied at low ∆R to the closest

jet. Half of this correction is assigned as a systematic uncertainty.

The uncertainty on the integrated luminosity is 2.8%. It is derived, following the same

methodology as that described in ref. [20], from a preliminary calibration of the luminosity

scale derived from beam-separation scans performed in November 2012. It is applied to

the signal and backgrounds estimates that are taken from simulation.

A 4% uncertainty on the average number of interactions per bunch crossing is taken

into account.

8.2 Uncertainties on the multijet backgrounds

In the 0-lepton channel, the robustness of the MJ background estimation is assessed by

varying the min[∆φ(Emiss
T , jet)] values defining the B and D regions of the ABCD method,

and by replacing the b-tagging fractions measured in region D by those measured in region

B. A systematic uncertainty of 100% is assessed for this small (∼ 1%) background, uncor-

related between 2- and 3-jet, 1- and 2-b-tag categories. The MJ background in the 2-lepton

channel is also at the per-cent level, and an uncertainty of 100% is assigned.

In the 1-lepton channel, normalisation uncertainties arise from the statistical uncer-

tainties of the multijet fits and from uncertainties on the non-MJ background subtractions

performed to construct the MJ templates. Normalisation uncertainties are also assessed

in the LL, MM and TT categories to cover differences between multijet fits performed

inclusively in the 2-tag regions and in the individual categories. In the 2-jet 2-tag region

of the electron sub-channel, the overall normalisation uncertainties amount to 11%, 14%

and 22% in the LL, MM and TT categories, respectively. In the muon sub-channel, the

corresponding uncertainties are about three times larger because of the smaller size of the

MJ-enriched samples.

In the 1-lepton channel, shape uncertainties are assessed in the various regions by

comparison of evaluations obtained using MJ-enriched samples defined by isolation require-

ments different from those applied in the nominal selections. In the electron sub-channel,

an alternative template is constructed with a track-based isolation in the 12% to 50% in-

terval, and another alternative template with a calorimeter-based isolation in the 0% to

4% interval. In the muon sub-channel, the results obtained with the nominal MJ template

are compared with those obtained with tighter or looser isolation requirements, defined

by track-based isolation intervals of 7%–9.5% and 9.5%–50%, respectively. Furthermore,
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half of the ∆R(jet1, jet2) and pWT reweightings mentioned in section 7.1 for the electron

sub-channel are taken as systematic uncertainties.

8.3 Uncertainties on the modelling of the simulated backgrounds

The physics-modelling systematic uncertainties evaluated focus on the quantities that are

used in the global fit, i.e., those affecting the jet multiplicities, the pVT distributions, the

flavour composition and the mbb distributions. For the MVA, systematic uncertainties

affecting the other variables used as inputs to the BDTs are also considered. Whenever

possible, dedicated control regions are used to extract information directly from the data.

This is the case for Z+jets and W+light jets. In other cases, uncertainties are assessed by

comparison of MC predictions based on a variety of generators with the nominal ones.

Details of the assessment of systematic uncertainties are provided below in the con-

text of the MVA. When systematic uncertainties are derived from a comparison between

generators, all relevant variables are considered independently. The variable showing the

largest discrepancy in some generator with respect to the nominal generator is assigned an

uncertainty covering this discrepancy, which is symmetrised. If, once propagated to the

BDTV H discriminant, this uncertainty is sufficient to cover all variations observed with the

different generators, it is considered to be sufficient. If not, an uncertainty is considered

in addition on the next most discrepant variable and the procedure is iterated until all

variations of the BDTV H discriminant are covered by the assigned uncertainties.

A given source of systematic uncertainty can affect different analysis regions. Whether

such an uncertainty should be treated as correlated or not depends on whether constraints

resulting from the global fit should be propagated from one region to another. Details of

the procedures leading to such decisions are provided in section 9.2.

A summary of the systematic uncertainties affecting the modelling of the backgrounds

can be found in table 5.

Top-quark-pair background. As explained in section 7, the top-quark pT distribution

is reweighted at generator level to bring it into agreement with measurement [73]. A system-

atic uncertainty amounting to half of this correction is assigned, correlated across channels.

The predictions of the nominal tt generator (powheg+pythia) are compared, fo-

cussing on the 1-lepton channel selection, with those obtained using a variety of genera-

tors differing by the PDF choice (powheg+pythia with HERAPDF [75]), by the parton

showering and hadronisation scheme (powheg+herwig), by the implementation of the

NLO matrix element and the matching scheme (mc@nlo [76]+herwig), by the amount

of initial- and final-state radiation (ISR/FSR) using AcerMC+pythia, or by the imple-

mentation of higher-order tree-level matrix elements (alpgen [77]+pythia). It is found

that, in general, the largest deviations are observed for alpgen, which is therefore used to

assess further systematic uncertainties as explained below.

In the global fit, the normalisation of the tt background in the 2-jet category is left

floating freely, independently in each of the lepton channels. An uncertainty of 20% on

the 3-to-2-jet ratio is estimated from the generator comparisons explained above. In the
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global fit, this uncertainty is treated as correlated between the 0- and 1-lepton channels,

and uncorrelated with the 2-lepton channel.

The shape of the mbb distribution is also studied with the same set of generators,

leading to correlated shape uncertainties for 2- and 3-jet events, and for pVT < 120 GeV

and pVT > 120 GeV. The associated variation is larger in the higher pVT interval: for 2-jet

events, when it increases the distribution by 3% for mbb = 50 GeV, it decreases it by 1%

at 200 GeV; the effect is similar, but of opposite sign, for 3-jet events.

The same procedure is used for the pVT distribution, from which a 7.5% uncertainty is

assessed on the normalisation of the pVT > 120 GeV interval. Finally, the same approach

calls for a shape systematic uncertainty on the Emiss
T distribution in the 1-lepton channel,

different but correlated between pVT < 120 GeV and pVT > 120 GeV. This uncertainty is not

applied in the 0- and 2-lepton channels.

Single-top-quark background. The theoretical uncertainties on the cross sections of

the three processes contributing to single-top production are 4%, 4%, and 7% for the

s-channel, t-channel, and Wt production, respectively [78].

The predictions of the nominal generators (powheg+pythia for the s-channel and

for Wt production; acerMC+pythia for the t-channel) are compared, after the 1-lepton

channel selection, with those obtained using a variety of generators. For the s-channel,

the comparison is made with acerMC and mc@nlo; for Wt production with acerMC,

powheg+herwig, and mc@nlo; and for the t-channel with amc@nlo7 [81, 82]+herwig.

For all three processes, the impact of ISR/FSR is evaluated using acerMC. For Wt pro-

duction, there are interference effects with tt production, which need to be considered.

Two methods are available for this: the Diagram Removal (DR) and the Diagram Subtrac-

tion (DS) schemes [83]. The former is used in the nominal generation, and the second for

comparison.

Uncertainties on the acceptance for each of the three processes are taken as the largest

deviations observed, separately for pVT < 120 GeV and pVT > 120 GeV, and for 2- and 3-jet

events. They can be as large as 52% for 2-jet events in the t-channel at low pVT , of the order

of 5% for Wt production (except for 3-jet events at high pVT : 15%), and typically 20% for

the s-channel.

In addition to the acceptance uncertainties, the effects of the model variations described

above on variables input to the BDT are evaluated and three shape systematic uncertainties

are found to be needed in Wt production. The first uncertainty is on the shape of the mbb

distribution in the high pVT interval for 2-jet events where, when a shift from the nominal

model increases the rate by 20% for mbb = 50 GeV, it decreases it by 40% at 200 GeV. A

second uncertainty is on the mbb shape for 3-jet events, where the corresponding shifts are

25% and 20%. Finally, a third uncertainty is on the pT distribution of the leading jet in

the low pVT interval for 2-jet events.

7Event generation with amc@nlo is based on the mc@nlo formalism and the madgraph-5 frame-

work [79, 80].
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Z+jets background. As explained in section 7, ∆φ(jet1, jet2) and pZT reweightings are

applied to the Zl and Zc+Zb components, respectively. For the ∆φ(jet1, jet2) reweighting,

a systematic uncertainty amounting to half of the correction is assigned to the Zl com-

ponent, while an uncertainty amounting to the full correction is assigned to the Zc + Zb

components. This is done separately for 2- and 3-jet events, and all these uncertainties are

treated as uncorrelated. For the pZT reweighting, uncorrelated systematic uncertainties of

half the correction are assigned to the Zl and Zc+Zb components. The notation Zc+Zb

is meant to indicate that a systematic uncertainty is treated as correlated between the Zc

and Zb components.

The normalisation and the 3-to-2-jet ratio for the Zl background are determined from

data in the 0-tag region of the 2-lepton channel, both with an uncertainty of 5%. The

normalisations of the Zcl and Zbb backgrounds are left free in the global fit. The uncer-

tainties on the 3-to-2-jet ratios for the Zcl and Z+hf components are assessed through

a comparison of alpgen with the nominal sherpa generator in the 2-tag region of the

2-lepton channel; these are 26% for Zcl and 20% for Z+hf. The same procedure is used to

estimate uncertainties on the flavour fractions within Z+hf events, yielding 12% for each

of bl/bb, cc/bb and bc/bb, with bl/bb uncorrelated between 2- and 3-jet samples.

The shape of the mbb distribution is compared between data and simulation in the

2-tag region of the 2-lepton channel, excluding the 100–150 GeV range, from which a shape

uncertainty is derived that, when it increases the dijet-mass distribution by 3% at 50 GeV,

it decreases it by 5% at 200 GeV. This uncertainty is applied uncorrelated to the Zl and

Zb + Zc components. The differences between alpgen and sherpa are covered by this

uncertainty.

W+jets background. As explained in section 7, a ∆φ(jet1, jet2) reweighting is applied

to theWl andWcl components. Uncorrelated systematic uncertainties amounting to half of

the correction are assigned to these two components, for each of the 2- and 3-jet categories.

For the Wcc + Wb component, no reweighting is applied but a systematic uncertainty is

assigned, equal to the full correction applied to the Wl and Wcl components, uncorrelated

between 2- and 3-jet events.

The normalisation and the 3-to-2-jet ratio for the Wl background are taken directly

from simulation, both with a 10% uncertainty. This is based on the agreement observed

between data and prediction in the 0-tag sample. The 3-to-2-jet ratio for the Wcl back-

ground is also assigned an uncertainty of 10%. The normalisations of the Wcl and Wbb

backgrounds are left free in the global fit.

To assign further uncertainties on the Wbb background, for which dedicated control

regions are not available in the data, extensive comparisons are performed at genera-

tor level, with kinematic selections mimicking those applied after reconstruction. The

predictions of the sherpa generator are compared to those of powheg+pythia8, of

amc@nlo+herwig++ [84] and of alpgen+herwig. Comparisons are also made be-

tween samples generated with amc@nlo with renormalisation (µR) and factorisation (µF)

scales8 independently modified by factors of 2 or 0.5 and also with different PDF sets

8The nominal scales are taken as µR = µF = [m2
W + pT(W )2 +m2

b + (pT(b)2 + pT(b)2)/2]1/2.

– 38 –



J
H
E
P
0
1
(
2
0
1
5
)
0
6
9

(CT10, MSTW2008NLO and NNPDF2.3 [85]). As a result, a 10% uncertainty is assigned

to the 3-to-2-jet ratio, taken as correlated between all W+hf processes. Shape uncertain-

ties are also assessed for the mbb and pWT distributions. When the former increases the

dijet-mass distribution by 23% at 50 GeV, it decreases it by 28% at 200 GeV. It is taken

as uncorrelated for Wl, Wcl, Wbb + Wcc and Wbl + Wbc. For Wbb+ Wcc, it is further-

more uncorrelated among pWT intervals (with the three highest intervals correlated for the

dijet-mass analysis). When the latter shape uncertainty increases the pWT distribution by

9% for pWT = 50 GeV, it decreases it by 23% at 200 GeV. It is taken as correlated for all

W+hf processes, and uncorrelated between the 2- and 3-jet samples.

Predictions using the inclusive production of all flavours by sherpa and alpgen are

compared after full reconstruction and event selection to assign uncertainties on the flavour

fractions that take properly into account heavy-flavour production at both the matrix-

element and parton-shower levels. (For alpgen, the production of light flavours and heavy

flavours are performed separately at the matrix-element level; a dedicated procedure, based

on the ∆R separation between b-partons, is used to remove the overlap between bb pairs

produced at the matrix-element and parton-shower levels.) The following uncertainties are

assigned in the W+hf samples: 35% for bl/bb and 12% for each of bc/bb and cc/bb. The

uncertainty on bl/bb is uncorrelated between pWT intervals (with the three highest intervals

correlated for the dijet-mass analysis).

Diboson background. The uncertainties on the cross sections for diboson production

(WW , WZ and ZZ) are assessed at parton level using mcfm at NLO in QCD. The sources

of uncertainty considered are the renormalisation and factorisation scales and the choice of

PDFs. The nominal scales are dynamically set to half of the invariant mass of the diboson

system and the nominal PDFs are the CT10 set.

The scale uncertainties are evaluated by varying simultaneously µR and µF by factors

of 2 or 0.5. Since the analysis is performed in pVT intervals and in exclusive 2- and 3-jet

categories, the uncertainties are evaluated for each channel separately in those intervals and

categories (2 and 3 final-state partons within the nominal selection acceptance) following

the prescription of ref. [86]. This procedure leads, in each pVT interval, to two uncorrelated

uncertainties in the 2-jet category, one for 2+3 jets inclusively and one associated with

the removal of 3-jet events, and to one in the 3-jet category anti-correlated with the latter

uncertainty in the 2-jet category. These uncertainties are largest at high pVT . For pVT >

200 GeV, the two uncertainties affecting the 2-jet category can be as large as 29% and 22%

in the WZ channel, roughly half this size in the ZZ channel and intermediate for WW ;

and the uncertainty affecting the 3-jet category is about 17% in all channels.

The uncertainties due to the PDF choice are evaluated according to the PDF4LHC rec-

ommendation [87], i.e., using the envelope of predictions from the CT10, MSTW2008NLO,

and NNPDF2.3 PDF sets and their associated uncertainties. They range from 2% to 4%,

with no pVT dependence observed.

The shape of the reconstructed Z → bb lineshape in V Z production is affected by

the parton-shower and hadronisation model. A shape-only systematic uncertainty is as-

sessed by comparing the lineshapes obtained with the nominal powheg+pythia8 gener-
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ator and with herwig. The relative difference between the shapes is 20% for a dijet mass

around 125 GeV.

8.4 Uncertainties on the signal modelling

The qq → WH, qq → ZH, and gg → ZH signal samples are normalised respectively to

their inclusive cross sections as explained in section 3. The uncertainties on these cross

sections [88] include those arising from the choice of scales µR and µF and of PDFs.

The scale uncertainty is 1% for WH production. It is larger (3%) for ZH production,

due to the contribution of the gluon-gluon initiated process. Under the assumption that the

scale uncertainties are similar (1%) for qq →WH and qq → ZH, a conservative uncertainty

of 50% is inferred for gg → ZH. The same procedure leads to PDF uncertainties of 2.4%

for qq → (W/Z)H and 17% for gg → ZH. The relative uncertainty on the Higgs boson

branching ratio to bb is 3.3% for mH = 125 GeV [11]. The contribution of decays to final

states other than bb is verified to amount to less than 1% after selection.

Acceptance uncertainties due to the choice of scales are determined from signal samples

generated with powheg interfaced to pythia8, with µR and µF varied independently by

factors of 2 or 0.5. The procedure advocated in ref. [86] is used, after kinematic selections

applied at generator level, leading to acceptance uncertainties of 3.0%, 3.4% and 1.5% for

qq →WH, qq → ZH and gg → ZH, respectively, for the 2- and 3-jet categories combined,

and of 4.2%, 3.6% and 3.3% for the 3-jet category. The latter uncertainty is anti-correlated

with an acceptance uncertainty associated with the removal of 3-jet events from the 2+3-jet

category to form the 2-jet category. In addition, the pVT spectrum is seen to be affected, and

shape uncertainties are derived. For the qq → (W/Z)H samples, when they increase the

distribution by 1% for pVT = 50 GeV, they decrease it by 3% at 200 GeV. These variations

are 2% and 8%, respectively, for the gg → ZH samples.

Acceptance uncertainties due to the PDF choice are determined in a similar way,

following the PDF4LHC prescription. They range from 2% in the 2-jet gg → ZH samples

to 5% in the 3-jet qq → ZH samples. There is no evidence of a need for pVT shape

uncertainties related to the PDFs.

The applied uncertainties on the shape of the pVT spectrum associated with the NLO

electroweak corrections [38] are typically at the level of 2%, increasing with pVT to reach

2.5% in the highest pVT interval.

The effect of the underlying-event modelling is found to be negligible, using various

pythia tunes. The effect of the parton-shower modelling is examined by comparison of

simulations by powheg interfaced with pythia8 and with herwig. Acceptance variations

of 8% are seen, except for 3-jet events in the pVT > 120 GeV interval, where the variation is

at the level of 13%. These variations are taken as systematic uncertainties.

A summary of the systematic uncertainties affecting the modelling of the Higgs boson

signal is given in table 5.
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Signal

Cross section (scale) 1% (qq), 50% (gg)

Cross section (PDF) 2.4% (qq), 17% (gg)

Branching ratio 3.3 %

Acceptance (scale) 1.5%–3.3%

3-jet acceptance (scale) 3.3%–4.2%

pVT shape (scale) S

Acceptance (PDF) 2%–5%

pVT shape (NLO EW correction) S

Acceptance (parton shower) 8%–13%

Z+jets

Zl normalisation, 3/2-jet ratio 5%

Zcl 3/2-jet ratio 26%

Z+hf 3/2-jet ratio 20%

Z+hf/Zbb ratio 12%

∆φ(jet1, jet2), p
V
T , mbb S

W+jets

Wl normalisation, 3/2-jet ratio 10%

Wcl, W+hf 3/2-jet ratio 10%

Wbl/Wbb ratio 35%

Wbc/Wbb, Wcc/Wbb ratio 12%

∆φ(jet1, jet2), p
V
T , mbb S

tt

3/2-jet ratio 20%

High/low-pVT ratio 7.5%

Top-quark pT, mbb, E
miss
T S

Single top

Cross section 4% (s-,t-channel), 7% (Wt)

Acceptance (generator) 3%–52%

mbb, p
b1
T S

Diboson

Cross section and acceptance (scale) 3%–29%

Cross section and acceptance (PDF) 2%–4%

mbb S

Multijet

0-, 2-lepton channels normalisation 100%

1-lepton channel normalisation 2%–60%

Template variations, reweighting S

Table 5. Summary of the systematic uncertainties on the signal and background modelling. An

“S” symbol is used when only a shape uncertainty is assessed.
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9 Statistical procedure

9.1 General aspects

A statistical fitting procedure based on the Roostats framework [89, 90] is used to extract

the signal strength from the data. The signal strength is a parameter, µ, that multiplies

the SM Higgs boson production cross section times branching ratio into bb. A binned

likelihood function is constructed as the product of Poisson-probability terms over the bins

of the input distributions involving the numbers of data events and the expected signal and

background yields, taking into account the effects of the floating background normalisations

and the systematic uncertainties.

The different regions entering the likelihood fit are summarised in table 6. In the dijet-

mass analysis, the inputs to the “global fit” are the mbb distributions in the 81 2-tag signal

regions defined by three channels (0, 1 or 2 leptons), up to five pVT intervals, two number-

of-jet categories (2 or 3), and three b-tagging categories (LL, MM and TT). Here and in the

rest of this section, mbb distributions are to be understood as transformed distributions, as

explained in section 6. In the MVA, the inputs are the BDTV H discriminants in the 24 2-tag

signal regions defined by the three lepton channels, up to two pVT intervals, the two number-

of-jet categories, and b-tagging categories. In the 1-lepton channel, the b-tagging categories

are LL, MM and TT. In the 0- and 2-lepton channels, they are the LL category and a

combined MM and TT category (MM+TT).9 These BDTV H -discriminant distributions

are supplemented by the three mbb distributions in the 100–120 GeV pVT interval of the

2-jet 2-tag categories (LL, MM, and TT) of the 0-lepton channel. For the MVA, additional

inputs are the MV 1c distributions of the b-tagged jet in the 11 1-tag control regions of

the MVA selection and in the 100–120 GeV pVT interval of the 2-jet 1-tag category of the

0-lepton channel. In the dijet-mass analysis, the MV 1c distributions are combined in each

of the pVT < 120 GeV and pVT > 120 GeV intervals, which also results in 11 1-tag control

regions. Altogether, there are 584 mbb and MV 1c bins in the 92 regions of the dijet-mass

analysis, and 251 BDTV H -discriminant and MV 1c bins in the 38 regions of the MVA, to

be used in the global fits.

The impact of systematic uncertainties on the signal and background expectations is

described by nuisance parameters (NPs), θ, which are constrained by Gaussian or log-

normal probability density functions, the latter being used for normalisation uncertainties

to prevent normalisation factors from becoming negative in the fit. The expected numbers

of signal and background events in each bin are functions of θ. The parameterisation of

each NP is chosen such that the predicted signal and background yields in each bin are

log-normally distributed for a normally distributed θ. For each NP, the prior is added as a

penalty term to the likelihood, L(µ,θ), which decreases it as soon as θ is shifted away from

its nominal value. The statistical uncertainties of background predictions from simulation

are included through bin-by-bin nuisance parameters.

9While keeping distinct MM and TT categories in the 1-lepton channel improves the sensitivity, this is

not observed for the 0- and 2-lepton channels. Keeping the LL category separated from the others improves

the sensitivity in all lepton channels.
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Dijet-mass analysis MVA

Channel 0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton

1-tag MV 1c MV 1c

LL

2-tag

mbb BDT(∗) BDT

MM mbb
BDT(∗) BDT

BDT
TT mbb BDT

Table 6. The distributions used in each region by the likelihood fit in the dijet-mass analysis and

in the MVA applied to the 8 TeV data. Here, “BDT” stands for “BDTV H discriminant”. For each

entry listed, there are additional divisions into pVT intervals: five in the dijet-mass analysis and two

in the MVA, as shown in table 2. These distributions are input to the fit for the 2-jet and 3-jet

categories separately, except in the low pVT interval (100–120 GeV) of the 0-lepton channel where

only the 2-jet category is used. In the 0- and 2-lepton channels, the MM and TT 2-tag categories

are combined in the MVA. (∗) In the low pVT interval of the 0-lepton channel, the MVA uses the

mbb distributions in the LL, MM and TT 2-tag categories as well as the MV 1c distribution in the

1-tag category.

The test statistic qµ is then constructed from the profile likelihood ratio

qµ = −2 ln Λµ with Λµ = L(µ,
ˆ̂
θµ)/L(µ̂, θ̂),

where µ̂ and θ̂ are the parameters that maximise the likelihood with the constraint 0 ≤
µ̂ ≤ µ, and

ˆ̂
θµ are the nuisance parameter values that maximise the likelihood for a given

µ. This test statistic is used for exclusion intervals derived with the CLs method [91,

92]. To measure the compatibility of the background-only hypothesis with the observed

data, the test statistic used is q0 = −2 ln Λ0. The results are presented in terms of: the

95% confidence level (CL) upper limit on the signal strength; the probability p0 of the

background-only hypothesis; and the best-fit signal-strength value µ̂ with its associated

uncertainty σµ. The fitted µ̂ value is obtained by maximising the likelihood function with

respect to all parameters. The uncertainty σµ is obtained from the variation of 2 ln Λµ by

one unit, where Λµ is now defined without the constraint 0 ≤ µ̂ ≤ µ. Expected results are

obtained in the same way as the observed results by replacing the data in each input bin

by the expectation from simulation with all NPs set to their best-fit values, as obtained

from the fit to the data.10

While the analysis is optimised for a Higgs boson of mass 125 GeV, results are also

extracted for other masses. These are obtained without any change to the dijet-mass

analysis, except for the binning of the transformed mbb distribution, which is reoptimised.

For the MVA, it is observed that the performance degrades for masses away from 125 GeV,

for which the BDTs are trained. This is largely due to the fact that mbb is an input to

the BDTs. The MVA results for other masses are therefore obtained using BDTs retrained

for each of the masses tested at 5 GeV intervals between 100 and 150 GeV. The details

provided in the rest of this section refer to the analysis performed for a Higgs boson mass

of 125 GeV.

10This type of pseudo-data sample is referred to as an Asimov dataset in ref. [92].
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Process Scale factor

tt 0-lepton 1.36± 0.14

tt 1-lepton 1.12± 0.09

tt 2-lepton 0.99± 0.04

Wbb 0.83± 0.15

Wcl 1.14± 0.10

Zbb 1.09± 0.05

Zcl 0.88± 0.12

Table 7. Factors applied to the nominal normalisations of the tt, Wbb, Wcl, Zbb, and Zcl back-

grounds, as obtained from the global MVA fit to the 8 TeV data. The tt background is normalised

in the 2-jet category independently in each of the lepton channels. The errors include the statistical

and systematic uncertainties.

9.2 Technical details

The data have sufficient statistical power to constrain the largest background-normalisation

NPs, which are left free to float in the fit. This applies to the tt, Wbb, Wcl, Zbb and Zcl

processes. The corresponding factors applied to the nominal background normalisations

as resulting from the global fit of the MVA to the 8 TeV data, are shown in table 7. As

stated in section 8, the tt background is normalised in the 2-jet category independently in

each of the lepton channels. The reason for uncorrelating the normalisations in the three

lepton channels is that the regions of phase space probed in the 2-jet category are very

different between the three channels. In the 2-lepton channel, the tt background is almost

entirely due to events in which both top quarks decay into (W → `ν)b (fully leptonic

decays) with all final-state objects detected (apart from the neutrinos). In the 1-lepton

channel, it is in part due to fully leptonic decays with one of the leptons (often a τ lepton)

undetected, and in part to cases where one of the top quarks decays as above and the other

into (W → qq′)b (semileptonic decays) with a missed light-quark jet. Finally, in the 0-

lepton channel, the main contributions are from fully leptonic decays with the two leptons

undetected and from semileptonic decays with a missed lepton and a missed light-quark

jet; here again, the missed leptons are often τ leptons. Futhermore, the pVT range probed

is different in the 0-lepton channel: pVT > 100 GeV in contrast to being inclusive in the 1-

and 2-lepton channels.

As described in detail in section 8, a large number of sources of systematic uncertainty

are considered. The number of nuisance parameters is even larger because care is taken to

appropriately uncorrelate the impact of the same source of systematic uncertainty across

background processes or across regions accessing very different parts of phase space. This

avoids unduly propagating constraints. For instance, the tt background contributes quite

differently in the 2-tag 3-jet regions of the 0- and 1-lepton channels on one side, and of

the 2-lepton channel on the other. In the 0- and 1-lepton channels, it is likely that a jet

from a t → b(W → qq) decay is missed, while in the 2-lepton channel it is likely that an

ISR or FSR jet is selected. This is the reason for not correlating, between these two sets

of lepton channels, the systematic uncertainty attached to the 3-to-2 jet ratio for the tt

– 44 –



J
H
E
P
0
1
(
2
0
1
5
)
0
6
9

background. Another example is the ∆φ reweighting in the W+jets processes, which is

derived in the 0-tag sample and applied to the Wcl and Wl backgrounds. As explained

in section 7, this reweighting is not applied to the Wcc and Wb backgrounds but, in the

absence of further information, an uncertainty is assessed for the ∆φ distributions of the

Wcc and Wb backgrounds, uncorrelated with the uncertainty applied to the Wcl and Wl

backgrounds. Altogether, the fit has to handle almost 170 NPs, with roughly half of those

being of experimental origin.

The fit uses templates constructed from the predicted yields for the signal and the

various backgrounds in the bins of the input distribution in each region. The systematic

uncertainties are encoded in templates of variations relative to the nominal template for

each up-and-down (±1σ) variation. The limited size of the MC samples for some simu-

lated background processes in some regions can cause large local fluctuations in templates

of systematic variations. When the impact of a systematic variation translates into a

reweighting of the nominal template, no statistical fluctuations are expected beyond those

already present in the nominal template. This is the case, for instance, for the b-tagging

uncertainties. For those, no specific action is taken. On the other hand, when a systematic

variation may introduce changes in the events selected, as is the case for instance with

the JES uncertainties, additional statistical fluctuations may be introduced, which affect

the templates of systematic variations. In such cases, a smoothing procedure is applied

to each systematic-variation template in each region. Bins are merged based on the con-

straints that the statistical uncertainty in each bin should be less than 5% and that the

shapes of the systematic-variation templates remain physical: monotonous for a BDTV H

discriminant, and with at most one local extremum for a dijet mass.

Altogether, given the number of regions and NPs, the number of systematic-variation

template pairs (+1σ and −1σ) is close to twenty thousand, which renders the fits highly

time consuming. To address this issue, systematic uncertainties that have a negligible

impact on the final results are pruned away, region by region. A normalisation (shape)

uncertainty is dropped if the associated template variation is below 0.5% (below 0.5% in

all bins). Additional pruning criteria are applied to regions where the signal contribution is

less than 2% of the total background and where the systematic variations impact the total

background prediction by less than 0.5%. Furthermore, shape uncertainties are dropped

if the up- and down-varied shapes are more similar to each other than to the nominal

shape. This is only done for those systematic uncertainties where opposite-sign variations

are expected. This procedure reduces the number of systematic-variation templates by a

factor of two.

The behaviour of the global fit is evaluated by a number of checks, including how much

each NP is pulled away from its nominal value, how much its uncertainty is reduced with

respect to its nominal uncertainty, and which correlations develop between initially uncor-

related systematic uncertainties. To assess these effects, comparisons are made between

the expectations from simulation and the observations in the data. When differences arise,

their source is investigated, and this leads in a number of cases to uncorrelating further

systematic uncertainties by means of additional NPs. This is to prevent a constraint from

being propagated from one kinematic region to another if this is not considered well moti-
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vated. The stability of the results is also tested by performing fits for each lepton channel

independently, which can also help to identify from which region each constraint originates.

It is particularly useful to understand which systematic uncertainties have the largest

impact on the final results, and therefore should be considered with greater care. For this

purpose, a so-called ranking of the NPs is established. For each systematic uncertainty, the

fit is performed again with the corresponding NP fixed to its fitted value, θ̂, shifted up or

down by its fitted uncertainty, with all the other parameters allowed to vary so as to take

properly into account the correlations between systematic uncertainties. The magnitude

of the shift in the fitted signal strength µ̂ is a measure of the observed impact of the

considered NP. The same procedure is repeated, using the nominal values of the NP and

of its associated uncertainty to provide its expected impact. To reduce the computation

time and therefore to enable more detailed fit studies, some of the NPs which have a

negligible effect on the expected fitted uncertainty on µ̂ are dropped: those associated

with the muon momentum scale and resolution and with the electron energy resolution;

one of those associated with the jet energy scale; and those associated with the quark-

gluon composition of the backgrounds, which turn out to be fully correlated with those

associated with the difference in energy response between quark and gluon jets. The

ranking of the systematic uncertainties obtained with the MVA applied to the 8 TeV data

is shown in figure 16 with the NPs ordered by decreasing post-fit impact on µ̂. The five

systematic uncertainties with the largest impact are, in descending order, those: on the

dijet-mass shape for the Wbb and Wcc backgrounds for pWT > 120 GeV; on the Wbl/Wbb

normalisation ratio for pWT > 120 GeV; on the Wbb background normalisation; on the pWT
shape in the 3-jet category for the W+hf background; and on the signal acceptance due to

the parton-shower modelling.

Since the same data sample is used for both the dijet-mass analysis and the MVA, the

consistency of the two final results, i.e., the two fitted signal strengths, is assessed using

the “bootstrap” method [93]. A large number of event samples are randomly extracted

from the simulated samples, with the signal strength µ set to unity, the SM value. Each of

them is representative of the integrated luminosity used for the data analysis in terms of

expected yields as well as of associated Poisson fluctuations. Each of these event samples

is subjected to both the dijet-mass analysis and the MVA, thus allowing the two fitted

µ̂ values to be compared and their statistical correlation to be extracted. At the same

time, the expected distributions of µ̂ and of its uncertainty are determined for both the

dijet-mass analysis and the MVA.

9.3 Cross checks using diboson production

Diboson production with a Z boson decaying to a pair of b-quarks and produced in as-

sociation with either a W or Z boson has a signature very similar to the one considered

in this analysis, but with a softer pbbT spectrum and with a mbb distribution peaking at

lower values. The cross section is about five times larger than for the SM Higgs boson with

a mass of 125 GeV. Diboson production is therefore used as a validation of the analysis

procedure. For the dijet-mass analysis, the binning of the transformed mbb distribution is

reoptimised for the Z boson mass. For the MVA, the BDTs are retrained to discriminate
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Figure 16. Impact of systematic uncertainties on the fitted signal-strength parameter µ̂ for the

MVA applied to the 8 TeV data. The systematic uncertainties are listed in decreasing order of their

impact on µ̂ on the y-axis. The boxes show the variations of µ̂, referring to the top x-axis, when

fixing the corresponding individual nuisance parameter θ to its post-fit value θ̂ modified upwards or

downwards by its post-fit uncertainty, and repeating the fit as explained in the text. The hatched

and open areas correspond to the upwards and downwards variations, respectively. The filled cir-

cles, referring to the bottom x-axis, show the deviations of the fitted nuisance parameters θ̂ from

their nominal values θ0, expressed in terms of standard deviations with respect to their nominal

uncertainties ∆θ. The associated error bars show the post-fit uncertainties of the nuisance param-

eters, relative to their nominal uncertainties. The open circles with their error bars, also referring

to the bottom x-axis, show the fitted values and uncertainties of the normalisation parameters that

are freely floating in the fit. The normalisation parameters have a pre-fit value of one. As explained

in section 8.1, the jet energy scale and b-tagging uncertainties are decomposed into uncorrelated

components; the labels 1 and 4 refer to such components.
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the diboson signal from all backgrounds (including the Higgs boson). So-called “V Z fits”

are performed, where the normalisation of the diboson contributions is allowed to vary

with a multiplicative scale factor µV Z with respect to the SM expectation, except for the

small contribution from WW production, which is treated as a background and constrained

within its uncertainty. A SM Higgs boson with mH = 125 GeV is included as a background,

with a production cross section at the SM value with an uncertainty of 50%. Distributions

of the BDTV Z discriminants of the MVA are shown in figure 17 for 2-tag signal regions

with pVT > 120 GeV in the 2-jet category of the 0-, 1- and 2-lepton channels.

As an additional check, fits are also performed with both the diboson and Higgs boson

signal-strength parameters µV Z and µ left freely floating, to study the correlation between

the two strength parameters. The fits in the dijet-mass analysis use the mbb distributions

with binning optimised for a Higgs boson mass of 125 GeV. The fits in the MVA use BDTs

trained for that same mass, as well as the associated optimised binnings.
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10 Analysis of the 7 TeV data

For the 7 TeV dataset, only a dijet-mass analysis is performed. It is similar but not identical

to the corresponding analysis for the 8 TeV data, since some of the object reconstruction

tools, such as the simultaneous use of multiple b-tagging operating points, are not available

for the 7 TeV data. In this section, the main differences between the two analyses are

summarised.

10.1 Object reconstruction

The three categories of electrons are selected according to the loose, medium, and tight

criteria defined in ref. [53]. The transverse energy threshold for loose electrons is set

at 10 GeV, instead of 7 GeV. For tight electrons and muons, the calorimeter isolation

requirement is loosened from 4% to 7%. The procedure used to avoid double-counting

of reconstructed muon and jet objects removes muons separated by ∆R < 0.4 from any

jet, irrespective of the multiplicity of tracks associated with the jet. For jets, the global

sequential calibration is not used and the requirement on the fraction of track pT carried

by tracks originating from the primary vertex is raised from 50% to 75%. The b-tagging

algorithm used is MV1 [94–97] instead of MV1c, with a single operating point to define

b-tagged jets corresponding to an efficiency of 70%.

10.2 Event selection

The selection criteria are those used in the dijet-mass analysis of the 8 TeV data, with

the following differences. With only one b-tagging operating point, a single 2-tag category

is defined. In the 0-lepton channel, the 100–120 GeV pVT interval is not used, and the

criterion for
∑
p
jeti
T is not applied. In the 1-muon sub-channel, the Emiss

T trigger is used

only in the 2-jet 2-tag category for pWT > 160 GeV, and the events selected only by the

Emiss
T trigger constitute distinct signal regions. In the 1-lepton channel, mW

T > 40 GeV is

required for pWT < 160 GeV; there is no requirement on HT, but Emiss
T > 25 GeV is imposed

for pWT < 200 GeV. In the 2-lepton channel, no kinematic fit is performed. Different lepton-

flavour events are used to define a 2-tag tt-dominated e–µ control region in the 2-lepton

channel; the region is defined to be inclusive in jet multiplicity (≥ 2).

10.3 Background composition and modelling

The templates used to model the MJ background in the 1-lepton channel are obtained by

inversion of the track-based isolation criterion, and the normalisations are performed on

the mW
T and Emiss

T distributions in the electron and muon sub-channels, respectively.

Corrections to the simulation of the V+jet backgrounds are determined in the 1- and

2-lepton 0-tag samples inclusively in pVT , and applied as ∆φ(jet1, jet2) reweightings to the

W+jet and Z+jet components in all channels. Selected dijet-mass distributions showing

the background composition in various analysis regions are shown in figure 18.
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10.4 Systematic uncertainties

The differences with respect to the 8 TeV data analysis arise mainly from experimental

systematic uncertainties. Many of them are evaluated using independent data samples

(7 TeV data vs. 8 TeV data), e.g., Emiss
T trigger efficiencies or JES. Others refer to different

identification algorithms, e.g., electron identification or b-tagging. The uncertainty on the

integrated luminosity is 1.8% for the 2011 dataset [20].

The uncertainties affecting the signal and background simulation are estimated in

a similar way as for the 8 TeV data, i.e., from comparisons between the baseline and

alternative generators. For V+jets, the V bc and V bb backgrounds are merged into a single

component. For dibosons, the baseline generator is herwig instead of pythia8; systematic

uncertainties on the 3-to-2-jet ratios and on the pVT distributions are estimated at generator

level for the different diboson processes by comparison with mcfm at NLO. For the signal,

the gg → ZH samples are generated with pythia8 instead of powheg; for all processes,

the alternative generators used are pythia6 and herwig.

Due to these differences, and because the phase space within which the systematic

uncertainties are evaluated is more restricted than for the MVA applied to the 8 TeV

data, all systematic uncertainties, except for the theoretical uncertainties on the signal, are

treated as uncorrelated between the analyses of the 7 TeV and 8 TeV data in the global fit

to the combined dataset, in which the MVA is used for the 8 TeV data.

10.5 Statistical procedure

The inputs to the likelihood fits are the mbb distributions (not transformed) in the 28 pVT
intervals of the 2-tag signal regions. Additional inputs are the event yields in the five pVT
intervals of the 2-tag e–µ control region and the 26 pVT intervals of the 1-tag control regions.

For the tt background, a single floating normalisation is determined by the global fit,

instead of one in each of the 0-, 1-, and 2-lepton channels. In addition to the other floating

normalisations mentioned for the 8 TeV data analysis, the MJ background normalisation is

also left freely floating in all regions of the 1-lepton channel, except in the 2-tag 3-jet regions

where the statistical power of the data is not sufficient to provide a reliable constraint. In

these regions, an uncertainty of 30% is assigned to the MJ background normalisation, using

a method similar to what is done for the analysis of the 8 TeV data.
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11 Results

As explained in section 9, the results are obtained from maximum-likelihood fits to the

data, where the inputs are the distributions of final discriminants in the 2-tag signal re-

gions and the MV 1c distributions of the b-tagged jet in the 1-tag control regions, with

nuisance parameters either floating or constrained by priors. The final discriminants are

the transformed mbb for the dijet-mass analysis and the BDTV H discriminants for the MVA.

Results are extracted independently for the dijet-mass and multivariate analyses. Since the

MVA has better expected sensitivity to a Higgs boson signal, it is used for the nominal

results, while the dijet-mass analysis provides a cross-check (cf. section 11.2). For the

7 TeV data, however, only a dijet-mass analysis is performed. Unless otherwise specified,

all results refer to a Higgs boson mass of 125 GeV.

In the following, the fitted signal-strength parameters are simply denoted µ and µV Z ,

rather than µ̂ and µ̂V Z .

11.1 Nominal results

The nominal results are obtained from global fits using the MVA for the 8 TeV data and

the dijet-mass analysis of the 7 TeV data.

Distributions of the BDTV H discriminant and of MV 1c, with background normalisa-

tions and nuisance parameters adjusted by the global fit to the 8 TeV data were already

presented in section 7.4. Dijet-mass distributions in the 7 TeV data analysis were shown

in section 10. Agreement between data and estimated background is observed within the

uncertainties shown by the hatched bands.

Figure 19 shows the 95% CL upper limits on the cross section times branching ratio

for pp→ (W/Z)(H → bb) in the Higgs boson mass range 110–140 GeV. The observed limit

for mH = 125 GeV is 1.2 times the SM value, to be compared to an expected limit, in the

absence of signal, of 0.8. For the 8 TeV (7 TeV) data only, the observed and expected limits

are 1.4 (2.3) and 0.8 (3.2), respectively.

The probability p0 of obtaining from background alone a result at least as signal-

like as the observation is 8% for a tested Higgs boson mass of 125 GeV; in the presence

of a Higgs boson with that mass and the SM signal strength, the expected p0 value is

0.5%. This corresponds to an excess observed with a significance of 1.4σ, to be compared

to an expectation of 2.6σ. For the 8 TeV data alone, the observed and expected levels

of significance are 1.7σ and 2.5σ, respectively. For the 7 TeV data alone, the expected

significance is 0.7σ and there is a deficit rather than an excess in the data, as can be seen

in figure 18. Figure 20 shows the p0 values in the mass range 110–140 GeV, as obtained for

the 7 TeV and 8 TeV combined dataset.

The fitted µ values for mH = 125 GeV are shown in figure 21 for the 7 TeV, 8 TeV and

combined datasets. With all lepton channels and data-taking periods combined, the fitted

value of the signal-strength parameter is11 µ = 0.51±0.31(stat.)±0.24(syst.). For the 8 TeV

11The uncertainties of the normalisations of the floating backgrounds are included in the systematic

uncertainties; their contribution is 0.07.
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Figure 19. Observed (solid) and expected 95% CL cross-section upper limits, normalised to the SM

Higgs boson production cross section, as a function of mH for all channels and data-taking periods

combined, as obtained using the dijet-mass analysis for the 7 TeV dataset and BDTs trained at

each individual mass for the 8 TeV dataset. The expected upper limit is given for the background-

only hypothesis (dashed) and with the injection of a SM Higgs boson signal at a mass of 125 GeV

(dotted). The dark and light shaded bands represent the 1σ and 2σ ranges of the expectation in

the absence of a signal. For all curves shown, the results obtained at the tested masses are linearly

interpolated.
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Figure 20. Observed (solid) and expected p0 values as a function of mH for all channels and

data-taking periods combined, as obtained using the dijet-mass analysis for the 7 TeV dataset and

BDTs trained at each individual mass for the 8 TeV dataset. The expected p0 values are given for

the background-only hypothesis in the presence of a SM Higgs boson: for the dashed curve the

Higgs boson mass corresponds to each tested mass point in turn; for the dotted curve the Higgs

boson mass is 125 GeV. For all curves shown, the results obtained at the tested masses are linearly

interpolated.
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Figure 21. The fitted values of the Higgs boson signal-strength parameter µ for mH = 125 GeV

for the 7 TeV and 8 TeV datasets and the combination of the 7 TeV and 8 TeV datasets.

data, the fitted value of the signal-strength parameter is µ = 0.65±0.32(stat.)±0.26(syst.).

For the 7 TeV data, it is µ = −1.6± 1.2(stat.)± 0.9(syst.).

For a Higgs boson with a mass of 125.36 GeV, as measured by ATLAS [98], the signal-

strength parameter is µ = 0.52± 0.32(stat.)± 0.24(syst.).

Fits are also performed where the signal strengths are floated independently for (i)

the WH and ZH production processes, or (ii) the three lepton channels. The results of

these fits are shown in figures 22 and 23 respectively. The consistency of the fitted signal

strengths in the WH and ZH processes is at the level of 20%. For the lepton channels,

the consistency between the three fitted signal strengths is at the level of 72% for the

7 TeV data, and of 8% for the 8 TeV data. The low values of the fitted signal strengths for

the ZH process and in the 0-lepton channel are associated with the data deficit observed

in the most sensitive bins of the BDTV H discriminant in the 0-lepton channel, shown in

figure 12(a).

Figure 24 shows the data, background and signal yields, where the final-discriminant

bins in all signal regions are combined into bins of log(S/B), separately for the 7 and 8 TeV

datasets. Here, S is the expected signal yield and B is the fitted background yield. Details

of the fitted values of the signal and of the various background components are provided

in table 8.

11.2 Cross-check with the dijet-mass analysis

The distributions of mbb in the dijet-mass analysis, with background normalisations and

nuisance parameters adjusted by the global fit to the 8 TeV data were already presented

in section 7.3. Agreement between data and estimated background is observed within the

uncertainties shown by the hatched bands.
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Figure 22. The fitted values of the Higgs boson signal-strength parameter µ for mH = 125 GeV

for the WH and ZH processes and the combination of the WH and ZH processes, with the 7

and 8 TeV datasets combined. The individual µ values for the (W/Z)H processes are obtained

from a simultaneous fit with the signal strength for each of the WH and ZH processes floating

independently.
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Figure 23. The fitted values of the Higgs boson signal-strength parameter µ for mH = 125 GeV

for the 0-, 1- and 2-lepton channels and the combination of the three channels, with the 7 and 8 TeV

datasets combined.The individual µ values for the lepton channels are obtained from a simultaneous

fit with the signal strength for each of the lepton channels floating independently.
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Figure 24. Event yields as a function of log(S/B) for data, background and Higgs boson signal

with mH = 125 GeV for the (a) 8 TeV data and (b) 7 TeV data. Final-discriminant bins in all signal

regions are combined into bins of log(S/B). The signal S and background B yields are expected

and fitted, respectively. The Higgs boson signal contribution is shown as expected for the SM cross

section (indicated as µ = 1.0). The pull of the data with respect to the background-only prediction

is also shown with statistical uncertainties only. The full line indicates the pull of the prediction

for signal (µ = 1.0) and background with respect to the background-only prediction.

Process Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9

Data 368550 141166 111865 20740 5538 2245 382 41 4

Signal 29 43 96 57 58 62 32 10.7 2.3

Background 368802 140846 111831 20722 5467 2189 364 37.9 3.4

S/B 8× 10−5 0.0003 0.0009 0.003 0.01 0.03 0.09 0.3 0.7

W+hf 14584 10626 15297 1948 618 250 45 8.2 0.7

Wcl 96282 30184 15227 1286 239 47 4.2 0.2 0.005

Wl 125676 14961 3722 588 107 16 1.3 0.03 0.001

Z+hf 10758 14167 21684 7458 1178 577 130 14.8 2.2

Zcl 13876 11048 4419 941 61 22 2.1 0.1 0.008

Zl 49750 18061 3044 537 48 15 1 0.05 0.004

tt 30539 24824 26729 5595 2238 922 137 10 0.3

Single top 10356 9492 14279 1494 688 252 31 2.7 0.1

Diboson 4378 1831 1247 474 186 62 9.7 1 0.2

Multijet 12603 5650 6184 400 103 26 3 0.9 0

Table 8. The numbers of expected signal and fitted background events and the observed numbers

of events after MVA selection in the bins of figure 24(a). These numbers are for both the 1-tag and

2-tag events in the 8 TeV dataset, corresponding to an integrated luminosity of 20.3 fb−1.
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Figure 25. The distribution of mbb in data after subtraction of all backgrounds except for the

diboson processes, as obtained with the dijet-mass analysis for the (a) 8 TeV and (b) 7 TeV data. The

contributions from all lepton channels, pVT intervals, number-of-jets and 2-tag b-tagging categories

are summed weighted by their respective values of the ratio of expected Higgs boson signal to fitted

background. The contribution of the associated WH and ZH production of a SM Higgs boson

with mH = 125 GeV is shown as expected for the SM cross section (indicated as µ = 1.0). The size

of the combined statistical and systematic uncertainty on the fitted background is indicated by the

hatched band.

In the dijet-mass analysis, a µ value of 1.23 ± 0.44(stat.) ± 0.41(syst.) is obtained for

the 8 TeV dataset. The consistency of the results of the three lepton channels is at the level

of 8%. Using the “bootstrap” method mentioned in section 9.2, the results for the 8 TeV

data with the dijet-mass analysis and with the MVA are expected to be 67% correlated,

and the observed results are found to be statistically consistent at the level of 8%. The

observed significance in the dijet-mass analysis is 2.2σ. The expected significance is 1.9σ,

to be compared to 2.5σ for the MVA, which is the reason for choosing the MVA for the

nominal results.

Figure 25 shows the mbb distribution in data after subtraction of all backgrounds except

for diboson production for the 7 and 8 TeV data, as obtained with the dijet-mass analysis.

In this figure, the contributions of all 2-tag signal regions in all channels are summed

weighted by their respective ratios of expected Higgs boson signal to fitted background.

The V Z contribution is clearly seen, located at the expected Z mass. The Higgs boson

signal contribution is shown as expected for the SM cross section.

11.3 Cross-check with the diboson analysis

To validate the analysis procedures, V Z fits are performed, the technical details of which

were discussed in section 9.3.
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The measured signal strength for the 8 TeV dataset with the MVA is µV Z = 0.77 ±
0.10(stat.) ± 0.15(syst.). This result is consistent with the observations already made on

figure 25. The signal strengths obtained for the three lepton channels are consistent at the

85% level. In the dijet-mass analysis at 8 TeV, a µV Z value of 0.79±0.11(stat.)±0.16(syst.)

is obtained. The correlation of the systematic uncertainties on µV Z and µ is 35% in the

MVA and 67% in the dijet-mass analysis.

Fits are performed with the same final discriminants as used to obtain the results for

the Higgs boson based on the 8 TeV dataset, but with both the V Z and Higgs boson signal-

strength parameters µV Z and µ left freely floating. The result for the Higgs boson signal

strength is unchanged from the nominal result, and the statistical correlation between

the two signal-strength parameters is found to be −3% in the MVA and 9% in the dijet-

mass analysis. The main reason for these low correlations is the different shape of the pVT
distributions for V Z and for the Higgs boson signal, the pVT variable being used by both

the MVA and the dijet-mass analysis. The yield tables in the appendix show that the ratio

of the diboson contribution to that of the Higgs boson is indeed smaller in the higher pVT
interval than in the lower one. The additional variables input to the BDT provide further

separation in the MVA, leading to a very small diboson contribution in the most significant

bins of the BDTV H discriminant, as can be seen in table 8.

A value of µV Z = 0.50 ± 0.30(stat.) ± 0.38(syst.) is obtained for the 7 TeV dataset.

The signal strength obtained for the combined 7 and 8 TeV dataset is 0.74± 0.09(stat.)±
0.14(syst.) The V Z signal is observed with a significance of 4.9σ, to be compared to an

expected significance of 6.3σ. The fitted µV Z values are shown in figure 26 for the 7 TeV,

8 TeV and combined datasets, and for the three lepton channels separately for the combined

dataset, all with the MVA used for the 8 TeV data. A measurement of V Z production in

pp collisions at
√
s = 8 TeV in final states with b-tagged jets was recently reported by the

CMS Collaboration [99].
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Figure 26. The fitted values of the diboson signal strength µV Z for (a) the 7 TeV, 8 TeV and

combined datasets, and (b) for the three lepton channels separately and combined, for the combined

dataset. The MVA is used for the 8 TeV data. The individual µV Z values for the lepton channels

are obtained from a simultaneous fit with the signal strength for each floating independently.

12 Summary

A search for the Standard Model Higgs boson produced in association with a W or Z

boson and decaying into bb has been presented. The (W/Z) decay channels considered are

W → `ν, Z → `` and Z → νν. The dataset corresponds to integrated luminosities of

4.7 fb−1 and 20.3 fb−1 from pp collisions at 7 TeV and 8 TeV, respectively, recorded by the

ATLAS experiment during Run 1 of the LHC.

The analysis is carried out in event categories based on the numbers of leptons, jets, and

jets tagged as originating from b-quark fragmentation, and on the transverse momentum

of the vector-boson candidate. A multivariate analysis provides the nominal results. An

alternative analysis using invariant-mass distributions of the Higgs boson candidates leads

to consistent results.

For a Higgs boson mass of 125.36 GeV, the observed (expected) deviation from the

background-only hypothesis corresponds to a significance of 1.4 (2.6) standard deviations

and the ratio of the measured signal yield to the Standard Model expectation is found to be

µ = 0.52± 0.32(stat.)± 0.24(syst.). The analysis procedure is validated by a measurement

of the yield of (W/Z)Z production with Z → bb, from which the ratio of the observed signal

yield to the Standard Model expectation is found to be 0.74± 0.09(stat.)± 0.14(syst.).
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A Tables of event yields

The event yields in each category for the multivariate analysis are shown in tables 9–11.
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75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
79 Louisiana Tech University, Ruston LA, United States of America
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