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1 Introduction

For decades, the Higgs boson [1-4] of the Standard Model (SM) remained an unconfirmed
prediction. In July 2012, the ATLAS and CMS experiments at the LHC reported the
observation of a new particle with a mass of about 125 GeV and with properties consistent
with those expected for the SM Higgs boson [5, 6]. Since then, more precise measurements
have strengthened the hypothesis that the new particle is indeed a Higgs boson [7-9].
These measurements, however, have been mainly performed in the bosonic decay modes
of the new particle (H — vy, H — ZZ, and H — WW). It is also essential to verify
whether it decays into fermions as predicted by the Standard Model. Recently, the CMS
Collaboration reported evidence for the 77 decay mode of the Higgs boson at a level of
significance of 3.4 standard deviations (o) for mpy = 125 GeV [10].

The H — bb decay mode is predicted in the SM to have a branching ratio of 58%
for my = 125GeV [11]. Accessing H — bb decays is therefore crucial for constraining,
under fairly general assumptions [12], the overall Higgs boson decay width and, in a global
fit to all accessible combinations of Higgs boson production and decay modes, to allow
for measurements of absolute Higgs boson couplings. An inclusive search for H — bb is
not feasible at hadron colliders because of the overwhelming background from multijet
production. In spite of a cross section more than an order of magnitude lower than the
dominant gluon-fusion process, associated production of a Higgs boson with a vector boson,
W or Z [13], offers a viable alternative because leptonic decays of the vector boson, W — v,
Z — U (¢ =epn), and Z — v, can be efficiently used for triggering and background
reduction purposes [14, 15]. The CDF and DO experiments at the Tevatron reported an
excess of events in their search for associated (W/Z)H production in the H — bb decay
mode at a significance level of 2.80 for my = 125 GeV [16]. Recently, the CMS experiment
reported an excess of events in the H — bb decay mode with a significance of 2.1¢ for
mpg = 125GeV [17].

In this paper, a search for associated (W/Z)H production of the SM Higgs boson
in the bb decay mode is presented, using the full integrated luminosity accumulated by
ATLAS during Run 1 of the LHC: 4.7 and 20.3 fb™! from proton-proton (pp) collisions at
centre-of-mass energies of 7 and 8 TeV in 2011 and 2012, respectively. An analysis of the
7TeV dataset has already been published by ATLAS [18]. In addition to the increase in
the amount of data analysed, the update presented in this paper benefits from numerous
analysis improvements. Some of the improvements to the object reconstruction, however,
are available only for the 8 TeV dataset, which leads to separate analysis strategies for the
two datasets.



The analysis is performed for events containing zero, one, or two charged leptons
(electrons or muons), targeting the Z — vv, W — fv, or Z — ¢ decay modes of the vector
boson, respectively. In addition to Z — vv decays, the O-lepton channel has a smaller but
not insignificant contribution from leptonic W decays when the lepton is produced outside
of the detector acceptance or not identified. A b-tagging algorithm is used to identify the
jets consistent with originating from an H — bb decay. To improve the sensitivity, the three
channels are each split according to the vector-boson transverse momentum, the number of
jets (two or three), and the number of b-tagged jets. Topological and kinematic selection
criteria are applied within each of the resulting categories.

A binned maximum likelihood fit is used to extract the signal yield and the background
normalisations. Systematic uncertainties on the signal and background modelling are im-
plemented as deviations in their respective models in the form of “nuisance” parameters
that are varied in the fit. Each nuisance parameter is constrained by a penalty term in
the likelihood, associated with its uncertainty. Two versions of the analysis are presented
in this paper: in the first, referred to as the dijet-mass analysis, the mass of the dijet
system of b-tagged jets is the final discriminating variable used in the statistical analysis;
in the other, a multivariate analysis (MVA) incorporating various kinematic variables in
addition to the dijet mass, as well as b-tagging information, provides the final discrimi-
nating variable. Because the latter information is not available in similar detail for the
7TeV dataset, the MVA is used only for the 8 TeV dataset. In both analyses, dedicated
control samples, typically with loosened b-tagging requirements, constrain the contribu-
tions of the dominant background processes. The most significant background sources are
(W/Z)+heavy-flavour-jet production and ¢t production. The normalisations of these back-
grounds are fully determined by the likelihood fit. Other significant background sources
are single-top-quark and diboson (WZ and ZZ) production, with normalisations taken
from theory, as well as multijet events, normalised using multijet-enriched control samples.
Since the MVA has higher expected sensitivity, it is chosen as the nominal analysis for the
8 TeV dataset to extract the final results. To validate the analysis procedures, both for
the dijet-mass and MVA approaches, a measurement of the yield of (W/Z)Z production is
performed in the same final states and with the same event selection, with H — bb replaced
by Z — bb.

This paper is organised as follows. A brief description of the ATLAS detector is
given in section 2. Details of the data and simulated samples used in this analysis are
provided in section 3. This is followed by sections describing the dijet-mass and multivariate
analyses applied to the 8 TeV data. The reconstruction of physics objects such as leptons
and jets is addressed in section 4. Section 5 details the event selections applied to the
dijet-mass and multivariate analyses, while section 6 explains the construction of the final
discriminating variable of the MVA. Section 7 discusses the background composition in the
various analysis regions, while the systematic uncertainties are addressed in section 8. The
statistical procedure used to extract the results is described in section 9. For the 7TeV
data, only a dijet-mass analysis is used, and differences with respect to the 8 TeV data
analysis are specified in section 10. The results are presented and discussed in section 11,
and a summary of the paper is given in section 12.



2 The ATLAS detector

The ATLAS detector [19] is cylindrically symmetric around the beam axis and is structured
in a barrel and two endcaps. It consists of three main subsystems. The inner tracking de-
tector is immersed in the 2 T axial magnetic field produced by a superconducting solenoid.
Charged-particle position and momentum measurements are made by pixel detectors fol-
lowed by silicon-strip detectors in the pseudorapidity’ range |n| < 2.5 and by a straw-tube
transition-radiation tracker (TRT) in the range |n| < 2.0. The pixel detectors are crucial
for b-tagging, and the TRT also contributes to electron identification. The calorimeters, lo-
cated beyond the solenoid, cover the range |n| < 4.9 with a variety of detector technologies.
The liquid-argon electromagnetic calorimeters are divided into barrel (|n| < 1.475), endcap
(1.375 < |n| < 3.2), and forward (3.1 < |n| < 4.9) sections. The hadronic calorimeters
(using scintillator tiles or liquid argon as active materials) surround the electromagnetic
calorimeters with a coverage of || < 4.9. The muon spectrometer measures the deflection
of muon tracks in the field of three large air-core toroidal magnets, each containing eight
superconducting coils. It is instrumented with separate trigger and high-precision tracking
chambers covering the |n| < 2.4 and |n| < 2.7 ranges, respectively.

The trigger system is organised in three levels. The first level is based on custom-made
hardware and uses coarse-granularity calorimeter and muon information. The second and
third levels are implemented as software algorithms and use the full detector granularity.
At the second level, only regions deemed interesting at the first level are analysed, while the
third level, called the event filter, makes use of the full detector read-out to reconstruct and
select events, which are then logged for offline analysis at a rate of up to 400 Hz averaged
over an accelerator fill.

3 Data and simulated samples

The datasets used in this analysis include only pp collision data recorded in stable beam con-
ditions and with all relevant sub-detectors providing high-quality data. The corresponding
integrated luminosities are 4.7 and 20.3 fb™! [20] for the 7 and 8 TeV data, respectively.
Events in the O-lepton channel are selected by triggers based on the magnitude E%ﬁss of
the missing transverse momentum vector. The E‘T]rliss trigger configuration evolved during
data taking to cope with the increasing luminosity, and the trigger efficiency was improved
for the 8 TeV data. The dependence of the EX'* trigger efficiency on the EMS recon-
structed offline is measured in W — uv+jets and Z — pu-+jets events collected with
single-muon triggers, with the offline E%liss calculated without the muon contribution. As
there was a brief period of data-taking in which the E%iss triggers were not available for

'ATTLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the
centre of the detector and the z-axis coinciding with the axis of the beam pipe. The z-axis points from the IP
towards the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,¢) are used in
the transverse plane, ¢ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms
of the polar angle § as n = —Intan(6/2). The distance in (7,¢) coordinates, AR = /(A¢)? + (An)?, is also
used to define cone sizes. Transverse momentum and energy are defined as pr = psinf and Er = Esinf,
respectively. For the purpose of object selections, 7 is calculated relative to the geometric centre of the
detector; otherwise, it is relative to the reconstructed primary vertex of each event.



the first bunch crossings of two bunch trains, the integrated luminosity for the O-lepton
channel in the 7 TeV dataset is reduced to 4.6 fb~!. Events in the 1-lepton channel are
primarily selected by single-lepton triggers. The Et threshold of the single-electron trig-
ger was raised from 20 to 22 GeV during the 7TeV data-taking period, and to 24 GeV for
the 8 TeV data. The pr threshold of the single-muon trigger was similarly increased from
18 GeV for the 7TeV data to 24 GeV at 8 TeV. As the single-lepton triggers for the 8 TeV
data include isolation criteria, triggers with higher thresholds (60 GeV for electrons and
36 GeV for muons) but no isolation requirements are used in addition. Single-lepton trigger
efficiencies are measured using a tag-and-probe method applied to Z — ee and Z — up
events. In the 1-muon sub-channel, Effniss triggers are also used to compensate for the lim-
ited muon trigger-chamber coverage in some regions of the detector. Events in the 2-lepton
channel are selected by a combination of single-lepton, dielectron and dimuon triggers. The
thresholds of the dilepton triggers are 12 GeV for electrons and 13 GeV for muons.

Monte Carlo (MC) simulated samples are produced for signal and background pro-
cesses using the ATLFAST-II simulation [21], which includes a full simulation of the ATLAS
detector based on the GEANT4 program [22], except for the response of the calorimeters
for which a parameterised simulation is used. A list of the generators used for signal and
background simulations is given in table 1.

The MC generator used for gg-initiated W H and ZH production is PYTHIAS [23] with
the CTEQG6L1 [24] parton distribution functions (PDFs). The AU2 tune [25, 26] is used
for the parton shower, hadronisation, and multiple parton interactions. The PHOTOS pro-
gram [27] is used for QED final-state radiation. The POWHEG generator [28-30] is used
within the MiNLO approach [31] with the CT10 PDFs [32], interfaced to PYTHIAS8 with the
AU2 tune, as a cross-check and to evaluate systematic uncertainties on the signal accep-
tance and kinematic properties. It is also used for the generation of gluon-gluon-initiated
Z H production at leading order (LO) in QCD, with results cross-checked by an indepen-
dent computation [33]. (For the analysis of the 7 TeV data, the PYTHIAS generator is used
for g9 — ZH.) The transverse momentum distributions of the Higgs boson show substan-
tial differences between the two ZH production processes. For ¢g-initiated W H and ZH
production, the total production cross sections and associated uncertainties are computed
at next-to-next-to-leading order (NNLO) in QCD [34-36], and with electroweak correc-
tions at next-to-leading order (NLO) [37]. Additional normalisation-preserving differential
electroweak NLO corrections are applied as a function of the transverse momentum of the
vector boson [38]. For gluon-gluon-initiated ZH production, NLO corrections [39], which
increase the total ZH production cross section by about 5%, are taken into account. The
Higgs boson decay branching ratios are calculated with HDECAY [11]. Signal samples are
simulated for Higgs boson masses from 100 to 150 GeV in steps of 5 GeV. All charged-lepton
flavours are simulated in the W and Z decays, as leptonic decays of the 7 leptons can also
be selected in the analysis. For the Higgs boson, only the bb decay mode is considered in
the analysis.

The main background processes are (W/Z)+jets and ¢t production. Version 1.4.1 of
the SHERPA generator [40] is used with the CT10 PDFs to simulate W+jets and Z+jets at
leading-order in QCD, with massive ¢- and b-quarks. For ¢t production, the simulation is



Process Generator
Signal*)
qq — ZH — vvbb/llbb  PYTHIAR
99 — ZH — vvbb/llbb POWHEG-+PYTHIAS
qq — WH — Lvbb PYTHIAS
Vector boson + jets
W — tv SHERPA 1.4.1
Z[yx — Ul SHERPA 1.4.1
Z = vy SHERPA 1.4.1
Top-quark
tt POWHEG-+PYTHIA
t-channel ACERMCHPYTHIA
s-channel POWHEG+PYTHIA
Wit POWHEG+PYTHIA
Diboson(*) POWHEG-+PYTHIAS
wWw POWHEG+PYTHIAS
Wz POWHEG+PYTHIAS
Z7Z POWHEG+PYTHIAS

Table 1. The generators used for the simulation of the signal and background processes. (x) For
the analysis of the 7TeV data, PYTHIAS is used for the simulation of the gg — ZH process, and
HERWIG for the simulation of diboson processes.

performed with the POWHEG generator with the CT10 PDF's, interfaced with PYTHIAG [41],
for which the CTEQ6L1 PDFs and the Perugia2011C tune [25, 26] are used. In this
analysis, the final normalisations of these dominant backgrounds are constrained by the
data, but theoretical cross sections are used to optimise the selection. The cross sections
are calculated at NNLO for (W/Z)+jets [42] and at NNLO, including resummations of
next-to-next-to-leading logarithmic (NNLL) soft gluon terms, for ¢¢ [43].

Additional backgrounds arise from single-top-quark and diboson (WW, W Z, and ZZ)
production. For single-top-quark production, the s-channel exchange process and Wt pro-
duction are simulated with POWHEG, as for tf, while the t-channel exchange process is
simulated with the ACERMC generator [44] interfaced with PYTHIA6, using the CTEQ6L1
PDFs and the Perugia2011C tune. The cross sections are taken from refs. [45-47]. The
POWHEG generator with the CT10 PDFs, interfaced to PYTHIA8 with the AU2 tune, is used
for diboson processes [48]. (For the analysis of the 7TeV data, the HERWIG generator [49]
is used instead with the CTEQ6L1 PDFs and the AUET2 tune [25, 26], and the cross
sections are obtained at NLO from mMcFM [50] with the MSTW2008NLO PDFs [51].)

Events from minimum-bias interactions are simulated with the PYTHIA8 generator with
the MSTW2008LO PDFs [52] and the A2 tune [25, 26]. They are overlaid on the simulated



signal and background events according to the luminosity profile of the recorded data. The
contributions from these “pile-up” interactions are simulated both within the same bunch
crossing as the hard-scattering process and in neighbouring bunch crossings. The resulting
events are then processed through the same reconstruction programs as the data.

Additional generators are used for the assessment of systematic uncertainties as ex-
plained in section 8.

Simulated jets are labelled according to which generated hadrons with pr > 5GeV
are found within a cone of size AR = 0.4 around the reconstructed jet axis. If a b-hadron
is found, the jet is labelled as a b-jet. If not and a c-hadron is found, the jet is labelled
as a c-jet. If neither a b- nor a c-hadron is found, the jet is labelled as a light (i.e., u-,
d-, or s-quark, or gluon) jet. Simulated V+jet events, where V stands for W or Z, are
then categorised according to the labels of the two jets that are used to reconstruct the
Higgs boson candidate. If one of those jets is labelled as a b-jet, the event belongs to the
Vb category. If not and one of the jets is labelled as a c-jet, the event belongs to the
Ve category. Otherwise, the event belongs to the VI category. Further subdivisions are
defined according to the flavour of the other jet from the pair, using the same precedence
order: Vbb, Vbe, Vbl, Vce, Vel. The combination of Vbb, Vbe, Vbl and Vee is denoted
V+hf. The Vel final state is not included in V+hf because the main production process is
gs — We rather than gluon splitting.

4 Object reconstruction

In this section, the reconstruction of physics objects used in the analysis of the 8 TeV
data is presented. Differences relevant for the analysis of the 7TeV data are reported in
section 10.

Charged-particle tracks are reconstructed with a pr threshold of 400 MeV. The pri-
mary vertex is selected from amongst all reconstructed vertices as the one with the largest
sum of associated-track squared transverse momenta, Ep% and is required to have at least
three associated tracks.

Three categories of electrons [53, 54] and muons [55] are used in the analysis, referred to
as loose, medium and tight leptons in order of increasing purity. Loose leptons are selected
with transverse energy E1 > 7GeV. Loose electrons are required to have |n| < 2.47
and to fulfil the “very loose likelihood” identification criteria defined in ref. [54]. The
likelihood-based electron identification combines shower-shape information, track-quality
criteria, the matching quality between the track and its associated energy cluster in the
calorimeter (direction and momentum/energy), TRT information and a criterion to help
identify electrons originating from photon conversions. The electron energies are calibrated
by making use of reference processes such as Z — ee [56]. Three types of muons are included
in the loose definition to maximise the acceptance: (1) muons reconstructed in both the
muon spectrometer and the inner detector (ID); (2) muons with pr > 20 GeV identified in
the calorimeter and associated with an ID track with |n| < 0.1, where there is limited muon-
chamber coverage; and (3) muons with |n| > 2.5 identified in the muon spectrometer, and
which do not match full ID tracks due to the limited inner-detector coverage. For muons of



the first and second type, the muon-track impact parameters with respect to the primary
vertex must be smaller than 0.1 mm and 10 mm in the transverse plane and along the
z-axis, respectively. Finally, the scalar sum of the transverse momenta of tracks within a
cone of size AR = 0.2 centred on the lepton-candidate track, excluding the lepton track,
is required to be less than 10% of the transverse momentum of the lepton.

Medium leptons must meet the loose identification criteria and have Ep > 25GeV.
Medium muons must be reconstructed in both the muon spectrometer and the inner de-
tector and have |n| < 2.5. Tight electrons are required to additionally fulfil the “very tight
likelihood” identification criteria [54]. For both the tight electrons and the tight muons,
more stringent isolation criteria must be satisfied: the sum of the calorimeter energy de-
posits in a cone of size AR = 0.3 around the lepton, excluding energy associated with the
lepton candidate, must be less than 4% of the lepton energy, and the track-based isolation
requirement is tightened from 10% to 4%.

Jets are reconstructed from noise-suppressed topological clusters of energy in the calori-
meters [57] using the anti-k; algorithm [58] with a radius parameter of 0.4. Jet energies are
corrected for the contribution of pile-up interactions using a jet-area-based technique [59]
and calibrated using pp- and 7-dependent correction factors determined from simulation,
with residual corrections from in situ measurements applied to data [60, 61]. Further
adjustments are made based on jet internal properties, which improve the energy resolution
without changing the average calibration (global sequential calibration [60]). To reduce the
contamination by jets from pile-up interactions, the scalar sum of the pr of tracks matched
to the jet and originating from the primary vertex must be at least 50% of the scalar sum
of the pr of all tracks matched to the jet. This requirement is only applied to jets with
pr < 50GeV and |n| < 2.4. Jets without any matched track are retained. The jets kept
for the analysis must have pr > 20 GeV and |n| < 4.5.

To avoid double-counting, the following procedure is applied to loose leptons and jets.
First, if a jet and an electron are separated by AR < 0.4, the jet is discarded. Next, if
a jet and a muon are separated by AR < 0.4, the jet is discarded if it has three or fewer
matched tracks since in this case it is likely to originate from a muon having showered in
the calorimeter; otherwise the muon is discarded. (Such muons are nevertheless included
in the computation of the Efrniss and in the jet energy corrections described in section 5.)
Finally, if an electron and a muon are separated by AR < 0.2, the muon is kept unless it
is identified only in the calorimeter, in which case the electron is kept.

The MV1c b-tagging algorithm is used to identify jets originating from b-quark frag-
mentation. This algorithm combines in a neural network the information from various
algorithms based on track impact-parameter significance or explicit reconstruction of b-
and c-hadron decay vertices. It is an improved version of the MV1 algorithm [62-64] with
higher c-jet rejection. Four b-tagging selection criteria (or operating points) are calibrated
and used in the analysis, corresponding to average efficiencies of 80%, 70%, 60% and 50%
for b-jets with pr > 20 GeV, as measured in simulated tf events. In this analysis, the 80%,
70% and 50% operating points are denoted loose, medium and tight, respectively. For the
tight (loose) operating point, the rejection factors are 26 (3) and 1400 (30) against c-jets
and light jets, respectively. For the tight operating point, the c-jet rejection factor is 1.9
times larger than obtained with the MV1 algorithm.



The b-tagging efficiencies for b-jets, c-jets and light jets are measured in both data and
simulation using dedicated event samples such as ¢t events for b-jets, events with identified
D* mesons for c-jets, or multijet events for light jets. The small differences observed are
used to correct the simulation by so-called “scale factors” (SFs) within intervals between
two operating points. These SFs are parameterised as a function of the jet pt and, for light
jets, also |n|. The SFs are, however, strictly valid only for the generator used to derive
them. The differences observed when the efficiencies are measured with different generators
are taken into account by additional “MC-to-MC” SFs. Such differences can be caused by,
e.g., different production fractions of heavy-flavour hadrons or modelling of their decays.

Because of the large cross sections of VI and V¢ production, these backgrounds remain
significant despite the powerful rejection of non-b-jets by the b-tagging algorithm. It is im-
practical to simulate a sufficiently large number of VI and V¢ events to provide a reliable
description of these backgrounds in the analysis samples for which two b-tagged jets are
required. An alternative procedure, parameterised tagging, is therefore used. Here, instead
of directly tagging the ¢- and [-labelled jets with the MV1c algorithm, parameterisations
as functions of pr and |n| of their probabilities to be b-tagged are used for the Vi, Ve
and WW processes in all analysis samples in which two b-tagged jets are required. These
parameterisations are, however, integrated over other variables that can affect the ¢- and
light-jet tagging efficiencies. In particular, a strong dependence of these efficiencies is ob-
served on AR, the angular separation from the closest other jet, and a significant difference
is seen between direct and parameterised tagging for Vee events with AR < 1. No such
difference is seen for Vel, VI and WW events. A dedicated correction, depending on AR,
is therefore applied to the Vcc events.

The missing transverse momentum vector E%.‘iss [65, 66] is measured as the negative
vector sum of the transverse momenta associated with energy clusters in the calorimeters
with || < 4.9. Corrections are applied to the energies of clusters associated with recon-
structed objects (jets, electrons, 7 leptons, and photons), using the calibrations of these
objects. The transverse momenta of reconstructed muons are included, with the energy
deposited by these muons in the calorimeters properly removed to avoid double-counting.
In addition, a track-based missing transverse momentum vector, p%‘iss, is calculated as the
negative vector sum of the transverse momenta of tracks with |n| < 2.4 associated with the
primary vertex.

Additional corrections are applied to the simulation to account for small differences
from data for trigger efficiencies, for lepton reconstruction and identification efficiencies, as
well as for lepton energy and momentum resolutions.

5 Event selection

In this section, the event selection applied in the analysis of the 8 TeV data is presented.
Differences in the analysis of the 7TeV data are reported in section 10.

The analysis is optimised for a Higgs boson mass of 125 GeV. Events are first cate-
gorised according to the numbers of leptons, jets, and b-tagged jets.



Events containing no loose leptons are assigned to the 0-lepton channel. Events con-
taining one tight lepton and no additional loose leptons are assigned to the 1-lepton channel.
Events containing one medium lepton and one additional loose lepton of the same flavour,
and no other loose leptons, are assigned to the 2-lepton channel. In the 1- and 2-lepton
channels, for at least one of the lepton triggers by which the event was selected, the objects
that satisfied the trigger are required to be associated with the selected leptons.

The jets used in this analysis, called “selected jets”, must have pp > 20 GeV and
In| < 2.5, the n range within which b-tagging can be applied. There must be exactly two
or three such selected jets. Events containing an additional jet with pr > 30GeV and
In| > 2.5 are discarded to reduce the t¢ background. Only selected jets are considered
further, e.g., to define the jet multiplicity, or to calculate kinematic variables.

The b-tagging algorithm is applied to all selected jets. There must be no more than two
such jets loosely b-tagged, and 3-jet events in which the lowest-pt jet is loosely b-tagged
are discarded. At least one of the two b-tagged jets must have pp > 45 GeV. The following
b-tagging categories are then defined as shown in figure 1. Events with two jets satisfying
the tight b-tagging criterion form the TT (or Tight) category; those not classified as TT,
but with two jets satisfying the medium b-tagging criterion, form the MM (or Medium)
category; those not classified as TT or MM, but with two jets satisfying the loose b-tagging
criterion, form the LL (or Loose) category. This categorisation improves the sensitivity
with respect to what would be obtained using a single category, such as TT+MM, with
the LL category providing constraints on the backgrounds not containing two real b-jets.
Events with exactly one jet loosely b-tagged form the 1-tag category, and those with no
loosely b-tagged jet form the O-tag category. In the 3-jet categories, the dijet system is
formed by the two b-tagged jets in any of the 2-tag categories, by the b-tagged jet and
the leading (highest-p) non-b-tagged jet for events in the 1-tag category, and by the two
leading jets in the 0-tag category.

Additional topological and kinematic criteria are applied to reject background events
and enhance the sensitivity of the search. They are outlined in table 2 and detailed below.
In general, the selection criteria are looser in the MVA than in the dijet-mass analysis in
order to maximise the information available to the final discriminant.

Further categorisation is performed according to the transverse momentum of the
vector boson, p¥ , to take advantage of the better signal-to-background ratio at high p¥ .
The transverse momentum of the vector boson is reconstructed as the E%liss in the 0-lepton
channel, the magnitude p¥/ of the vector sum of the lepton transverse momentum and the
Eﬁ?iss in the 1-lepton channel, and the magnitude p% of the vector sum of the transverse
momenta of the two leptons in the 2-lepton channel. In the dijet-mass analysis, the events
are categorised in five p¥ intervals, with boundaries at 0, 90, 120, 160, and 200 GeV. In the
0O-lepton channel and for events fulfilling the condition on qufti mentioned in table 2, the
Emiss trigger is fully efficient for BRI > 160 GeV, 97% efficient for EMiss = 120 GeV, and
80% efficient for EMisS = 100 GeV, with an efficiency that decreases rapidly for lower ERSS,
Only four intervals are therefore used in the O-lepton channel, with a minimum Effniss value
of 100 GeV. In the 1-muon sub-channel, the E%iss trigger is used for p‘{[f > 120 GeV to
recover events not selected by the single-muon trigger, thus increasing the signal acceptance
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MV1c(jet:) OP

Figure 1. Event classification as a function of the output of the MV1c b-tagging algorithm for the
two highest pr jets. The bin boundaries denote the operating points (MVIc(jet) OP) as defined
in section 4, corresponding to b-tagging efficiencies of 100%, 80%, 70%, 50%, i.e., the b-jet purity
increases from left (bottom) to right (top). The event categories are O-tag, 1-tag, and TT, MM and
LL for 2-tag, as explained in the text.

in this channel by 8%. In the MVA, only two intervals are defined, with p¥ below or above
120 GeV, but the detailed p¥ information is used in the final discriminant.

In the dijet-mass analysis, requirements are applied to the angular separation between
the two jets of the dijet system, AR(jet;,jet,), which depend on the p¥ interval. The
requirement on the minimum value reduces the background from V +jet production, while
the requirement on the maximum value, which reduces the background from ¢t production,
is tightened with increasing p¥ to take advantage of the increasing collimation of the dijet
system for the signal. To increase the signal acceptance, the requirement on the minimum
value is removed in the highest p¥ interval, where the amount of background is smallest.
In the MVA, where the AR(jetq, jets) information is used in the final discriminant, only a
minimum value is required, a requirement which is also removed for p¥ > 200 GeV.

In the O-lepton channel, the multijet (MJ) background is suppressed by imposing
requirements on the magnitude p%iss of the track-based missing transverse momentum
vector p%‘iss, the azimuthal angle between E%‘iss and p?iss, Agb(EEI‘“iSS,p%‘iSS), the az-
imuthal angle between EMSS and the nearest jet, min[A@(ER®S jet)], and the azimuthal
angle between Efrniss and the dijet system, A¢(Efrniss,dijet). In addition, a minimum
value is required for the scalar sum of the jet transverse momenta, » pjTQti, which depends
on the jet multiplicity. Additional requirements are applied in the lowest p¥ interval of
the O-lepton channel, where the MJ background is largest: Njet = 2; E%liss > 100 GeV;

Ag(jety,jety) < 2.7, S > 7; and £ > 0.5. Here, A¢(jet;,jety) is the azimuthal angle be-
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Variable ‘ Dijet-mass analysis ‘ Multivariate analysis

Common selection

Y [GeV] 0-90 90()-120 | 120-160 | 160-200 | > 200 | 0-120 ‘ > 120
AR(jety, jets) 0.7-3.4] 0.7-3.0 0.7-2.3 | 0.7-1.8 | < 1.4 | > 0.7 (p} <200 GeV)
0-lepton selection

piss [GeV] > 30 > 30 > 30
Ap(Emiss pmiss) < 7/2 < 7/2 < 7/2
min[Agb‘(Efrniss, jet)] NU - > 1.5 NU > 1.5

A¢(EF'SS, dijet) > 2.2 > 2.8 -

Njet=2(3) et

i:zl pr - [GeV] > 120 (NU) > 120 (150) > 120 (150)

1-lepton selection

m¥ [GeV] < 120 -

Hy [GeV] > 180 - > 180 -

Emiss [GeV] - > 20 > 50 - > 20
2-lepton selection

my [GeV] 83-99 71-121

Emiss [GeV| < 60 -

Table 2. Event topological and kinematic selections. NU stands for ‘Not Used’. () In the 0-
lepton channel, the lower edge of the second pY¥. interval is set at 100 GeV instead of 90 GeV. For
the 1-lepton channel, only the 1-muon sub-channel is used in the p¥. < 120 GeV intervals.

tween the two jets, S is the ErrfniSS significance, defined as the ratio of E%‘iss to the square
root of ) pjTeti' and L is a likelihood ratio constructed to discriminate further against the
MJ background.?

In the 1-lepton channel, a requirement is imposed on the transverse mass? meV in the
dijet-mass analysis. This requirement reduces the contamination from the ¢¢ background.
Requirements are also imposed on Ht (ER%) for p¥ < (>)120GeV, where Hr is the
scalar sum of E%liss and the transverse momenta of the two leading jets and the lepton.
This mainly reduces the MJ background. As discussed in section 7.1, the MJ background
is difficult to model and remains substantial in the 1-electron sub-channel in the p¥ <
120 GeV intervals. Therefore, only the 1-muon sub-channel is used in these intervals.

In the 2-lepton channel, criteria are imposed on the dilepton invariant mass, myp, which

2The likelihood ratio uses the following inputs: A¢(ER%, dijet); Ag¢(jet,,jet,); the magnitude of the
vector sum of the two jet transverse momenta, H¥; HI divided by 3 pj,;ti; and the cosine of the helicity
angle in the dijet rest frame as defined in ref. [67]. For the MJ background, the probability density functions
used in the likelihood ratio are constructed from data events selected with Ag(ERS piiss) > 1 /2.

3The transverse mass mY is calculated from the transverse momentum and the azimuthal angle of the

miss

charged lepton, p% and ¢, and from the missing transverse momentum magnitude, EX*° and azimuthal
angle, o™ mY = \/2pL ER5(1 — cos(¢f — ¢miss)).
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must be consistent with the mass of the Z boson. In the dijet-mass analysis a requirement
is imposed on ErTmSS; this variable is used in the final discriminant of the MVA.

For events in which two jets are loosely b-tagged, these selection criteria define a set of
“2-tag signal regions”, categorised in terms of channel (0, 1, or 2 leptons), p¥ interval, and
jet multiplicity (2 or 3). In the dijet-mass analysis, a further division is performed into the
TT, MM and LL b-tagging categories. In the MVA, where the b-tagging information is used
in the final discriminant, a similar subdivision is performed with the difference that the
TT and MM categories are merged in the 0- and 2-lepton channels. Similarly defined 1-tag
and O-tag “control regions” are used in the analysis to constrain the main backgrounds.
In the 1-lepton channel, the 2-tag signal regions with a third selected jet act in practice
as control regions because they are largely dominated by ¢t events. All 2-tag signal and
1-tag control regions are used simultaneously in the global fit (described in section 9) used
to extract the results. The O-tag control regions are used only for background modelling
studies (reported in section 7).

After event selection, the energy calibration of the b-tagged jets is improved as follows.
The energy from muons within a jet is added to the calorimeter-based jet energy after
removing the energy deposited by the muon in the calorimeter (muon-in-jet correction), and
a pr-dependent correction is applied to account for biases in the response due to resolution
effects (resolution correction). This latter correction is determined for the pt spectrum of
jets from the decay of a Higgs boson with my = 125GeV in simulated (W/Z)H events.
The dijet mass resolution for the signal is improved by 14% after these corrections and is
typically 11% (figure 2(a)). In the 2-lepton channel, wherein there is no true E¥s involved
except possibly from semileptonic heavy-flavour decays, the energy calibration of the jets
is further improved by a kinematic likelihood fit, which includes a Breit-Wigner constraint
on the dilepton mass, Gaussian constraints on each of the transverse components of the
20bb system momentum (with a width of 9 GeV, as determined from ZH simulated events),
dedicated transfer functions relating the true jet transverse momenta to their reconstructed
values (after the muon-in-jet correction, but without the resolution correction) as well as
a prior built from the expected true jet pr spectrum in ZH events (playing a role similar
to the resolution correction). Overall, the bb mass resolution is improved by 30% in the
2-lepton channel (figure 2(b)).

The cross sections times branching ratios for (W/Z)H with W — v, Z — U, Z — vv,
and H — bb, as well as the acceptances in the three channels after full selection are given in
table 3 for the MVA and the dijet-mass analysis. The acceptance for other production and
decay modes of the Higgs boson is negligible. The 0-lepton channel adds 7% in acceptance
for the W — fv process with respect to the 1-lepton channel. Similarly, the 1-lepton channel
adds 10% in acceptance for the Z — £¢ process with respect to the 2-lepton channel.

- 12 —
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Figure 2. Dijet-invariant-mass distribution for the decay products of a Higgs boson with my =
125 GeV in the 2-lepton MVA selection. The distributions are shown (a) using jets after global
sequential calibration (GSC, solid), and after adding muons inside jets (dotted) and after correcting
for resolution effects specific to the kinematics of the decay of a Higgs boson with my = 125 GeV
(dash-dotted); (b) using jets after global sequential calibration (GSC, solid), and after adding
muons inside jets and applying the kinematic fit (dash-dotted). The distributions are fit to the
Bukin function [68] and the parameter representing the width of the core of the distribution is
shown in the figures, as well as the relative improvement in the resolution with respect to jets after
the global sequential calibration.

mpy = 125GeV at /s = 8TeV
Process Cross section x BR [fb] Acceptance [%]
O-lepton  1-lepton 2-lepton

qq — (Z — €0)(H — bb) 14.9 - 1.3 (1.1) 13.4 (10.9)
99 — (Z — t0)(H — bb) 1.3 -~ 0.9 (0.7) 10.5 (8.1)
qq — (W — (v)(H — bb) 131.7 0.3 (0.3) 4.2 (3.7) —

qq — (Z — vv)(H — bb) 44.2 4.0 (3.8) — —

g9 — (Z — vv)(H — bb) 3.8 5.5 (5.0) - -

Table 3. The cross section times branching ratio (BR) and acceptance for the three channels at
8TeV. For ZH, the ¢g- and gg-initiated processes are shown separately. The branching ratios are
calculated considering only decays to muons and electrons for Z — ¢4, decays to all three lepton
flavours for W — fv and decays to neutrinos for Z — vv. The acceptance is calculated as the
fraction of events remaining in the combined 2-tag signal regions of the MVA (dijet-mass analysis)
after the full event selection.
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6 Multivariate analysis

Although the dijet mass is the kinematic variable that provides the best discrimination
between signal and backgrounds, the sensitivity of the search is improved by making use of
additional kinematic, topological and b-tagging properties of the selected events in a multi-
variate analysis. The Boosted Decision Tree (BDT) technique [69, 70] is used, which, sim-
ilarly to other multivariate methods, properly accounts for correlations between variables.

Dedicated BDT's are constructed, trained and evaluated in each of the 0-, 1- and 2-
lepton channels in the 2-tag regions (with the LL, MM and TT categories combined) and
separately for the events with two and three jets. In the 0-lepton channel, only events with
p¥ > 120 GeV are used, whereas for the 1- and 2-lepton channels individual BDTs are
used for p¥ < 120 GeV and p¥ > 120 GeV. Events in the electron and muon sub-channels
are combined since none of the variables used are lepton-flavour specific. In the 0-lepton
channel, the final results are obtained using the MVA for p¥ > 120 GeV. For the small
100 < p¥ < 120 GeV interval, which has reduced sensitivity, no dedicated BDT is trained
and only the dijet-mass distribution is used.

The BDTs are trained to separate the (VH,H — bb) signal from the sum of the
expected background processes. The input variables used to construct the BDT's are chosen
in order to maximise the separation, while avoiding the use of variables not improving the
performance significantly. Starting from the dijet mass, additional variables are tried one
at a time and the one yielding the best separation gain is kept. This procedure is repeated
until adding more variables does not result in a significant performance gain. The final sets
of variables for the different channels are listed in table 4. The b-tagged jets belonging to the
dijet system (with mass denoted myy) are labelled in decreasing pr as by and be, and their
separation in pseudorapidity is |An(by, b2)|. The b-tagging information is provided by the
outputs of the MV1c neural network, MV1c(b;) and MV 1e(be). The angular separation,
in the transverse plane, of the vector boson and the dijet system of b-tagged jets and their
pseudorapidity separation are denoted A¢(V,bb) and |An(V,bb)|, respectively. In the 0-
lepton channel, Ht is defined as the scalar sum of the transverse momenta of all jets and
E%ﬁss. In the 1-lepton channel, the angle between the lepton and the closest b-tagged jet
in the transverse plane is denoted min[A¢(¥¢,b)]. The other variables were defined in the
previous sections. In 3-jet events, the third jet is labelled as jets and the mass of the 3-jet
system is denoted myy;.

The input variables of the BDT's are compared between data and simulation, and good
agreement is found within the assessed uncertainties. Selected input-variable distributions
are shown in figure 3.4 In this figure, as for all figures in this section, the MJ background
is estimated as described in section 7.1, corrections to the simulation as explained in sec-
tion 7.2 are applied, and background normalisations and shapes are adjusted by the global
fit of the MVA as outlined at the beginning of section 7 and presented in more detail in
section 9. A similarly good agreement is found for the correlations between pairs of input
variables, as can be seen in figure 4.

“In this and all similar figures, all backgrounds are taken into account, but those contributing less than
1% are omitted from the legend.
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Variable 0-Lepton 1-Lepton 2-Lepton
v x x
E%iss X X X
p?rl X X X
pl% X X X
Mpp X X X
AR(by,b2) X X X
|An(by, ba)] X X
A¢(V, bb) X X X
|An(V,bb)| x
HT X
min[A¢(¢, )] X
mlV «
Myyp X
MV1e(by) X X X
MV1c(by) X X X
Only in 3-jet events
plﬁt3 X X X
Mpbj X X X

Table 4. Variables used in the multivariate analysis for the 0-, 1- and 2-lepton channels.

The Toolkit for Multivariate Data Analysis, TMVA [71], is used to train the BDTs.
The values for the training parameters are found by determining the configuration with
the best separation between signal and background in a coarsely binned multi-dimensional
training parameter space, followed by more finely grained one-dimensional scans of individ-
ual training parameters. In order to make use of the complete set of simulated MC events
for the BDT training and evaluation in an unbiased way, the MC events are split into two
samples of equal size, A and B. The performance of the BDTs trained on sample A (B)
is evaluated with sample B (A) in order to avoid using identical events for both training
and evaluation of the same BDT. Half of the data are analysed with the BDTs trained on
sample A, and the other half with the BDTs trained on sample B. At the end, the output
distributions of the BDT's trained on samples A and B are merged for both the simulated
and data events.

The values of the BDT outputs do not have a well-defined interpretation. A dedicated
procedure is applied to transform the BDT-output distributions to obtain a smoother dis-
tribution for the background processes and a finer binning in the regions with the largest
signal contribution, while at the same time preserving a sufficiently large number of back-
ground events in each bin. Starting from a very fine-binned histogram of the BDT-output
distribution, the procedure merges histogram bins, from high to low BDT-output values,
until a certain requirement, based on the fractions of signal and background events in the
merged bin, is satisfied. To limit the number of bins and to reduce the impact of sta-
tistical fluctuations, a further condition is that the statistical uncertainty of the expected
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total background contribution has to be smaller than 10% in each merged bin. The free
parameters of the transformation algorithm are optimised to maximise the expected signal
sensitivity. For simplicity, these transformed outputs, which are used for the analysis, are
called “BDTy g discriminants” in the following. An optimisation of the number of bins and
bin boundaries is also performed for the my, distribution used in the dijet-mass analysis
in a similar way, where the free parameters of the transformation algorithm are optimised
separately for the different analysis regions. The effect of the transformation on the BDT-
output and dijet-mass distributions can be seen in figure 5 for the 1-lepton channel and one
signal region. The transformation groups into few bins the my, regions that are far from
the signal on each of the low and high mass sides, while it expands the region close to the
signal mass, where the signal-to-background ratio is largest. The effect on the BDT out-
put is similar, but simpler to visualise because the signal and the background accumulate
initially on the high and the low sides of the distribution, respectively.

Correlations between input variables and the BDTy g discriminant can provide in-
formation on the impact of individual variables on the classification. Figure 6 shows such
correlations for the dijet mass, which is the BDT input that provides the best single-variable
discriminating power.
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Figure 5. Top: the dijet-mass distributions for the expected background and signal contributions
in the 1-lepton channel and the 2-jet 2-tag T'T category for 160 GeV < p¥ < 200 GeV (a) before and
(b) after applying the transformation of the histogram bins. Bottom: the BDT-output distribution
for the expected background and signal contributions in the 1-lepton channel and the 2-jet 2-tag TT
category for pi¥ > 120 GeV (c) before and (d) after applying the transformation of the histogram
bins. The background contributions after the relevant global fit (of the dijet-mass analysis in (a)
and (b) and of the MVA in (c) and (d)) are shown as filled histograms. The Higgs boson signal
(mpg = 125GeV) is shown as a filled histogram on top of the fitted backgrounds, as expected
from the SM (indicated as p = 1.0), and, unstacked as an unfilled histogram, scaled by the factor
indicated in the legend. The dashed histogram shows the total background as expected from the
pre-fit MC simulation. The entries in overflow are included in the last bin. The size of the combined
statistical and systematic uncertainty on the sum of the signal and fitted background is indicated
by the hatched band. The ratio of the data to the sum of the signal and fitted background is shown
in the lower panel.
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7 Background composition and modelling

This section describes the modelling of individual backgrounds. In many cases, the data
are able to constrain the normalisations and shapes better than the a priori estimates. A
likelihood fit (also called “global fit”) is used to simultaneously extract both the signal yield
and constraints on the background normalisations and shapes. The distributions used by
the fit are those of the dijet mass or BDTy g discriminant in the 2-tag signal regions, as
appropriate, as well as those of the MV 1c value of the b-tagged jet in the 1-tag control
regions. More details are provided in section 9.

For the multijet (MJ) backgrounds, the normalisations and shapes provided as inputs
to the fit are estimated from data, as explained below. For the other backgrounds the
inputs are taken from the simulation, except for the normalisations of the V+jets and tt
backgrounds that are left free to float in the fit. The corrections to these two backgrounds,
described below, are applied prior to the fit.

In all distributions presented in this section, unless otherwise specified, the normalisa-
tions of the various backgrounds are those extracted from the global fit for the dijet-mass
or multivariate analysis, as appropriate. The fit also adjusts the background shapes in
those distributions within the constraints from the systematic uncertainties discussed in
section 8.

7.1 Multijet background

Multijet events are produced with a huge cross section via the strong interaction, and there-
fore give rise to potentially large backgrounds. A first class of MJ background arises from
jets or photon conversions misidentified as electrons, or from semileptonic heavy-flavour
decays; the 1- and 2-lepton channels are especially sensitive to this class of background.
Another class, which affects mostly the O-lepton channel, arises from large fluctuations in
jet energy measurements in the calorimeters, which create “fake” Efrmss. These MJ back-
grounds cannot be determined reliably by simulation, and are estimated from data in each
of the 0-, 1-, and 2-lepton channels, and in each of the 2- and 3-jet, 0-, 1-, and 2-tag regions.

The MJ background is estimated in the 0-lepton channel using an “ABCD method”,
within which the data are divided into four regions based on the min[Agb(E!FiSS, jet)]
and Ad)(Er_‘Fiss,p%liss) variables, such that three of the regions are dominated by back-
ground. (In the 100-120 GeV p¥ interval, the likelihood ratio £ designed to suppress the
MJ background is used instead of min[A¢(ERSS jet)].) For events with real EMNss it
is expected that the directions of the calorimeter-based and track-based missing trans-
verse momenta, Efrniss and p?iss, are similar. In events with fake E%liss arising from
a jet energy fluctuation, it is expected that the direction of E%‘iss is close to the di-
rection of the poorly measured jet. The signal region (A) is therefore selected with
min[A¢(ERSS jet)] > 1.5 and A¢(ERISS pmiss) < 7/2. In region C, the requirement on
A¢(ERiss pmiss) jg reversed. In regions B and D, min[A¢(ERSS jet)] < 0.4 is required,
with requirements on Acb(EEJ‘_JiSS, p,‘fliss) as in regions A and C, respectively. A comparison
of the min[A¢(ERiss jet)] distributions for Ag(EMiSS, pmiss) ahove and below 7/2 shows

that these two variables are only weakly correlated, and this observation is confirmed in a
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multijet event sample simulated with PYTHIA8. An MJ template in region A is obtained
using events in region C after subtracting the contribution of other backgrounds, taken
from simulation. The template is normalised by the ratio of the number of events in region
B to that in region D, again after subtracting other backgrounds from those regions. The
populations of events in the various regions suffer from low statistical precision after the
2-tag requirement. The b-tagging requirement is therefore dropped in regions B, C and
D, and an additional b-tagging normalisation factor is applied to the resulting template,
taken as the fraction of 2-tag events in region D. The MJ background in the signal regions
is found to amount to ~ 1% of the total background.

In the 1-lepton channel, the MJ background is determined separately for the electron
and muon sub-channels. For each signal or control region, an MJ-background template is
obtained in an MJ-dominated region after subtracting the small remaining contribution
from the other backgrounds. The other backgrounds are taken from a simulation improved
by scale factors for the various contributions obtained from a preliminary global fit. The
MJ-dominated region is obtained by modifying the nominal selection to use medium, in-
stead of tight, leptons and loosening both the track and calorimeter-based isolation criteria.
The track-based isolation is changed to the intervals 5%-12% and 7%-50% for electrons
and muons respectively, instead of < 4%; and the calorimeter-based isolation is loosened
to < 7% from < 4%. The sample sizes of the MJ-templates are however rather low in the
2-tag regions. Since it is observed that the kinematic properties of the 1-tag and 2-tag
events in the MJ-dominated regions are similar, 1-tag events are used to enrich the 2-tag
MJ templates. Events in the 1-tag category are promoted to the 2-tag category by as-
signing to the untagged jet an emulated MV 1c value drawn from the appropriate MV'1c
distribution observed in the corresponding 2-tag MJ template. This distribution depends
on the rank (leading or sub-leading) of the untagged jet and on the MV1c value of the
tagged jet. To cope with residual differences observed in some distributions between these
pseudo-2-tag MJ events and the actual 2-tag MJ events, a reweighting is applied according
to the MV 1c of the tagged jet and, for the electron sub-channel, according to AR(jety, jety)
and p%v . This procedure is applied in each of the 2- and 3-jet, LL, MM and TT categories.
The normalisations of the MJ templates are then obtained from “multijet fits” to the EMiss
distributions in the 2- and 3-jet, 1- and 2-tag (LL, MM and TT combined) categories,
with floating normalisations for the templates of the other background processes. The
templates for these other background processes are taken from the improved simulation
mentioned above.

The MJ background in the 1-lepton channel is concentrated at low pr‘fV , and in the
2-jet 2-tag sample with p%l < 120 GeV it ranges from 11% of the total background in the
LL category to 6% in the TT category. The main purpose of including the p%v < 120 GeV
intervals is to provide constraints on the largest backgrounds (V+jets and ¢t) in the global
fit. Since the MJ background is twice as large for p'Y < 120GeV in the 1-electron sub-
channel than in the 1-muon sub-channel, only the 1-muon sub-channel is kept for pYFV <
120 GeV so as to provide the most reliable constraints on the non-MJ backgrounds. The
resulting loss in sensitivity is 0.6%. For p%V > 120 GeV, the MJ background is much
smaller: 4% and 2% in the LL and TT categories, respectively, for 2-jet events.
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A template for the MJ background in the 2-electron sub-channel is obtained in a similar
way, by loosening identification and isolation requirements. The normalisation is performed
by a fit to the dilepton-mass distribution, where the Z+jets and MJ components are free
parameters, while the other backgrounds (mostly ¢t) are taken from the simulation. The
MJ normalisation factors are found to be consistent in the 0-, 1- and 2-tag regions. To cope
with the reduced size of the 2-tag MJ event sample, a procedure similar to that used in the
1-lepton channel is used, wherein the pretag MJ sample is weighted by its 2-tag fraction
and combinations of MV1c values are randomly assigned to the jets according to their
distribution in the 2-tag MJ template. In the 2-muon sub-channel, the MJ background
is found to be negligible from a comparison between data and MC prediction in the side-
bands of the Z mass peak. Altogether, the MJ background amounts to <1% of the total
background in the 2-lepton channel.

7.2 Corrections to the simulation

The large number of events in the 0-tag samples allows for detailed investigations of the
modelling of the V+4jet backgrounds by the version of the SHERPA generator used in this
analysis. Given that the search is performed in intervals of p¥ , with the higher intervals
providing most of the sensitivity, an accurate modelling of the p¥ distribution is important.

Figure 7(a) shows that the p%v spectrum for W+jets production in the 1-muon sub-
channel is softer in the data than in the simulation. It is found that this mismodelling
is strongly correlated with a mismodelling of the Ag(jet;,jety) distribution,® shown in
figure 8(a).% In order to address this mismodelling, the Wil and Wel simulations are
reweighted based on parameterised fits to the ratio of data to simulation in the A¢(jety, jetsy)
variable in the 0-tag region, where these backgrounds dominate. Four separate functions
are derived: for the 2- and 3-jet categories and for p%v above and below 120 GeV. The
reweighted A¢(jety, jety) distributions show good agreement between data and simulation
(figure 8(b)). This reweighting increases (reduces) by 0.7% (5.6%) the normalisation of the
P < (>) 120 GeV region. After this reweighting, the modelling of the whole p'Y distri-
bution is greatly improved, as can be seen in figure 7(b). This reweighting also improves
the modelling of other distributions, most notably the dijet mass. It also improves the
modelling in the 1-tag control regions and is therefore applied to the W1l and Wel back-
grounds in all regions of all channels. The numbers of Wee and Wb background events in
the 0- and 1-tag regions are too small to allow conclusive studies of their modelling, so no
reweighting is applied to these backgrounds, but an associated systematic uncertainty is
assessed instead, as explained in section 8.

A similar, but not identical, procedure is used for the Z+jet events in the 2-lepton
channel. A Ag(jety,jety) reweighting is found to improve the modelling of the p# distri-
bution in the 0-tag regions. In the signal-depleted 2-tag regions obtained by the exclusion

5Tt has indeed been observed that the shape of the Ag(jet,, jet,) distribution in data is better reproduced
by NLO generators than by the baseline SHERPA generator used in this analysis [72].

®The peak around Ad(jet,,jet,)=0.7 comes from the combination of two effects: a rise towards low
Ad(jety,jety) due to gluon splitting, and a drop towards low A¢(jet,jet,) due to the two jets becoming
unresolved.
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of the 100-150 GeV dijet mass interval, there is no evidence of a need for a A¢(jet,jets)
correction, but the p% distribution is mismodelled. A dedicated p% reweighting is therefore
determined in the 2-tag regions. Applying the A¢(jety, jety) reweighting to the ZI compo-
nent and the p% reweighting to the Zc¢ and Zb components leads to good modelling also in
the 1-tag regions. This procedure is therefore used in all regions of all channels.

It has been observed in an unfolded measurement of the pr distribution of top quarks
from pair production that the POWHEG generator interfaced to PYTHIA predicts too hard
a spectrum [73]. A correction accounting for this discrepancy is therefore applied at the
level of generated top quarks in the ¢ production process.

7.3 Distributions in the dijet-mass analysis

Distributions of p¥ and dijet mass are shown in figure 9 and in figures 10 and 11, respec-
tively, for a selection of 2-tag signal regions of the dijet-mass analysis. It can be seen that
the background composition in the signal regions varies greatly from channel to channel,
with the p¥ interval, with the jet multiplicity, and with the b-tagging category considered.
The signal-to-background ratio is larger in the 2-jet and tighter b-tagging categories, and
lower in the 3-jet and loose b-tagging categories.

In the 2-lepton channel, the dominant background is always Zbb. There is also a signif-
icant contribution from ¢t in the lower p% intervals, and the relative diboson contribution
increases with p% .

For the 1-lepton channel and in the 2-jet samples the combination of Wbb and tt
accounts for most of the background in the most sensitive MM and TT categories, with the
relative contribution of Wbb and dibosons being largest in the tighter b-tagging categories
and increasing with p%v . The flavours of the two selected jets from ¢t depend on the
reconstructed p%v interval. In particular, at high p%f , when the b-quark and the W from a
top-quark decay are collimated, there is a large bc contribution, where the c-quark comes
from the W — c¢s decay. A significant contribution from single-top-quark production
processes is also seen. In the 3-jet category, the tf contribution is in general dominant,
but there are significant contributions from single-top-quark production (mostly in the Wt
channel) and from Wbb, the latter increasing with p‘fv. A non-negligible contribution of
MJ background can be seen in the lowest p‘fv intervals of the 2-jet category.

In the O-lepton channel, the main backgrounds arise from Zbb and tt, but the Wbb
background is also significant. The relative ¢t contribution is largest in the lowest p¥
intervals, and larger in the 3-jet than in the 2-jet category.

The variations in the background composition between categories allow the global fit to
disentangle the rates of the various background sources. The non-negligible contributions
from the Vel and, to a lesser extent, the VI backgrounds are constrained in the global fit
by the LL b-tagging categories, and also by the MV 1c distributions of the b-tagged jet in
the 1-tag control regions. The 0-tag control regions are not taken into account in the global
fit, but are mainly used to improve the modelling of the V +jets backgrounds, as explained
in section 7.2.
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Figure 11. The dijet-mass distribution observed in data (points with error bars) and expected
(histograms) with the Medium and Tight b-tagging categories (also referred to as MM and TT in
the text) combined and the three intervals with p¥. > 120 GeV combined for (a) the 2-jet signal
regions of the 1-lepton channel, (b) the 3-jet signal regions of the 1-lepton channel, (c) the 2-jet
signal regions of the 2-lepton channel, and (d) the 3-jet signal regions of the 2-lepton channel.
The background contributions after the global fit of the dijet-mass analysis are shown as filled
histograms. The Higgs boson signal (my = 125 GeV) is shown as a filled histogram on top of the
fitted backgrounds, as expected from the SM (indicated as p = 1.0), and, unstacked as an unfilled
histogram, scaled by the factor indicated in the legend. The dashed histogram shows the total
background as expected from the pre-fit MC simulation. The entries in overflow are included in the
last bin. The size of the combined statistical and systematic uncertainty on the sum of the signal
and fitted background is indicated by the hatched band. The ratio of the data to the sum of the
signal and fitted background is shown in the lower panel.

~ 98 —



7.4 Distributions in the multivariate analysis

Distributions of the BDTy gy discriminants of the MVA are shown in figures 12 to 14 for
2-tag signal regions in the 2- and 3-jet categories of the 0-, 1- and 2-lepton channels.
It can be seen that the backgrounds dominated by light jets and, to a lesser extent, c-
jets accumulate at lower values of the BDTy 7 discriminants, due to the inclusion of the
MVlc information as inputs to the BDTs. The composition of the dominant backgrounds
accumulating at higher values of the BDTy i discriminant is similar to what was already
observed in the 2-tag signal regions of the dijet-mass analysis, namely Vbb and ¢, however
with a larger contribution of the latter due to the looser requirement on AR(jet,,jety) in
the MVA selection.

Distributions of the output of the MV1c b-tagging algorithm are shown in figure 15
for the b-tagged jet in the 1-tag control regions of the MVA, in the 2-jet category and
for p¥. > 120 GeV. In these distributions, the four bins correspond to the four b-tagging
operating points and are ordered from left to right in increasing b-jet purity. It can be seen
that these distributions, which are used in the global fit, provide strong constraints on the
Ve and VI backgrounds. As in the dijet-mass analysis, the O-tag control regions are not
used in the global fit.
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Figure 12. The BDTy g-discriminant distribution observed in data (points with error bars) and
expected (histograms) for the 0-lepton channel combining the 2-tag Medium and Tight b-tagging
categories (also referred to as MM and TT in the text) for p¥ > 120 GeV for (a) 2-jet events and
(b) 3-jet events. The background contributions after the global fit of the MVA are shown as filled
histograms. The Higgs boson signal (my = 125GeV) is shown as a filled histogram on top of
the fitted backgrounds, as expected from the SM (indicated as pu = 1.0), and, unstacked as an
unfilled histogram, scaled by the factor indicated in the legend. The dashed histogram shows the
total background as expected from the pre-fit MC simulation. The size of the combined statistical
and systematic uncertainty on the sum of the signal and fitted background is indicated by the
hatched band. The ratio of the data to the sum of the signal and fitted background is shown in the
lower panel.
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Figure 13. The BDTy g-discriminant distribution observed in data (points with error bars) and
expected (histograms) for the 2-tag signal regions of the 1-lepton channel for (a) 2-jet events with
the Medium and Tight b-tagging categories (also referred to as MM and TT in the text) combined
and with plV' < 120GeV, (b) MM 2-jet events with p'Y > 120GeV, (c) TT 2-jet events with
p¥V > 120GeV, and (d) MM and TT combined 3-jet events with p}¥' > 120 GeV. The background
contributions after the global fit of the MVA are shown as filled histograms. The Higgs boson
signal (mpy = 125 GeV) is shown as a filled histogram on top of the fitted backgrounds, as expected
from the SM (indicated as u = 1.0), and, unstacked as an unfilled histogram, scaled by the factor
indicated in the legend. The dashed histogram shows the total background as expected from the
pre-fit MC simulation. The size of the combined statistical and systematic uncertainty on the sum
of the signal and fitted background is indicated by the hatched band. The ratio of the data to the
sum of the signal and fitted background is shown in the lower panel.

~ 31—



‘oued IoMO[ o1} UT UMOYS
SI punoIdyoeq po1jy pur [RUSIS oY} JO WINS 97} 0} BIRP O} JO OIFRI O, ‘PUR( PaydJeY o) AQ PaIeIIPUI SI PUNOISNOR] PO} PUR [RUSIS 91} JO WINS
oYY} U0 AJUIBIIOOUN OIJRUIOISAS PUR [BOIISIJR)S PIUIqUIOd dY} JO dZIS 9YJ, "uoryenwis HIN 1-oid o) woij pajoadxo se PunoIsspeq [ej0o} 9y} SMOYS
wre1309SIY PaYSEp ], "PUASe] o[} Ul PajedIpul 10j0v] o) Aq Payeds ‘ureido)sIy pa[[yun ue se payoejsun ‘pue ‘()T = 1 se pajedIpul) NS oY) WOIJ
pooadxe se ‘spunoidyoeq po1y o) Jo doj uo urerdo)sty pof[y © se umoys st (AN gl = Hwt) [euSts uosoq s8I o], "SUIRISO)ST POl Se UMOTYS
ore VAN 9U3 JO 35 [BqO[S 9U3 Io3je SUOIN|LIJUOD PUNoISoRq 9], "A0D OZT < Ed yim sjuosd jol-¢ (9) pue ‘A9 (gl < £d Y spuoao 30l-g (q)
‘APH0TT > %& UM sjuesd Jol-z (e) 10j (3x0) oY) ul I,T, Pue JNJA Se 0} Paliejol os[e) sor1039)ed Surdsde)-q 31T, pur WNIPLIN Sel-g o) SUruIquIod
puuetp uoydoy-g oY) I10j (surerdo)sty) pajoadxe pue (sreq Iolie [iim sjutod) BIep Ul POAISSO UOTINGLIISIP JURUTILIDSIP-HAT Y oY, FT 2InSrg

©) (@) (®)
oA ag Hh1ag " 1ag
L_80 90 ¥0 20 0 20- +0- 90- 80- Iy o L_80 90 ¥0 20 0 20 +'0- 90- 80" Iy o L 80 90 #¥0 20 0 20- +'0- 90- 80- |- o
M,;i;i;:;i;i;i;:;,,;,,Mmow W.V,i;i;i;i;,,;i;i;i;imw.om m\,:,i;i;i;,:iii,;i;:;im.w.o.mw
2o GRS (- SR » U SO == =P L SR V0 SR L~
2 G 3 e e 51 3 AN ETN
u:,j,;:;:;:;:;:;:;:;:,HN a S i ,:;,,;:;:;:;:;:,HN a Bl b b b b b b v 13 a
0l
| =
......... (0]}
............. 02x(QQMA =— 0l 08X(AQHA ==
02<(qA)HA = punoibyoeq Jy-aid '=*=+ punoibyoeq Jy-aid '=*=+
puno.Byoeq Jy-aid ==+ Aureusoun ZZ2 Auewsoun ZZ4
Kwensoun 22 1z 1p+z
10+ 0 m 19+ m w+z m
Jy+7 799 0z1<,d s sz 199 ozi<id 0 s ol 299 021> 4d H
no;_m:_wm sbej Jybiy +wnipayy Z ‘s1ol ¢ “daj z El doy aj6u sbej Jybi +wnipayy Z ‘s1ol z “daj z =1 ao«m_m:_mm sbey JybiL+wnipay Z ‘syel z “da z =1
—— L9 E0z =101 AeLg=s) @ uosoql agoz=wifners=st 3 @ uosoqitl 1 V€02 =P oL 8 =5) 2
(0"1=1) (aQ)HA HEE o (0"1=1) (AQHA v [=] (0°1=1) (qa)HA EEE o
I it S ,w_\q.,:\ s0t % I it SR ,m_\q.,hc‘ mm I cdion SR ,m_\q.,;‘ R

~32 -



‘Joued 1emof o)
Ul UMOUS ST punoigyoeq paijy pue [eudIs o1} JO WNS 9y} 0} BIeP 93} JO OIel 9], 'PUR] Pay2Iey oy} £q pojedIpul SI punoidyoeq poijy pue [eUSIS
oY} JO WNS oY} U0 AJUTRIISOUN OIJRUWISAS PUR [BOIISIIR)S POUIQUIOD 91} JO 9ZIS Y], "uolpenuis HIN 13-o01d o) wolj peloadxo se punoisyoeq [ejol
o1} SMOTS WRIS0)ST POYSEpP O], "PUOS] oY) Ul POJRIIPUI 1030R] 9} AQ Po[ess ‘Wreld0)siy po[[yun ue se payorisun ‘pue ‘(('1 = 1 se poyeorpul) NS
o1} w1 pajdadxe se ‘spunoidyorq pey oY) jo doj uo ureISolsty po[y © se umoys st (A9r) gzl = Huw) [eudis Uosoq s8I oY ], "SWeIZ0)sIy Pa[[Y se
UMOUS 91 YA 93 JO 17 [RQO[3 9} 19 SUOINLITUOD PUNOIINORY oY, "JYSLI 01 1Jo[ woyy sesearour Ajund 10(-g o1 T ‘%08 ‘%09 ‘%0L ‘%08 JO
seroULDIe Jurdse)-q 01 Surpuodsellod ‘f uoldes Ul Pauyep se (JO (9)27A 1) syutod Surjerado oY) 90U SOLIRPUNO] UIq 3Jo] B, ‘[outreyd uojdal-g
oty ut (o) pue ‘puueyd uoyds[-1 oy ut (q) ‘EPuueys uoydor-( oy ul (B) A9 07T < Sd yim £1030380 30(-g O3 UL YAN U3 JO SUOI3al [013100 Jej-T oy}
10] (swre1dogsiy) pegoadxe pue (sreq Ioiro im syurod) eyep Ul poalesqo wjLIode Surdse)-q 0T AJN 93 Jo jndino o) jo uonnquysiq ‘g1 2InSig

©) (@) (®)
dO (@)21AN dO (@)21An
0 0S 09 0L 08 o 0 0§ 09 0L 08 o 0 08 o
| 4960 2 E 4960 & <560 &
» = B o o E <3 3, L
E ¢ 3 W E * 3 ¢ E
| | 4560+ 8 E =G0+ 8 | 460+ 8
I I
=000t ] -
3 -0t =
—0002 ] =
= 20z ol
—000€ |
= 0ZrX(qQQ)HA = gl
= punoibyoeq Jy-ald ===
029X(AQ)HA = e 0€ Rurensoun 2223
punoibyoeq yy-aid =** 1+z 3
Kwrepaoun 222 = jo+z 0c
0ZEX(AQHA = 1z - w+z
punoibyoeq yy-ald *=r- +m D — 0t m D
Rureusoun 222 jo+m 3 | o+m 3 [erd
+z 1 Jy+ 1, - Jy+m 1
jo+z A®D 0zL<)d Wy 3 YELY /- wiyny 3 A9D 0zL<,d
Jy+z . Bey 1 ‘s1al z “daj Z doy sjbuig 0 Bey 1 ‘s1of z “day 1 — 09 doy sjbuis 3 Bey | ‘sjaf z “daj 0
nJ o _ n I _ ] na o= - (015
uosoqig B €02 =P ASL8=S) m uosoaiq B3 L e0z=1P1[ AoLg =3} - m uosoqig B LW €02 =1P1[ NeLg=s) m
(01=1) (Q@)HA HE @ (0"1=1) (qQ)HA HEE 4 @ (0°1=") (qa)HA HE @
210z oieq - , SV1.Lv —0008 W 210z e1eq o , SVILY - 09 m, 210z e1eq o , SVYiLv e w.

0F Q01

— 33 —



8 Systematic uncertainties

The systematic uncertainties discussed in this section are: those of experimental origin;
those related to the multijet background estimation; and those associated with the mod-
elling of the simulated backgrounds and Higgs boson signal.

8.1 Experimental uncertainties

All relevant experimental systematic uncertainties are considered, such as those affecting
the trigger selection, the object reconstruction and identification, and the object energy
and momentum calibrations and resolutions. The most relevant ones are discussed in
the following.

For the E%liss trigger, an efficiency correction is derived from W — uv+jets and Z —
put p~+jets events. This correction amounts to 4.5% for events with an E%’iss of 100 GeV,
the threshold required in the analysis, and is below 1% for E%ﬁss > 120 GeV. The associated
uncertainties arise from the statistical uncertainties of this method and differences observed
in the two event classes. They are very small (below 1%) for the high EXS (and thus
high p¥) intervals, and reach about 3% for the low EMiS interval of the O-lepton channel
(100-120 GeV).

For electrons and muons, uncertainties associated with the corrections for the trigger,
reconstruction, identification and isolation efficiencies are taken into account. Uncertainties
on energy and resolution corrections of the leptons are also considered. The impact of these
uncertainties is very small, typically less than 1%.

Several sources contribute to the uncertainty of the jet energy scale (JES) [61] related
e.g. to uncertainties from in situ calibration analyses, pile-up-dependent corrections and
the flavour composition of jets in different event classes. After being decomposed into un-
correlated components, these are treated as independent sources in the analysis. The total
relative systematic uncertainties on the JES range from about 3% to 1% for central jets
with a pr of 20 GeV and 1 TeV, respectively. An additional specific uncertainty of about
1%-2% affects the energy calibration of b-jets. Small uncertainties on the corrections ap-
plied to improve the dijet-mass resolution are also included. Corrections and uncertainties
are also considered for the jet energy resolution (JER) [74], with a separate contribution
for b-jets. The total relative systematic uncertainty on the JER ranges from about 10% to
20%, depending on the n range, for jets with pp = 20 GeV to less than 5% for jets with
pr > 200 GeV.

The JES uncertainties are propagated to the E%‘iss, as are the much smaller uncer-
tainties related to the energy and momentum calibration of leptons. An uncertainty on
the EMiS also comes from the uncertainties on the energy calibration (8%) and resolution
(2.5%) of calorimeter energy clusters not associated with any reconstructed object [66].

The b-tagging efficiencies for the different jet flavours are measured in both data and
simulation using dedicated event samples [63, 64]. The b-tagging efficiencies for simulated
jets are corrected within intervals between operating points by MC-to-data SFs, which
depend on the jet kinematics. For b-jets, the precision is driven by an analysis of tt
events in final states containing two leptons. The MC-to-data SFs are close to unity,
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with uncertainties at the level of 2-3% over most of the jet pr range, reaching 5% for
pr = 20GeV and 8% above 200 GeV. The uncertainties, which depend on pr and on
the interval between operating points, are decomposed into uncorrelated components and
the ten most significant ones are kept in the analysis. It was checked that the neglected
components have a negligible impact. The uncertainties on c-jets are decomposed into 15
components, and the uncertainties on light jets, to which the analysis is much less sensitive,
are decomposed into ten components, accounted for in pr and 7 ranges. For b- and c-jets
further uncertainties are added for the application of the additional MC-to-MC SFs to
obtain generator specific MC-to-data SFs as explained in section 4. Half of the correction
is used as systematic uncertainty. As discussed in section 4, a correction to c-jets in the
Vee samples, for which parameterised tagging is used, is applied at low AR to the closest
jet. Half of this correction is assigned as a systematic uncertainty.

The uncertainty on the integrated luminosity is 2.8%. It is derived, following the same
methodology as that described in ref. [20], from a preliminary calibration of the luminosity
scale derived from beam-separation scans performed in November 2012. It is applied to
the signal and backgrounds estimates that are taken from simulation.

A 4% uncertainty on the average number of interactions per bunch crossing is taken
into account.

8.2 Uncertainties on the multijet backgrounds

In the O-lepton channel, the robustness of the MJ background estimation is assessed by
varying the min[Aqﬁ(E%‘iss, jet)] values defining the B and D regions of the ABCD method,
and by replacing the b-tagging fractions measured in region D by those measured in region
B. A systematic uncertainty of 100% is assessed for this small (~ 1%) background, uncor-
related between 2- and 3-jet, 1- and 2-b-tag categories. The MJ background in the 2-lepton
channel is also at the per-cent level, and an uncertainty of 100% is assigned.

In the 1-lepton channel, normalisation uncertainties arise from the statistical uncer-
tainties of the multijet fits and from uncertainties on the non-MJ background subtractions
performed to construct the MJ templates. Normalisation uncertainties are also assessed
in the LL, MM and TT categories to cover differences between multijet fits performed
inclusively in the 2-tag regions and in the individual categories. In the 2-jet 2-tag region
of the electron sub-channel, the overall normalisation uncertainties amount to 11%, 14%
and 22% in the LL, MM and TT categories, respectively. In the muon sub-channel, the
corresponding uncertainties are about three times larger because of the smaller size of the
MJ-enriched samples.

In the 1-lepton channel, shape uncertainties are assessed in the various regions by
comparison of evaluations obtained using MJ-enriched samples defined by isolation require-
ments different from those applied in the nominal selections. In the electron sub-channel,
an alternative template is constructed with a track-based isolation in the 12% to 50% in-
terval, and another alternative template with a calorimeter-based isolation in the 0% to
4% interval. In the muon sub-channel, the results obtained with the nominal MJ template
are compared with those obtained with tighter or looser isolation requirements, defined
by track-based isolation intervals of 7%-9.5% and 9.5%-50%, respectively. Furthermore,
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half of the AR(jet;,jety) and pYFV reweightings mentioned in section 7.1 for the electron
sub-channel are taken as systematic uncertainties.

8.3 Uncertainties on the modelling of the simulated backgrounds

The physics-modelling systematic uncertainties evaluated focus on the quantities that are
used in the global fit, i.e., those affecting the jet multiplicities, the p¥ distributions, the
flavour composition and the my, distributions. For the MVA, systematic uncertainties
affecting the other variables used as inputs to the BDTs are also considered. Whenever
possible, dedicated control regions are used to extract information directly from the data.
This is the case for Z+jets and W+light jets. In other cases, uncertainties are assessed by
comparison of MC predictions based on a variety of generators with the nominal ones.

Details of the assessment of systematic uncertainties are provided below in the con-
text of the MVA. When systematic uncertainties are derived from a comparison between
generators, all relevant variables are considered independently. The variable showing the
largest discrepancy in some generator with respect to the nominal generator is assigned an
uncertainty covering this discrepancy, which is symmetrised. If, once propagated to the
BDTy g discriminant, this uncertainty is sufficient to cover all variations observed with the
different generators, it is considered to be sufficient. If not, an uncertainty is considered
in addition on the next most discrepant variable and the procedure is iterated until all
variations of the BDTy  discriminant are covered by the assigned uncertainties.

A given source of systematic uncertainty can affect different analysis regions. Whether
such an uncertainty should be treated as correlated or not depends on whether constraints
resulting from the global fit should be propagated from one region to another. Details of
the procedures leading to such decisions are provided in section 9.2.

A summary of the systematic uncertainties affecting the modelling of the backgrounds
can be found in table 5.

Top-quark-pair background. As explained in section 7, the top-quark pr distribution
is reweighted at generator level to bring it into agreement with measurement [73]. A system-
atic uncertainty amounting to half of this correction is assigned, correlated across channels.

The predictions of the nominal ¢t generator (POWHEG+PYTHIA) are compared, fo-
cussing on the 1-lepton channel selection, with those obtained using a variety of genera-
tors differing by the PDF choice (POWHEG+PYTHIA with HERAPDF [75]), by the parton
showering and hadronisation scheme (POWHEGH+HERWIG), by the implementation of the
NLO matrix element and the matching scheme (MCQNLO [76]4+HERWIG), by the amount
of initial- and final-state radiation (ISR/FSR) using ACERMC+PYTHIA, or by the imple-
mentation of higher-order tree-level matrix elements (ALPGEN [77|+PYTHIA). It is found
that, in general, the largest deviations are observed for ALPGEN, which is therefore used to
assess further systematic uncertainties as explained below.

In the global fit, the normalisation of the ¢t background in the 2-jet category is left
floating freely, independently in each of the lepton channels. An uncertainty of 20% on
the 3-to-2-jet ratio is estimated from the generator comparisons explained above. In the
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global fit, this uncertainty is treated as correlated between the 0- and 1-lepton channels,
and uncorrelated with the 2-lepton channel.

The shape of the my, distribution is also studied with the same set of generators,
leading to correlated shape uncertainties for 2- and 3-jet events, and for p¥ < 120 GeV
and p¥ > 120 GeV. The associated variation is larger in the higher p¥ interval: for 2-jet
events, when it increases the distribution by 3% for my, = 50 GeV, it decreases it by 1%
at 200 GeV; the effect is similar, but of opposite sign, for 3-jet events.

The same procedure is used for the p¥ distribution, from which a 7.5% uncertainty is
assessed on the normalisation of the pr‘f > 120 GeV interval. Finally, the same approach
calls for a shape systematic uncertainty on the EIT]rliss distribution in the 1-lepton channel,
different but correlated between p¥ < 120 GeV and p¥ > 120 GeV. This uncertainty is not
applied in the 0- and 2-lepton channels.

Single-top-quark background. The theoretical uncertainties on the cross sections of
the three processes contributing to single-top production are 4%, 4%, and 7% for the
s-channel, t-channel, and Wt production, respectively [78].

The predictions of the nominal generators (POWHEG+PYTHIA for the s-channel and
for Wt production; ACERMC+PYTHIA for the ¢-channel) are compared, after the 1-lepton
channel selection, with those obtained using a variety of generators. For the s-channel,
the comparison is made with ACERMC and MC@QNLO; for Wt production with ACERMC,
POWHEG+HERWIG, and MC@NLO; and for the ¢-channel with aMc@NLO” [81, 82]+HERWIG.
For all three processes, the impact of ISR/FSR is evaluated using ACERMC. For Wt pro-
duction, there are interference effects with ¢t production, which need to be considered.
Two methods are available for this: the Diagram Removal (DR) and the Diagram Subtrac-
tion (DS) schemes [83]. The former is used in the nominal generation, and the second for
comparison.

Uncertainties on the acceptance for each of the three processes are taken as the largest
deviations observed, separately for p¥ < 120 GeV and p¥ > 120 GeV, and for 2- and 3-jet
events. They can be as large as 52% for 2-jet events in the ¢-channel at low p¥, of the order
of 5% for Wt production (except for 3-jet events at high p¥: 15%), and typically 20% for
the s-channel.

In addition to the acceptance uncertainties, the effects of the model variations described
above on variables input to the BDT are evaluated and three shape systematic uncertainties
are found to be needed in Wt production. The first uncertainty is on the shape of the my,
distribution in the high p¥ interval for 2-jet events where, when a shift from the nominal
model increases the rate by 20% for my, = 50 GeV, it decreases it by 40% at 200 GeV. A
second uncertainty is on the my, shape for 3-jet events, where the corresponding shifts are
25% and 20%. Finally, a third uncertainty is on the pr distribution of the leading jet in
the low p‘T/ interval for 2-jet events.

"Event generation with aMC@NLO is based on the MC@NLO formalism and the MADGRAPH-5 frame-
work [79, 80].

— 37 —



Z+jets background. As explained in section 7, A¢(jet,,jety) and p% reweightings are
applied to the ZI and Zc+ Zb components, respectively. For the A¢(jet;, jety) reweighting,
a systematic uncertainty amounting to half of the correction is assigned to the ZI com-
ponent, while an uncertainty amounting to the full correction is assigned to the Zc 4+ Zb
components. This is done separately for 2- and 3-jet events, and all these uncertainties are
treated as uncorrelated. For the p% reweighting, uncorrelated systematic uncertainties of
half the correction are assigned to the Zl and Zc+ Zb components. The notation Zc¢+ Zb
is meant to indicate that a systematic uncertainty is treated as correlated between the Zc
and Zb components.

The normalisation and the 3-to-2-jet ratio for the ZI background are determined from
data in the 0-tag region of the 2-lepton channel, both with an uncertainty of 5%. The
normalisations of the Zcl and Zbb backgrounds are left free in the global fit. The uncer-
tainties on the 3-to-2-jet ratios for the Zcl and Z+hf components are assessed through
a comparison of ALPGEN with the nominal SHERPA generator in the 2-tag region of the
2-lepton channel; these are 26% for Zcl and 20% for Z+hf. The same procedure is used to
estimate uncertainties on the flavour fractions within Z+hf events, yielding 12% for each
of bl/bb, cc/bb and be/bb, with bl/bb uncorrelated between 2- and 3-jet samples.

The shape of the myy, distribution is compared between data and simulation in the
2-tag region of the 2-lepton channel, excluding the 100-150 GeV range, from which a shape
uncertainty is derived that, when it increases the dijet-mass distribution by 3% at 50 GeV,
it decreases it by 5% at 200 GeV. This uncertainty is applied uncorrelated to the ZI and
Zb + Zc components. The differences between ALPGEN and SHERPA are covered by this

uncertainty.

W +jets background. As explained in section 7, a A¢(jety, jety) reweighting is applied
to the Wl and Wl components. Uncorrelated systematic uncertainties amounting to half of
the correction are assigned to these two components, for each of the 2- and 3-jet categories.
For the Wee + Wb component, no reweighting is applied but a systematic uncertainty is
assigned, equal to the full correction applied to the W1 and Wl components, uncorrelated
between 2- and 3-jet events.

The normalisation and the 3-to-2-jet ratio for the W1 background are taken directly
from simulation, both with a 10% uncertainty. This is based on the agreement observed
between data and prediction in the 0-tag sample. The 3-to-2-jet ratio for the Wel back-
ground is also assigned an uncertainty of 10%. The normalisations of the Wel and Wbb
backgrounds are left free in the global fit.

To assign further uncertainties on the Wb background, for which dedicated control
regions are not available in the data, extensive comparisons are performed at genera-
tor level, with kinematic selections mimicking those applied after reconstruction. The
predictions of the SHERPA generator are compared to those of POWHEG+PYTHIAS, of
aMC@QNLO-+HERWIGH++ [84] and of ALPGEN+HERWIG. Comparisons are also made be-
tween samples generated with aMC@QNLO with renormalisation (ugr) and factorisation (ur)
scales® independently modified by factors of 2 or 0.5 and also with different PDF sets

8The nominal scales are taken as ur = pur = [m¥, + pr(W)? +mi + (pr(b)* + pr(b)?)/2]*/2.
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(CT10, MSTW2008NLO and NNPDF2.3 [85]). As a result, a 10% uncertainty is assigned
to the 3-to-2-jet ratio, taken as correlated between all W+hf processes. Shape uncertain-
ties are also assessed for the my, and p%f distributions. When the former increases the
dijet-mass distribution by 23% at 50 GeV, it decreases it by 28% at 200 GeV. It is taken
as uncorrelated for Wi, Wel, Wbb + Wee and Wbl + Wbe. For Wbb + Wee, it is further-
more uncorrelated among p'! intervals (with the three highest intervals correlated for the
dijet-mass analysis). When the latter shape uncertainty increases the p‘fv distribution by
9% for pYFV = 50 GeV, it decreases it by 23% at 200 GeV. It is taken as correlated for all
W +hf processes, and uncorrelated between the 2- and 3-jet samples.

Predictions using the inclusive production of all flavours by SHERPA and ALPGEN are
compared after full reconstruction and event selection to assign uncertainties on the flavour
fractions that take properly into account heavy-flavour production at both the matrix-
element and parton-shower levels. (For ALPGEN, the production of light flavours and heavy
flavours are performed separately at the matrix-element level; a dedicated procedure, based
on the AR separation between b-partons, is used to remove the overlap between bb pairs
produced at the matrix-element and parton-shower levels.) The following uncertainties are
assigned in the W+hf samples: 35% for bl/bb and 12% for each of be/bb and cc/bb. The
uncertainty on bl/bb is uncorrelated between p¥ intervals (with the three highest intervals
correlated for the dijet-mass analysis).

Diboson background. The uncertainties on the cross sections for diboson production
(WW,WZ and ZZ) are assessed at parton level using MCFM at NLO in QCD. The sources
of uncertainty considered are the renormalisation and factorisation scales and the choice of
PDFs. The nominal scales are dynamically set to half of the invariant mass of the diboson
system and the nominal PDF's are the CT10 set.

The scale uncertainties are evaluated by varying simultaneously pugr and pp by factors
of 2 or 0.5. Since the analysis is performed in p¥ intervals and in exclusive 2- and 3-jet
categories, the uncertainties are evaluated for each channel separately in those intervals and
categories (2 and 3 final-state partons within the nominal selection acceptance) following
the prescription of ref. [86]. This procedure leads, in each p¥ interval, to two uncorrelated
uncertainties in the 2-jet category, one for 2+3 jets inclusively and one associated with
the removal of 3-jet events, and to one in the 3-jet category anti-correlated with the latter
uncertainty in the 2-jet category. These uncertainties are largest at high p¥ . For p¥ >
200 GeV, the two uncertainties affecting the 2-jet category can be as large as 29% and 22%
in the WZ channel, roughly half this size in the ZZ channel and intermediate for WW;
and the uncertainty affecting the 3-jet category is about 17% in all channels.

The uncertainties due to the PDF choice are evaluated according to the PDFALHC rec-
ommendation [87], i.e., using the envelope of predictions from the CT10, MSTW2008NLO,
and NNPDF2.3 PDF sets and their associated uncertainties. They range from 2% to 4%,
with no p¥ dependence observed.

The shape of the reconstructed Z — bb lineshape in VZ production is affected by
the parton-shower and hadronisation model. A shape-only systematic uncertainty is as-
sessed by comparing the lineshapes obtained with the nominal POWHEG+PYTHIAS gener-
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ator and with HERWIG. The relative difference between the shapes is 20% for a dijet mass
around 125 GeV.

8.4 Uncertainties on the signal modelling

The q¢g - WH, q¢ — ZH, and g9 — ZH signal samples are normalised respectively to
their inclusive cross sections as explained in section 3. The uncertainties on these cross
sections [88] include those arising from the choice of scales ur and pp and of PDFs.

The scale uncertainty is 1% for W H production. It is larger (3%) for ZH production,
due to the contribution of the gluon-gluon initiated process. Under the assumption that the
scale uncertainties are similar (1%) for gq¢g — W H and qg — Z H, a conservative uncertainty
of 50% is inferred for gg — ZH. The same procedure leads to PDF uncertainties of 2.4%
for qg — (W/Z)H and 17% for g9 — ZH. The relative uncertainty on the Higgs boson
branching ratio to bb is 3.3% for my = 125GeV [11]. The contribution of decays to final
states other than bb is verified to amount to less than 1% after selection.

Acceptance uncertainties due to the choice of scales are determined from signal samples
generated with POWHEG interfaced to PYTHIAS, with ugr and pp varied independently by
factors of 2 or 0.5. The procedure advocated in ref. [86] is used, after kinematic selections
applied at generator level, leading to acceptance uncertainties of 3.0%, 3.4% and 1.5% for
qq - WH, q@ — ZH and g9 — ZH, respectively, for the 2- and 3-jet categories combined,
and of 4.2%, 3.6% and 3.3% for the 3-jet category. The latter uncertainty is anti-correlated
with an acceptance uncertainty associated with the removal of 3-jet events from the 2+43-jet
category to form the 2-jet category. In addition, the p¥ spectrum is seen to be affected, and
shape uncertainties are derived. For the qg — (W/Z)H samples, when they increase the
distribution by 1% for p¥. = 50 GeV, they decrease it by 3% at 200 GeV. These variations
are 2% and 8%, respectively, for the gg — ZH samples.

Acceptance uncertainties due to the PDF choice are determined in a similar way,
following the PDF4ALHC prescription. They range from 2% in the 2-jet gg — ZH samples
to 5% in the 3-jet ¢q¢ — ZH samples. There is no evidence of a need for p¥ shape
uncertainties related to the PDFs.

The applied uncertainties on the shape of the p¥ spectrum associated with the NLO
electroweak corrections [38] are typically at the level of 2%, increasing with p¥ to reach
2.5% in the highest pY. interval.

The effect of the underlying-event modelling is found to be negligible, using various
PYTHIA tunes. The effect of the parton-shower modelling is examined by comparison of
simulations by POWHEG interfaced with PYTHIA8 and with HERWIG. Acceptance variations
of 8% are seen, except for 3-jet events in the p¥ > 120 GeV interval, where the variation is
at the level of 13%. These variations are taken as systematic uncertainties.

A summary of the systematic uncertainties affecting the modelling of the Higgs boson
signal is given in table 5.
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Signal
Cross section (scale) 1% (qq), 50% (gg9)
Cross section (PDF) 2.4% (qq), 17% (g9)
Branching ratio 3.3 %
Acceptance (scale) 1.5%-3.3%
3-jet acceptance (scale) 3.3%-4.2%
p¥ shape (scale) S
Acceptance (PDF) 2%-5%
p¥ shape (NLO EW correction) S
Acceptance (parton shower) 8%—-13%
Z+jets
Zl normalisation, 3/2-jet ratio 5%
Zcl 3/2-jet ratio 26%
Z-+hf 3/2-jet ratio 20%
Z+hf/Zbb ratio 12%
Ag(jety, jets), pY, mup S
W+jets
W1 normalisation, 3/2-jet ratio 10%
Wel, W+ht 3/2-jet ratio 10%
Wbl /Wbb ratio 35%
Whbce/Wbb, Wee/Wbb ratio 12%
Ag(jety, jets), pY, mup S
tt
3/2-jet ratio 20%
High/low-p¥. ratio 7.5%
Top-quark pr, mpp, EMsS S
Single top
Cross section 4% (s-,t-channel), 7% (Wt)
Acceptance (generator) 3%-52%
Mpb, Pl% S
Diboson
Cross section and acceptance (scale) 3%—-29%
Cross section and acceptance (PDF) 2%—4%
mpp S
Multijet
0-, 2-lepton channels normalisation 100%
1-lepton channel normalisation 2%-60%
Template variations, reweighting S

Table 5. Summary of the systematic uncertainties on the signal and background modelling. An
“S” symbol is used when only a shape uncertainty is assessed.

_41 -



9 Statistical procedure

9.1 General aspects

A statistical fitting procedure based on the Roostats framework [89, 90] is used to extract
the signal strength from the data. The signal strength is a parameter, p, that multiplies
the SM Higgs boson production cross section times branching ratio into bb. A binned
likelihood function is constructed as the product of Poisson-probability terms over the bins
of the input distributions involving the numbers of data events and the expected signal and
background yields, taking into account the effects of the floating background normalisations
and the systematic uncertainties.

The different regions entering the likelihood fit are summarised in table 6. In the dijet-
mass analysis, the inputs to the “global fit” are the my;, distributions in the 81 2-tag signal
regions defined by three channels (0, 1 or 2 leptons), up to five pr‘r/ intervals, two number-
of-jet categories (2 or 3), and three b-tagging categories (LL, MM and TT). Here and in the
rest of this section, myy, distributions are to be understood as transformed distributions, as
explained in section 6. In the MVA, the inputs are the BD Ty j7 discriminants in the 24 2-tag
signal regions defined by the three lepton channels, up to two p¥ intervals, the two number-
of-jet categories, and b-tagging categories. In the 1-lepton channel, the b-tagging categories
are LL, MM and TT. In the 0- and 2-lepton channels, they are the LL category and a
combined MM and TT category (MM+TT).? These BDTy g-discriminant distributions
are supplemented by the three my, distributions in the 100-120 GeV p¥ interval of the
2-jet 2-tag categories (LL, MM, and TT) of the O-lepton channel. For the MVA, additional
inputs are the MV'1c distributions of the b-tagged jet in the 11 1-tag control regions of
the MVA selection and in the 100-120 GeV p¥ interval of the 2-jet 1-tag category of the
0-lepton channel. In the dijet-mass analysis, the MV 1c¢ distributions are combined in each
of the p¥ < 120 GeV and p¥ > 120 GeV intervals, which also results in 11 1-tag control
regions. Altogether, there are 584 my, and MV'1c bins in the 92 regions of the dijet-mass
analysis, and 251 BDTy g-discriminant and MV 1c bins in the 38 regions of the MVA, to
be used in the global fits.

The impact of systematic uncertainties on the signal and background expectations is
described by nuisance parameters (NPs), €, which are constrained by Gaussian or log-
normal probability density functions, the latter being used for normalisation uncertainties
to prevent normalisation factors from becoming negative in the fit. The expected numbers
of signal and background events in each bin are functions of 8. The parameterisation of
each NP is chosen such that the predicted signal and background yields in each bin are
log-normally distributed for a normally distributed 6. For each NP, the prior is added as a
penalty term to the likelihood, £(u, @), which decreases it as soon as @ is shifted away from
its nominal value. The statistical uncertainties of background predictions from simulation
are included through bin-by-bin nuisance parameters.

9While keeping distinct MM and TT categories in the 1-lepton channel improves the sensitivity, this is
not observed for the 0- and 2-lepton channels. Keeping the LL category separated from the others improves
the sensitivity in all lepton channels.
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Dijet-mass analysis MVA
Channel O-lepton | 1-lepton | 2-lepton | O-lepton | 1-lepton | 2-lepton
1-tag MVic MViec
LL M BDT®) BDT
MM 2-tag Mpp BDT®) BDT BDT
TT Mpp BDT

Table 6. The distributions used in each region by the likelihood fit in the dijet-mass analysis and
in the MVA applied to the 8 TeV data. Here, “BDT” stands for “BDTy g discriminant”. For each
entry listed, there are additional divisions into p¥. intervals: five in the dijet-mass analysis and two
in the MVA, as shown in table 2. These distributions are input to the fit for the 2-jet and 3-jet
categories separately, except in the low p¥ interval (100-120 GeV) of the 0-lepton channel where
only the 2-jet category is used. In the 0- and 2-lepton channels, the MM and TT 2-tag categories
are combined in the MVA. (x) In the low p¥ interval of the O-lepton channel, the MVA uses the
myyp distributions in the LL, MM and TT 2-tag categories as well as the MV 1c distribution in the
1-tag category.

The test statistic g, is then constructed from the profile likelihood ratio
qu = —2InA, with A, = L(11,0,)/L(j1,0),

where i and 0 are the parameters that maximise the likelihood with the constraint 0 <
i < u, and @# are the nuisance parameter values that maximise the likelihood for a given
p. This test statistic is used for exclusion intervals derived with the C'Ls method [91,
92]. To measure the compatibility of the background-only hypothesis with the observed
data, the test statistic used is ¢qg = —2InAg. The results are presented in terms of: the
95% confidence level (CL) upper limit on the signal strength; the probability py of the
background-only hypothesis; and the best-fit signal-strength value j with its associated
uncertainty o,. The fitted /i value is obtained by maximising the likelihood function with
respect to all parameters. The uncertainty o, is obtained from the variation of 2In A, by
one unit, where A, is now defined without the constraint 0 < i < pu. Expected results are
obtained in the same way as the observed results by replacing the data in each input bin
by the expectation from simulation with all NPs set to their best-fit values, as obtained
from the fit to the data.'?

While the analysis is optimised for a Higgs boson of mass 125 GeV, results are also
extracted for other masses. These are obtained without any change to the dijet-mass
analysis, except for the binning of the transformed my;, distribution, which is reoptimised.
For the MVA, it is observed that the performance degrades for masses away from 125 GeV,
for which the BDTs are trained. This is largely due to the fact that my, is an input to
the BDTs. The MVA results for other masses are therefore obtained using BDT's retrained
for each of the masses tested at 5 GeV intervals between 100 and 150 GeV. The details
provided in the rest of this section refer to the analysis performed for a Higgs boson mass
of 125 GeV.

10This type of pseudo-data sample is referred to as an Asimov dataset in ref. [92].
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Process Scale factor
tt O-lepton | 1.36 £ 0.14
tt 1-lepton | 1.12 £ 0.09
tt 2-lepton | 0.99 + 0.04
Wbb 0.83 £0.15
Wel 1.14+0.10
Zbb 1.09 +0.05
Zcl 0.88 +£0.12

Table 7. Factors applied to the nominal normalisations of the tt, Wbb, Wel, Zbb, and Zcl back-
grounds, as obtained from the global MVA fit to the 8 TeV data. The ¢t background is normalised
in the 2-jet category independently in each of the lepton channels. The errors include the statistical
and systematic uncertainties.

9.2 Technical details

The data have sufficient statistical power to constrain the largest background-normalisation
NPs, which are left free to float in the fit. This applies to the ¢, Wbb, Wel, Zbb and Zcl
processes. The corresponding factors applied to the nominal background normalisations
as resulting from the global fit of the MVA to the 8 TeV data, are shown in table 7. As
stated in section 8, the ¢t background is normalised in the 2-jet category independently in
each of the lepton channels. The reason for uncorrelating the normalisations in the three
lepton channels is that the regions of phase space probed in the 2-jet category are very
different between the three channels. In the 2-lepton channel, the ¢t background is almost
entirely due to events in which both top quarks decay into (W — fv)b (fully leptonic
decays) with all final-state objects detected (apart from the neutrinos). In the 1-lepton
channel, it is in part due to fully leptonic decays with one of the leptons (often a 7 lepton)
undetected, and in part to cases where one of the top quarks decays as above and the other
into (W — ¢q')b (semileptonic decays) with a missed light-quark jet. Finally, in the 0-
lepton channel, the main contributions are from fully leptonic decays with the two leptons
undetected and from semileptonic decays with a missed lepton and a missed light-quark
jet; here again, the missed leptons are often 7 leptons. Futhermore, the p¥ range probed
is different in the 0-lepton channel: p¥ > 100 GeV in contrast to being inclusive in the 1-
and 2-lepton channels.

As described in detail in section 8, a large number of sources of systematic uncertainty
are considered. The number of nuisance parameters is even larger because care is taken to
appropriately uncorrelate the impact of the same source of systematic uncertainty across
background processes or across regions accessing very different parts of phase space. This
avoids unduly propagating constraints. For instance, the ¢t background contributes quite
differently in the 2-tag 3-jet regions of the 0- and 1-lepton channels on one side, and of
the 2-lepton channel on the other. In the 0- and 1-lepton channels, it is likely that a jet
from a t — b(W — ¢q) decay is missed, while in the 2-lepton channel it is likely that an
ISR or FSR jet is selected. This is the reason for not correlating, between these two sets
of lepton channels, the systematic uncertainty attached to the 3-to-2 jet ratio for the tt
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background. Another example is the A¢ reweighting in the W4jets processes, which is
derived in the 0-tag sample and applied to the Wel and W1 backgrounds. As explained
in section 7, this reweighting is not applied to the Wee and Wb backgrounds but, in the
absence of further information, an uncertainty is assessed for the A¢ distributions of the
Wee and Wb backgrounds, uncorrelated with the uncertainty applied to the Wel and W1l
backgrounds. Altogether, the fit has to handle almost 170 NPs, with roughly half of those
being of experimental origin.

The fit uses templates constructed from the predicted yields for the signal and the
various backgrounds in the bins of the input distribution in each region. The systematic
uncertainties are encoded in templates of variations relative to the nominal template for
each up-and-down (£1c) variation. The limited size of the MC samples for some simu-
lated background processes in some regions can cause large local fluctuations in templates
of systematic variations. When the impact of a systematic variation translates into a
reweighting of the nominal template, no statistical fluctuations are expected beyond those
already present in the nominal template. This is the case, for instance, for the b-tagging
uncertainties. For those, no specific action is taken. On the other hand, when a systematic
variation may introduce changes in the events selected, as is the case for instance with
the JES uncertainties, additional statistical fluctuations may be introduced, which affect
the templates of systematic variations. In such cases, a smoothing procedure is applied
to each systematic-variation template in each region. Bins are merged based on the con-
straints that the statistical uncertainty in each bin should be less than 5% and that the
shapes of the systematic-variation templates remain physical: monotonous for a BDTy g
discriminant, and with at most one local extremum for a dijet mass.

Altogether, given the number of regions and NPs, the number of systematic-variation
template pairs (+10 and —10) is close to twenty thousand, which renders the fits highly
time consuming. To address this issue, systematic uncertainties that have a negligible
impact on the final results are pruned away, region by region. A normalisation (shape)
uncertainty is dropped if the associated template variation is below 0.5% (below 0.5% in
all bins). Additional pruning criteria are applied to regions where the signal contribution is
less than 2% of the total background and where the systematic variations impact the total
background prediction by less than 0.5%. Furthermore, shape uncertainties are dropped
if the up- and down-varied shapes are more similar to each other than to the nominal
shape. This is only done for those systematic uncertainties where opposite-sign variations
are expected. This procedure reduces the number of systematic-variation templates by a
factor of two.

The behaviour of the global fit is evaluated by a number of checks, including how much
each NP is pulled away from its nominal value, how much its uncertainty is reduced with
respect to its nominal uncertainty, and which correlations develop between initially uncor-
related systematic uncertainties. To assess these effects, comparisons are made between
the expectations from simulation and the observations in the data. When differences arise,
their source is investigated, and this leads in a number of cases to uncorrelating further
systematic uncertainties by means of additional NPs. This is to prevent a constraint from
being propagated from one kinematic region to another if this is not considered well moti-
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vated. The stability of the results is also tested by performing fits for each lepton channel
independently, which can also help to identify from which region each constraint originates.

It is particularly useful to understand which systematic uncertainties have the largest
impact on the final results, and therefore should be considered with greater care. For this
purpose, a so-called ranking of the NPs is established. For each systematic uncertainty, the
fit is performed again with the corresponding NP fixed to its fitted value, é, shifted up or
down by its fitted uncertainty, with all the other parameters allowed to vary so as to take
properly into account the correlations between systematic uncertainties. The magnitude
of the shift in the fitted signal strength [ is a measure of the observed impact of the
considered NP. The same procedure is repeated, using the nominal values of the NP and
of its associated uncertainty to provide its expected impact. To reduce the computation
time and therefore to enable more detailed fit studies, some of the NPs which have a
negligible effect on the expected fitted uncertainty on i are dropped: those associated
with the muon momentum scale and resolution and with the electron energy resolution;
one of those associated with the jet energy scale; and those associated with the quark-
gluon composition of the backgrounds, which turn out to be fully correlated with those
associated with the difference in energy response between quark and gluon jets. The
ranking of the systematic uncertainties obtained with the MVA applied to the 8 TeV data
is shown in figure 16 with the NPs ordered by decreasing post-fit impact on fi. The five
systematic uncertainties with the largest impact are, in descending order, those: on the
dijet-mass shape for the Wbb and W cc backgrounds for p?f > 120 GeV; on the Wbl /Wbb
normalisation ratio for p%V > 120 GeV; on the Wbb background normalisation; on the p¥/
shape in the 3-jet category for the W+hf background; and on the signal acceptance due to
the parton-shower modelling.

Since the same data sample is used for both the dijet-mass analysis and the MVA, the
consistency of the two final results, i.e., the two fitted signal strengths, is assessed using
the “bootstrap” method [93]. A large number of event samples are randomly extracted
from the simulated samples, with the signal strength p set to unity, the SM value. Each of
them is representative of the integrated luminosity used for the data analysis in terms of
expected yields as well as of associated Poisson fluctuations. Each of these event samples
is subjected to both the dijet-mass analysis and the MVA, thus allowing the two fitted
i1 values to be compared and their statistical correlation to be extracted. At the same
time, the expected distributions of i and of its uncertainty are determined for both the
dijet-mass analysis and the MVA.

9.3 Cross checks using diboson production

Diboson production with a Z boson decaying to a pair of b-quarks and produced in as-
sociation with either a W or Z boson has a signature very similar to the one considered
in this analysis, but with a softer p%b spectrum and with a my, distribution peaking at
lower values. The cross section is about five times larger than for the SM Higgs boson with
a mass of 125 GeV. Diboson production is therefore used as a validation of the analysis
procedure. For the dijet-mass analysis, the binning of the transformed my;, distribution is
reoptimised for the Z boson mass. For the MVA, the BDTs are retrained to discriminate
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Figure 16. Impact of systematic uncertainties on the fitted signal-strength parameter i for the
MVA applied to the 8 TeV data. The systematic uncertainties are listed in decreasing order of their
impact on ji on the y-axis. The boxes show the variations of i, referring to the top z-axis, when
fixing the corresponding individual nuisance parameter 6 to its post-fit value 0 modified upwards or
downwards by its post-fit uncertainty, and repeating the fit as explained in the text. The hatched
and open areas correspond to the upwards and downwards variations, respectively. The filled cir-
cles, referring to the bottom z-axis, show the deviations of the fitted nuisance parameters 6 from
their nominal values 6y, expressed in terms of standard deviations with respect to their nominal
uncertainties Af. The associated error bars show the post-fit uncertainties of the nuisance param-
eters, relative to their nominal uncertainties. The open circles with their error bars, also referring
to the bottom z-axis, show the fitted values and uncertainties of the normalisation parameters that
are freely floating in the fit. The normalisation parameters have a pre-fit value of one. As explained
in section 8.1, the jet energy scale and b-tagging uncertainties are decomposed into uncorrelated
components; the labels 1 and 4 refer to such components.
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the diboson signal from all backgrounds (including the Higgs boson). So-called “V Z fits”
are performed, where the normalisation of the diboson contributions is allowed to vary
with a multiplicative scale factor pyz with respect to the SM expectation, except for the
small contribution from WW production, which is treated as a background and constrained
within its uncertainty. A SM Higgs boson with mpy = 125 GeV is included as a background,
with a production cross section at the SM value with an uncertainty of 50%. Distributions
of the BDTy 7 discriminants of the MVA are shown in figure 17 for 2-tag signal regions
with p¥ > 120 GeV in the 2-jet category of the 0-, 1- and 2-lepton channels.

As an additional check, fits are also performed with both the diboson and Higgs boson
signal-strength parameters uy 7z and u left freely floating, to study the correlation between
the two strength parameters. The fits in the dijet-mass analysis use the my;, distributions
with binning optimised for a Higgs boson mass of 125 GeV. The fits in the MVA use BDTs
trained for that same mass, as well as the associated optimised binnings.
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10 Analysis of the 7TeV data

For the 7TeV dataset, only a dijet-mass analysis is performed. It is similar but not identical
to the corresponding analysis for the 8 TeV data, since some of the object reconstruction
tools, such as the simultaneous use of multiple b-tagging operating points, are not available
for the 7TeV data. In this section, the main differences between the two analyses are
summarised.

10.1 Object reconstruction

The three categories of electrons are selected according to the loose, medium, and tight
criteria defined in ref. [53]. The transverse energy threshold for loose electrons is set
at 10 GeV, instead of 7GeV. For tight electrons and muons, the calorimeter isolation
requirement is loosened from 4% to 7%. The procedure used to avoid double-counting
of reconstructed muon and jet objects removes muons separated by AR < 0.4 from any
jet, irrespective of the multiplicity of tracks associated with the jet. For jets, the global
sequential calibration is not used and the requirement on the fraction of track pr carried
by tracks originating from the primary vertex is raised from 50% to 75%. The b-tagging
algorithm used is MV1 [94-97] instead of MV1c, with a single operating point to define
b-tagged jets corresponding to an efficiency of 70%.

10.2 Event selection

The selection criteria are those used in the dijet-mass analysis of the 8 TeV data, with
the following differences. With only one b-tagging operating point, a single 2-tag category
is defined. In the O-lepton channel, the 100-120 GeV p¥ interval is not used, and the
criterion for Zp;ti is not applied. In the 1-muon sub-channel, the E%iss trigger is used
only in the 2-jet 2-tag category for prV > 160 GeV, and the events selected only by the
Effmss trigger constitute distinct signal regions. In the 1-lepton channel, meV > 40 GeV is
required for p%v < 160 GeV; there is no requirement on Hr, but E%ﬂss > 25 GeV is imposed
for pr‘fV < 200 GeV. In the 2-lepton channel, no kinematic fit is performed. Different lepton-
flavour events are used to define a 2-tag tt-dominated e—u control region in the 2-lepton
channel; the region is defined to be inclusive in jet multiplicity (> 2).

10.3 Background composition and modelling

The templates used to model the MJ background in the 1-lepton channel are obtained by
inversion of the track-based isolation criterion, and the normalisations are performed on
the mr‘fV and E%ﬁss distributions in the electron and muon sub-channels, respectively.

Corrections to the simulation of the V+jet backgrounds are determined in the 1- and
2-lepton 0O-tag samples inclusively in p¥, and applied as A¢(jet;,jety) reweightings to the
W+jet and Z+jet components in all channels. Selected dijet-mass distributions showing
the background composition in various analysis regions are shown in figure 18.
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10.4 Systematic uncertainties

The differences with respect to the 8 TeV data analysis arise mainly from experimental
systematic uncertainties. Many of them are evaluated using independent data samples
(7 TeV data vs. 8 TeV data), e.g., ErTniSS trigger efficiencies or JES. Others refer to different
identification algorithms, e.g., electron identification or b-tagging. The uncertainty on the
integrated luminosity is 1.8% for the 2011 dataset [20].

The uncertainties affecting the signal and background simulation are estimated in
a similar way as for the 8 TeV data, i.e., from comparisons between the baseline and
alternative generators. For V+jets, the Vbec and Vbb backgrounds are merged into a single
component. For dibosons, the baseline generator is HERWIG instead of PYTHIAS; systematic
uncertainties on the 3-to-2-jet ratios and on the p¥ distributions are estimated at generator
level for the different diboson processes by comparison with MCFM at NLO. For the signal,
the gg — ZH samples are generated with PYTHIAS instead of POWHEG; for all processes,
the alternative generators used are PYTHIAG and HERWIG.

Due to these differences, and because the phase space within which the systematic
uncertainties are evaluated is more restricted than for the MVA applied to the 8 TeV
data, all systematic uncertainties, except for the theoretical uncertainties on the signal, are
treated as uncorrelated between the analyses of the 7 TeV and 8 TeV data in the global fit
to the combined dataset, in which the MVA is used for the 8 TeV data.

10.5 Statistical procedure

The inputs to the likelihood fits are the my, distributions (not transformed) in the 28 p.
intervals of the 2-tag signal regions. Additional inputs are the event yields in the five p¥
intervals of the 2-tag e—p control region and the 26 p¥ intervals of the 1-tag control regions.
For the tt background, a single floating normalisation is determined by the global fit,
instead of one in each of the 0-, 1-, and 2-lepton channels. In addition to the other floating
normalisations mentioned for the 8 TeV data analysis, the MJ background normalisation is
also left freely floating in all regions of the 1-lepton channel, except in the 2-tag 3-jet regions
where the statistical power of the data is not sufficient to provide a reliable constraint. In
these regions, an uncertainty of 30% is assigned to the MJ background normalisation, using
a method similar to what is done for the analysis of the 8 TeV data.
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11 Results

As explained in section 9, the results are obtained from maximum-likelihood fits to the
data, where the inputs are the distributions of final discriminants in the 2-tag signal re-
gions and the MV1c distributions of the b-tagged jet in the 1-tag control regions, with
nuisance parameters either floating or constrained by priors. The final discriminants are
the transformed my, for the dijet-mass analysis and the BDTy g discriminants for the MVA.
Results are extracted independently for the dijet-mass and multivariate analyses. Since the
MVA has better expected sensitivity to a Higgs boson signal, it is used for the nominal
results, while the dijet-mass analysis provides a cross-check (cf. section 11.2). For the
7TeV data, however, only a dijet-mass analysis is performed. Unless otherwise specified,
all results refer to a Higgs boson mass of 125 GeV.

In the following, the fitted signal-strength parameters are simply denoted p and py 7,
rather than f and fiy 2.

11.1 Nominal results

The nominal results are obtained from global fits using the MVA for the 8 TeV data and
the dijet-mass analysis of the 7TeV data.

Distributions of the BDTy g discriminant and of MV 1¢, with background normalisa-
tions and nuisance parameters adjusted by the global fit to the 8 TeV data were already
presented in section 7.4. Dijet-mass distributions in the 7TeV data analysis were shown
in section 10. Agreement between data and estimated background is observed within the
uncertainties shown by the hatched bands.

Figure 19 shows the 95% CL upper limits on the cross section times branching ratio
for pp — (W/Z)(H — bb) in the Higgs boson mass range 110-140 GeV. The observed limit
for mpg = 125 GeV is 1.2 times the SM value, to be compared to an expected limit, in the
absence of signal, of 0.8. For the 8 TeV (7 TeV) data only, the observed and expected limits
are 1.4 (2.3) and 0.8 (3.2), respectively.

The probability pg of obtaining from background alone a result at least as signal-
like as the observation is 8% for a tested Higgs boson mass of 125 GeV; in the presence
of a Higgs boson with that mass and the SM signal strength, the expected py value is
0.5%. This corresponds to an excess observed with a significance of 1.40, to be compared
to an expectation of 2.60. For the 8 TeV data alone, the observed and expected levels
of significance are 1.70 and 2.50, respectively. For the 7TeV data alone, the expected
significance is 0.70 and there is a deficit rather than an excess in the data, as can be seen
in figure 18. Figure 20 shows the pg values in the mass range 110-140 GeV, as obtained for
the 7TeV and 8 TeV combined dataset.

The fitted p values for my = 125 GeV are shown in figure 21 for the 7TeV, 8 TeV and
combined datasets. With all lepton channels and data-taking periods combined, the fitted
value of the signal-strength parameter is'! g = 0.5140.31(stat.)+0.24(syst.). For the 8 TeV

1The uncertainties of the normalisations of the floating backgrounds are included in the systematic
uncertainties; their contribution is 0.07.
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Figure 19. Observed (solid) and expected 95% CL cross-section upper limits, normalised to the SM
Higgs boson production cross section, as a function of my for all channels and data-taking periods
combined, as obtained using the dijet-mass analysis for the 7TeV dataset and BDTs trained at
each individual mass for the 8 TeV dataset. The expected upper limit is given for the background-
only hypothesis (dashed) and with the injection of a SM Higgs boson signal at a mass of 125 GeV
(dotted). The dark and light shaded bands represent the 1o and 20 ranges of the expectation in
the absence of a signal. For all curves shown, the results obtained at the tested masses are linearly

interpolated.
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Figure 20. Observed (solid) and expected py values as a function of mpy for all channels and
data-taking periods combined, as obtained using the dijet-mass analysis for the 7TeV dataset and
BDTs trained at each individual mass for the 8 TeV dataset. The expected pg values are given for
the background-only hypothesis in the presence of a SM Higgs boson: for the dashed curve the
Higgs boson mass corresponds to each tested mass point in turn; for the dotted curve the Higgs
boson mass is 125 GeV. For all curves shown, the results obtained at the tested masses are linearly

interpolated.
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Figure 21. The fitted values of the Higgs boson signal-strength parameter u for my = 125 GeV
for the 7TeV and 8 TeV datasets and the combination of the 7TeV and 8 TeV datasets.

data, the fitted value of the signal-strength parameter is ;1 = 0.65+0.32(stat.) £0.26(syst.).
For the 7TeV data, it is u = —1.6 £ 1.2(stat.) = 0.9(syst.).

For a Higgs boson with a mass of 125.36 GeV, as measured by ATLAS [98], the signal-
strength parameter is p = 0.52 £ 0.32(stat.) £ 0.24(syst.).

Fits are also performed where the signal strengths are floated independently for (i)
the WH and ZH production processes, or (ii) the three lepton channels. The results of
these fits are shown in figures 22 and 23 respectively. The consistency of the fitted signal
strengths in the W H and ZH processes is at the level of 20%. For the lepton channels,
the consistency between the three fitted signal strengths is at the level of 72% for the
7TeV data, and of 8% for the 8 TeV data. The low values of the fitted signal strengths for
the ZH process and in the O-lepton channel are associated with the data deficit observed
in the most sensitive bins of the BDTy y discriminant in the O-lepton channel, shown in
figure 12(a).

Figure 24 shows the data, background and signal yields, where the final-discriminant
bins in all signal regions are combined into bins of log(.S/B), separately for the 7 and 8 TeV
datasets. Here, S is the expected signal yield and B is the fitted background yield. Details
of the fitted values of the signal and of the various background components are provided
in table 8.

11.2 Cross-check with the dijet-mass analysis

The distributions of my, in the dijet-mass analysis, with background normalisations and
nuisance parameters adjusted by the global fit to the 8 TeV data were already presented
in section 7.3. Agreement between data and estimated background is observed within the
uncertainties shown by the hatched bands.
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Figure 22. The fitted values of the Higgs boson signal-strength parameter p for my = 125 GeV
for the WH and ZH processes and the combination of the WH and ZH processes, with the 7
and 8 TeV datasets combined. The individual p values for the (W/Z)H processes are obtained
from a simultaneous fit with the signal strength for each of the WH and ZH processes floating
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Figure 23. The fitted values of the Higgs boson signal-strength parameter p for my = 125 GeV
for the 0-, 1- and 2-lepton channels and the combination of the three channels, with the 7 and 8 TeV
datasets combined.The individual p values for the lepton channels are obtained from a simultaneous
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fit with the signal strength for each of the lepton channels floating independently.
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Figure 24. Event yields as a function of log(S/B) for data, background and Higgs boson signal
with mpg = 125 GeV for the (a) 8 TeV data and (b) 7 TeV data. Final-discriminant bins in all signal
regions are combined into bins of log(S/B). The signal S and background B yields are expected
and fitted, respectively. The Higgs boson signal contribution is shown as expected for the SM cross
section (indicated as p = 1.0). The pull of the data with respect to the background-only prediction
is also shown with statistical uncertainties only. The full line indicates the pull of the prediction
for signal (1 = 1.0) and background with respect to the background-only prediction.

Process Bin 1 Bin2 Bin3d Bin4 Binb5 Bin6 Bin7 Bin8 Bin9
Data 368550 141166 111865 20740 5538 2245 382 41 4
Signal 29 43 96 57 58 62 32 10.7 2.3
Background | 368802 140846 111831 20722 5467 2189 364 37.9 3.4
S/B 8 x 107 0.0003 0.0009 0.003 0.01 0.03 0.09 0.3 0.7
W +hf 14584 10626 15297 1948 618 250 45 8.2 0.7
Wel 96282 30184 15227 1286 239 47 4.2 0.2 0.005
Wi 125676 14961 3722 588 107 16 1.3 0.03 0.001
Z+hf 10758 14167 21684 7458 1178 577 130 14.8 2.2
Zcl 13876 11048 4419 941 61 22 2.1 0.1  0.008
Zl 49750 18061 3044 537 48 15 1 0.05 0.004
tt 30539 24824 26729 5595 2238 922 137 10 0.3
Single top 10356 9492 14279 1494 688 252 31 2.7 0.1
Diboson 4378 1831 1247 474 186 62 9.7 1 0.2
Multijet 12603 5650 6184 400 103 26 3 0.9 0

Table 8. The numbers of expected signal and fitted background events and the observed numbers
of events after MVA selection in the bins of figure 24(a). These numbers are for both the 1-tag and

2-tag events in the 8 TeV dataset, corresponding to an integrated luminosity of 20.3 fb™!.
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Figure 25. The distribution of my, in data after subtraction of all backgrounds except for the
diboson processes, as obtained with the dijet-mass analysis for the (a) 8 TeV and (b) 7 TeV data. The
contributions from all lepton channels, p¥ intervals, number-of-jets and 2-tag b-tagging categories
are summed weighted by their respective values of the ratio of expected Higgs boson signal to fitted
background. The contribution of the associated W H and ZH production of a SM Higgs boson
with mpy = 125 GeV is shown as expected for the SM cross section (indicated as g = 1.0). The size
of the combined statistical and systematic uncertainty on the fitted background is indicated by the
hatched band.

In the dijet-mass analysis, a p value of 1.23 £ 0.44(stat.) & 0.41(syst.) is obtained for
the 8 TeV dataset. The consistency of the results of the three lepton channels is at the level
of 8%. Using the “bootstrap” method mentioned in section 9.2, the results for the 8 TeV
data with the dijet-mass analysis and with the MVA are expected to be 67% correlated,
and the observed results are found to be statistically consistent at the level of 8%. The
observed significance in the dijet-mass analysis is 2.20. The expected significance is 1.90,
to be compared to 2.5¢0 for the MVA, which is the reason for choosing the MVA for the
nominal results.

Figure 25 shows the my, distribution in data after subtraction of all backgrounds except
for diboson production for the 7 and 8 TeV data, as obtained with the dijet-mass analysis.
In this figure, the contributions of all 2-tag signal regions in all channels are summed
weighted by their respective ratios of expected Higgs boson signal to fitted background.
The VZ contribution is clearly seen, located at the expected Z mass. The Higgs boson
signal contribution is shown as expected for the SM cross section.

11.3 Cross-check with the diboson analysis

To validate the analysis procedures, V Z fits are performed, the technical details of which
were discussed in section 9.3.
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The measured signal strength for the 8 TeV dataset with the MVA is uyz = 0.77 +
0.10(stat.) £ 0.15(syst.). This result is consistent with the observations already made on
figure 25. The signal strengths obtained for the three lepton channels are consistent at the
85% level. In the dijet-mass analysis at 8 TeV, a uy 7 value of 0.7940.11(stat.) £0.16(syst.)
is obtained. The correlation of the systematic uncertainties on puyz and p is 35% in the
MVA and 67% in the dijet-mass analysis.

Fits are performed with the same final discriminants as used to obtain the results for
the Higgs boson based on the 8 TeV dataset, but with both the V' Z and Higgs boson signal-
strength parameters pyz and p left freely floating. The result for the Higgs boson signal
strength is unchanged from the nominal result, and the statistical correlation between
the two signal-strength parameters is found to be —3% in the MVA and 9% in the dijet-
mass analysis. The main reason for these low correlations is the different shape of the p¥
distributions for VZ and for the Higgs boson signal, the p¥ variable being used by both
the MVA and the dijet-mass analysis. The yield tables in the appendix show that the ratio
of the diboson contribution to that of the Higgs boson is indeed smaller in the higher p¥
interval than in the lower one. The additional variables input to the BDT provide further
separation in the MVA, leading to a very small diboson contribution in the most significant
bins of the BDTy g discriminant, as can be seen in table 8.

A value of uyz = 0.50 + 0.30(stat.) + 0.38(syst.) is obtained for the 7TeV dataset.
The signal strength obtained for the combined 7 and 8 TeV dataset is 0.74 £ 0.09(stat.) £
0.14(syst.) The V Z signal is observed with a significance of 4.9, to be compared to an
expected significance of 6.30. The fitted uy z values are shown in figure 26 for the 7TeV,
8 TeV and combined datasets, and for the three lepton channels separately for the combined
dataset, all with the MVA used for the 8 TeV data. A measurement of VZ production in
pp collisions at /s = 8 TeV in final states with b-tagged jets was recently reported by the
CMS Collaboration [99].
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Figure 26. The fitted values of the diboson signal strength uy z for (a) the 7TeV, 8 TeV and
combined datasets, and (b) for the three lepton channels separately and combined, for the combined
dataset. The MVA is used for the 8 TeV data. The individual uy 7z values for the lepton channels
are obtained from a simultaneous fit with the signal strength for each floating independently.

12 Summary

A search for the Standard Model Higgs boson produced in association with a W or Z
boson and decaying into bb has been presented. The (W/Z) decay channels considered are
W — lv, Z — 0 and Z — vv. The dataset corresponds to integrated luminosities of
4.7 fb~! and 20.3 fb~! from pp collisions at 7 TeV and 8 TeV, respectively, recorded by the
ATLAS experiment during Run 1 of the LHC.

The analysis is carried out in event categories based on the numbers of leptons, jets, and
jets tagged as originating from b-quark fragmentation, and on the transverse momentum
of the vector-boson candidate. A multivariate analysis provides the nominal results. An
alternative analysis using invariant-mass distributions of the Higgs boson candidates leads
to consistent results.

For a Higgs boson mass of 125.36 GeV, the observed (expected) deviation from the
background-only hypothesis corresponds to a significance of 1.4 (2.6) standard deviations
and the ratio of the measured signal yield to the Standard Model expectation is found to be
p = 0.52 4+ 0.32(stat.) £ 0.24(syst.). The analysis procedure is validated by a measurement
of the yield of (W/Z)Z production with Z — bb, from which the ratio of the observed signal
yield to the Standard Model expectation is found to be 0.74 £ 0.09(stat.) £ 0.14(syst.).
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A Tables of event yields

The event yields in each category for the multivariate analysis are shown in tables 9-11.
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