Химия

УДК 77.023+621.793

Г. П. ШЕВЧЕНКО, Л. Т. ПОТАПЕНКО, В. В. СВИРИДОВ

ЗАКОНОМЕРНОСТИ ОСАЖДЕНИЯ МЕДИ ИЗ РАСТВОРОВ, СОДЕРЖАЩИХ РЕДОКС-ПАРУ V^{3+}/VO^{2+}

Процессы с несеребряным физическим проявлением широко исследуются, поскольку уже сейчас его некоторые варианты находят практическое применение [1]. Наиболее изучены процессы осаждения меди из растворов, содержащих в качестве восстановителей борогидрид натрия [2, 3], формальдегид [4], редокс-пару $\mathrm{Ti}^{3+}/\mathrm{Ti}\mathrm{O}^{2+}$ [5, 6]. Встречаются также упоминания о возможности применения для восстановления ионов Cu^{2+} таких редокс-систем, как $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$, $\mathrm{V}^{2+}/\mathrm{V}^{3+}$, $\mathrm{V}^{3+}/\mathrm{V}^{4+}$, $\mathrm{Cr}^{2+}/\mathrm{Cr}^{3+}$, $\mathrm{Eu}^{2+}/\mathrm{Eu}^{3+}$ [7], однако систематически этот вопрос не изучался, а сведения о получении медных изображений из проявляющих растворов, содержащих перечисленные редокс-пары (кроме $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$), вообще отсутствуют.

В настоящей статье рассмотрены результаты исследования процесса осаждения меди из растворов, содержащих редокс-пару V^{3+}/VO^{2+} , и возможности их использования для получения медных изображений на галогенсеребряных слоях с уменьшенным содержанием серебра. Автокаталитическое осаждение меди на частицы серебра, формирующего слабое изображение, протекает из кислых растворов, содержащих соли Cu(II) и V(III), относительные количества которых брались в соответствии со стехнометрией реакции. Введение в проявляющий раствор ионов V(IV), смещающих окислительно-восстановительный потенциал пары V^{3+}/VO^{2+} в область более положительных значений, а также поверхностно-активных веществ, в частности $O\Pi$ -10, обеспечивает получение достаточно стабильных растворов.

С целью выявления факторов, определяющих высокую скорость проявления и оптимальные фотографические характеристики (Φ X) малосеребряных пленок, изучена кинетика осаждения меди из растворов медно-ванадиевого проявителя (МВП) на серебряное изображение ($D_{\rm nex}^{\rm Ag}=0,3$), образующееся в пленке Φ T- Φ П * при ее химико-фотографической обработке [4]. Процесс осуществлялся при перемешивании в инертной атмосфере (для предотвращения окисления ионов V³+) и температуре 25 ± 1 °C. Кинетика процесса изучалась по изменению количества осажденной меди в условиях, когда менялась концентрация одного компонента проявителя при фиксированных значениях концентрации других. Начальный участок кинетической кривой определяли, используя методику непрерывной регистрации оптической плотности медного изображения ($D_{yc}^{\rm Cu}$) [2], величина которой линейно связана с количеством осажденной меди.

Характерный вид кинетических кривых осаждения меди на серебря-

^{*} Экспериментальная пленка Φ Т- Φ П изготовлена на опытном производстве КазНИИхимфотопроекта; содержание серебра 0,8 г/м² (в полносеребряном аналоге этой пленки — 6,0 г/м² Ag).

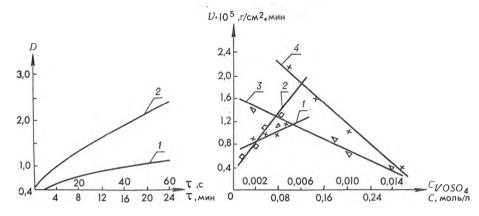


Рис. 1. Кинетические кривые осаждения меди из МВП на Ад-изображение: I — начальный участок; 2 — общий вид

Рис. 2. Зависимость скорости осаждения меди от концентрации компонентов МВП: $1-V_2(SO_4)_3; \ \ 2-CuSO_4; \ \ 3-VOSO_4; \ \ \ 4-H_2SO_4$

ное изображение показан на рис. 1. Процесс идет с небольшим индукционным периодом, который зависит от состава раствора, по не зависит от усиливаемой оптической плотности серебряного изображения. После индукционного периода осаждение меди протекает с большой скоростью и достигает максимального значения при времени $\sim 40-60$ с, после чего скорость снижается и становится постоянной (прямолинейный участок). Заметим, что началу прямолинейного участка ($D_{yc}^{\text{Cu}} \approx 1,6-1,8$) соответствует расчетная толщина слоя осажденной меди $\sim 0,05-0,1$ мкм. Можно предположить, что осаждение меди из МВП начинается на всей поверхности частиц катализатора (частиц серебра, формирующих усиливаемое изображение), а после образования слоя меди скорость процесса несколько снижается.

При исследовании зависимости скорости \ast осаждения меди от концентрации компонентов МВП установлено, что она линейно растет с увеличением концентрации соли Cu(II) и V(III) в пределах 0,02—0,1 моль/л, а также с уменьшением кислотности (от 0,3 до 0,1 моль/л) и концентрации V(IV) (от 0,016 до 0,0016 моль/л) (рис. 2). В изучавшемся интервале концентраций компонентов МВП скорость процесса описывается следующим эмпирическим соотношением:

$$v = K \frac{C_{\text{Cu}^2}^{0.9} + C_{\text{V}^3}^{0.5}}{C_{\text{H}_2}^{1.5} + C_{\text{V}^4}^{0.5}}$$

которое указывает, что наиболее существенно скорость зависит от концентрации соли Cu^{2+} и кислотности.

Отметим, что факторы, обеспечивающие высокую скорость осаждения меди из МВП, приводят к снижению его стабильности и наоборот. Так, при $C_{\rm H_2SO_4} = 0,06 - 0,08$ моль/л и соотношении $C_{\rm Voso_4}/C_{\rm V_2(SO_4)_3} = 0,125$ процесс идет с высокой скоростью, но уже примерно через 2-5 мин приготовления МВП наблюдается выделение меди в объеме раствора; при $C_{\rm H_2SO_4} = 0,3$ моль/л (при том же соотношении V(IV)/V(III)) осаждение меди идет очень медленно с большим индукционным псриодом.

Высокая активность МВП при его достаточной стабильности (около 1 ч) достигается при следующих концентрациях компонентов (моль/л): $CuSO_4-0.08$; $V_2(SO_4)_3-0.08$; $VOSO_4-0.01$; $H_2SO_4-0.2$; $O\Pi-10-0.77$; $\Delta E=20$ мВ. Кажущаяся энергия активации процесса при использовании МВП указанного состава равняется 50 ± 6 кДж/моль. Этот прояви-

^{*} Имеется в виду скорость на прямолинейном участке кинетической кривой, которая оценивалась по изменению массы осажденной меди в единицу времени, т. е. $v = \Delta m/\Delta \tau$.

тель обеспечивает эффективное усиление слабого серебряного изображения на малосеребряных пленках без проведения операции его конвертирования в галогенид, причем скорость процесса при этом сопоставима со скоростью процесса на конвертированном серебре. Достигаемые в МВП фотографические характеристики сопоставимы с ФХ при использовании медно-титанового проявителя. По сравнению с медно- и никсльборогидридными проявителями в МВП достигается большая (в 1,5— 2 раза) фотографическая чувствительность (см. таблицу). МВП является менее контрастным физическим проявителем, что дает возможность передавать полутона. Изображение, формирующееся из МВП, состоит из металлической меди (по данным рентгенографического исследования) и является коррозионно устойчивым: при хранении в обычных условиях (комнатная температура, относительная влажность ~70 %) в течение двух лет коэффициент регрессии * $f_{\tau} = 20-25$ %. Для сравнения укажем, что $f_{ au}$ для медного изображения из медно-борогидридного проявителя в тех же условиях составляет 100 %.

Фотографические характеристики малосеребряной пленки ФТ-ФП, усиленной в различных несеребряных физических проявителях

Проявитель	S _{0,85}	D _{max}	γ
<i>М</i> едно-ванадиевый	1,1	3,7	2,7
Медно-борогидридный [3]	0,8	4,0	6,0
Никель - борогидридный [8]	0,6	4,0	8,5
Медно-титановый [4]	1,2	4,0	5,0

Таким образом, полученные данные свидетельствуют о возможности использования редокс-пары V³+/VO²+ для получения медных изображений на галогенсеребряных материалах с уменьшенным содержанием серебра без проведения стадии конвертирования серебра изображения в галогенид в отличие от медно-борогидридного и медно-формальдегидного проявителей, что упрощает технологию их обработки без ухудшения ФХ. Проведенное исследование позволило обосновать состав МВП, обеспечивающего эффективное проявление малосеребряных материалов. Заметим, что при длительной (более 3 ч) работе с проявителем необходима его защита от воздуха (достаточно проводить проявление в закрытых сосудах) из-за протекания процессов окисления V3+. К преимуществам МВП можно отнести также его очень простой состав (отсутствие лигандов), сравнительно невысокую кислотность (рН 1,8), формирование медного изображения, обладающего высокой коррозионной устойчивостью.

Список литературы

1. Браницкий Г. А., Свиридов В. В., Рогач Л. П. // Жури. науч. и при-кладн. фотогр. и кинематогр. 1986. Т. 31. № 1. С. 43. 2. Капариха А. В., Браницкий Г. А., Рогач Л. П., Свиридов В. В. // Весці АН БССР. Сер. хім. навук. 1985. № 5. С. 27. 3. Свиридов В. В., Сташенок В. Д., Капариха А. В. и др. // Докл. АН БССР. 1980. Т. 24. № 2. С. 151. 4. Сердюк Г. И., Шевченко Г. П., Сташенок В. Д. и др. // Вестн. Белорусского ун-та. Сер. 2: Хим. Биол. Геогр. 1981. № 2. С. 5. 5. Шевченко Г. П., Афанасьева З. М., Потапенко Л. Т., Свири-дов В. В. // Журн. науч. и прикладн. фотогр. и кинематогр. 1984. Т. 29. № 5. С. 340.

^{*} $f_{ au} = rac{D_0 - D_{ au}}{D_0} \cdot 100\%$, где D_0 — начальная, а $D_{ au}$ — плотность изображения после хранения соответственно.

- 6. Шевченко Г. П., Афанасьева З. М., Свиридов В. В. // Весці АН БССР. Сер. хім. навук. 1985. № 4. С. 47.
- 7. Свиридов В.В. Несеребряные фотографические процессы. Л., 1984. 8. Ажар Г.В., Гаевская Т.В., Свиридов В.В. // Журн. науч. и прикладн. фотогр. и кинематогр. 1983. Т. 28. № 1. С. 38.

УДК 661. 728.8:543.227

Ф. Н. ҚАПУЦКИЙ, И. А. БАШМАҚОВ, Л. В. СОЛОВЬЕВА

ТЕРМООКИСЛИТЕЛЬНАЯ ДЕСТРУКЦИЯ ЖЕЛЕЗНЫХ СОЛЕВЫХ ФОРМ МОНОКАРБОКСИЛЦЕЛЛЮЛОЗЫ РАЗЛИЧНОЙ СТРУКТУРЫ

Характер процесса термической и термоокислительной деструкции полисахаридов обусловлен и химическим, и физическим строением их [1]. В частности, целлюлоза с повышенным содержанием аморфных областей разлагается с большей скоростью и при более низких температурах, выход угольного остатка при этом возрастает [2, 3].

Настоящая работа посвящена изучению влияния структуры окисленной целлюлозы на протекание процесса ее термоокислительного распада. Исследовались образцы окисленной оксидом азота (IV) целлюлозы — монокарбоксилцеллюлозы (МҚЦ) в кислотной и железной солевой формах. Выбор Fe-формы МКЦ связан с той важной ролью, которая отводится обменному железу в окислительно-восстановительных превращениях органических веществ. Например, в ряде случаев следствием протекания таких процессов является самовозгорание растительных материалов, содержащих целлюлозу, твердых топлив, в частности торфа [4, 5]. Авторами работы [6] разработана методика получения пирофорных материалов на основе производных целлюлозы с введенными ионообменно катионами Fe3+.

Для опытов использовали целлюлозу со степенью полимеризации 2400 в виде хлопчатобумажной ткани. Окисление проводили 10 %-ным (I серия) и 50 %-ным (II серия) раствором оксида азота (IV) в тетрахлорметане. Образцы I серии, по данным рентгеноструктурного анализа, сохранили кристаллическую полиморфную модификацию целлюлозы-I. Образцы II серии практически рентгеноаморфны. Далее в тексте образцы МКЦ I и II серии обозначены с добавлением арабских цифр, указывающих на содержание карбоксильных групп. Например, МКЦ I-3,0 получена окислением целлюлозы раствором оксида азота (IV) в тетрахлорметане 10 %-ной концентрации (I содержит серия) И 3,0 масс. % карбоксильных групп. Железные солевые формы МКЦ получены понообменной сорбцией в динамических условиях из 0,1 и раствора FeCl₃. Рентгенограммы образцов снимали на приборе ДРОН-I.5 $(Cu_{K\alpha})$ излучение, фильтрованное Ni) в идентичных условиях приготовления и съемки образцов. Термический анализ проводили на Q-дериватографе системы Паулик — Паулик — Эрдей. Скорость нагревания составляла 5 град/мин при чувствительности ДТГ-1/10 и ДТА-1/5. Образец (50 мг) помещали в открытый платиновый тигель, что обеспечивало свободный отвод продуктов термической деструкции и доступ к нему воздуха. Для изучения скорости распространения горения полоски ткани 2×10 см, предварительно высушенные при 100° С в течение 2 ч, помещали в проградуированный держатель и поджигали сверху по всей ширине полоски путем кратковременного контакта с открытым пламенем. Скорость распространения горения по вертикальной поверхности сверху вниз рассчитывалась из 5 повторных опытов по формуле v = l/ au, где l — расстояние, пройденное фронтом пламени, мм; au — время горения, с. Определялась также и скорость тления (см. таблицу). Факельное зажигание целлюлозы вызывает воспламенение горючих газов, образующихся при ее нагреве, и формирование самораспространяющегося пламени, фронт которого при вертикальном направлении горения