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The algebra of canonical affinor structures on
homogeneouk-symmetric spaces$
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Abstract. The commutative algebra of all canonical affinor structures on ho-
mogeneouk-symmetric spaces is completely described. It gives a classifica-
tion of these spaces with respect to the algebra.
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1. Introduction

Invariant structures on homogeneous spaces reveal an important information
about the geometry of these spaces. In this sense homogeneous spaces defined
by Lie group automorphism® (briefly, homogeneou®-spaces) possess invari-
ant structures of special interest. More exactly, any homogeneous regslaeice
admits in a natural way the commutative algedi@) of all canonical affinor struc-
tures, see [3]. It is well known ([13]) that the class of regutaspaces includes a
widespread class of homogeneakspaces of any finite ordér(homogeneouk-
symmetric spaces, [10]). Specifically, for any homogeneous symmetric space (the
casek = 2) the algebrad(0) is isomorphic tdR.

The main goal of the paper is to describe completely the algdi#$a for arbi-
trary homogeneouk-symmetric spaces. This description gives the opportunity to
classify homogeneoussymmetric spaces with respecttq0).

The paper is organized as follows.

In Section 2, we collect some basic notions and results about homogeneous reg-
ular ®-spaces and canonical affinor structures. In particular, the full algebraic de-
scription of all canonical structures of classical type (almost complex, almost prod-

1This paper is in final form and no version of it will be submitted for publication elsewhere.
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uct, f-structures, etc.) is formulated as well as a geometric idea of the structures is
presented.

In Section 3, the algebraic structure of the algel(&) for any homogeneous
symmetric space is completely characterized. This structure is entirely determined
by the spectrum of the operatrAs an example, for all homogeneous 3-symmetric
spacesd(9) is isomorphic taC, where the imaginary unit is just the classical canon-
ical almost complex structure (see [6, 14, 16]).

Finally, in Section 4, we consider several particular examples the algélsna
of which isC or R @ C. They are the sphere®, S°, S° in their non-symmetric
representations, the 6-dimensional generalized Heisenberg group (two representa-
tions), the group of hyperbolic motions of the pldk&

2. Canonical structures on regular®-spaces

Here we briefly formulate some basic definitions and results related to regular
d-spaces and canonical affinor structures on them. More detailed information can
be found in [3,4, 10, 13,14, 16].

Let G be a connected Lie groug, its (analytic) automorphism. Denote I8
the subgroup of all fixed points @ andG? the identity component d&®. Sup-
pose a closed subgrouth of G satisfies the condition

G? c H c G®.

ThenG/H is called ahomogeneou$-space

Homogeneousb-spaces include homogeneous symmetric spadés= id)
and, more generahomogeneou$-spaces of order k®K = id) or, in other termi-
nology,homogeneous k-symmetric spatsee [10]). Note that there exist homoge-
neousd-spaces that are not reductive. That is why so-called reguispaces first
introduced by N.A. Stepanov ([13]) are of fundamental importance.

LetG/H be a homogeneous-spaceg andh the corresponding Lie algebras for
G andH, ¢ = d®, the automorphism gf. Consider the linear operatér= ¢ —id
and the Fitting decompositian= go®g1 with respect toA, wherego andg; denote
0- and 1-component of the decomposition respectively. It is cleatteatker A
andh C go.

Definition 1 ([3, 4, 13]). A homogeneou$-space GH is called a regulard-
space if one of the following equivalent conditions is satisfied

1 H=go;

2. g=h @ Ag;

3. The restriction of the operator A togAs non-singular

4. °X =0= AX =0forall X e g;

5. The matrix of the automorphisgcan be represented in the form

(o )

where the matrix B does not admit the eigenvdlue
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We recall two basic facts:

Theorem 1([13]).
— Any homogeneous-space of order K&K = id) is a regular®-space.
— Any regular®-space is reductive. More exagcttire Fitting decomposition

1) g=hodm, m=Ag
is a reductive one.

Decomposition (1) is theanonical reductive decompositiaorresponding to a
regular®-spaceG/H, andm is thecanonical reductive complement
Decomposition (1) is obviously-invariant. Denote by the restriction ofp to
m. As usual, we identifyn with the tangent spacg,(G/H) at the pointo = H. It
is important to note that the operatbcommutes with every element of the linear
isotropy group AdH) (see [13]).
An affinor structureon a manifold is known to be a tensor field of ty(el).
Supposd- is an invariant affinor structure on a homogeneous man@lH . Then
F is completely determined by its valug at the pointo, whereF, is invariant
with respect to AdH). For simplicity, we will denote by the same manner both
any invariant structure o8 /H and its value ab throughout the rest of the paper.

Definition 2 ([3]). An invariant affinor structure F on a regulab-space GH
is calledcanonicailf its value at the point = H is a polynomial irg.

Denote by.A(0) the set of all canonical affinor structures on a regdiaspace
G/H. It is easy to see thad(9) is a commutative subalgebra of the algeldraf
all invariant affinor structures o®/H. Moreover,

dim A(®) =degv < dim G/H,

wherev is the minimal polynomial of the operatér Note that the algebral(6)
for any symmetricb-space(®? = id) consists of scalar structures only, i.e., it is
isomorphic toR.

It should be mentioned that all canonical structures are invariant with respect to
the “symmetries” ofG/H, which are generated by the automorphidnsee [13]).

The most remarkable example of canonical structures is the canonical almost
complex structurel = (1/+/3)(0 — 62) on a homogeneous 3-symmetric space
(see [6,14,16]). It turns out that it is not an exception. In other words, the algebra
A(#) contains many affinor structures of classical type.

In the sequel we will concentrate on the following affinor structures of classi-
cal type:almost complex structures QJ° = —1); almost product structures P
(P? = 1); f-structures(f3+ f = 0), see [17];f -structures of hyperbolic type or,
briefly, h-structures(h® — h = 0), see [9]. Clearly,f -structures andh-structures
are generalizations of structur@sand P respectively.

All the canonical structures of classical type on regdaspaces have already
been completely described, see [1, 3]. In particular, for homogenesysimetric
spaces, precise computational formulae were indicated. For future reference we
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select here some results.
Denote bys (respectivelys) the number of all irreducible factors (respectively,
all irreducible quadratic factors) ov& of a minimal polynomiab.

Theorem 2([1, 3]). Let G/H be a regular®-space.

1. The algebraA(#) contains precisel® structures P.

2. G/H admits a canonical structure J if and only i=s §. In this caseA(d)
contains2® different structures J.

3. G/H admits a canonical f-structure if and only if 0. In this caseA(d)
contains3® — 1 different f-structures. Suppose=s §. Then2® f-structures are
almost complex and the remaini3g— 25 — 1 have non-trivial kernels.

4. The algebra4(p) contains3® different h-structures. All these structures form
a(commutativisemigroup ind(#) and include a subgroup of ordéf of canonical
structures P.

Further, letG/H be a homogeneolkssymmetric space. Theh=s+1if -1 ¢
specH, ands = sin the opposite case. We indicate explicit formulae enabling us to
compute all canonicaf -structures anti-structures. We shall also use the notation

_n if k=2n+1,
~|n—-1 ifk=2n.

Theorem 3([1, 3]). Let G/H be a homogeneous-space of order k.

1. All non-trivial canonical f-structures on 1 can be given by the operators

2 u u ) 2]_[ H
= Z(Z Iq sm( kmj>>(9m — M),
m=1\j=1

where¢j € {=1;0; 1}, j =1,2,...,u, and not all coefficientg; are zero. More-
over the polynomials f define canonical structures J if and only if pk {—1; 1}.
2. All canonical h-structures on @H can be given by the polynomials

k—1

h=> and™

m=0

where
(@) ifk =2n+ 1,then

_ _g 4 _ 2rmj
am—akm—k;“;:]cos( K )’
(b) if Kk = 2n, then
f — A= <22;1 cos( >+( 1>msn)

Here the number§;, j =1, 2, ..., u, take their values from the st 1; 0; 1} and
the polynomials h define canonical structures P if and only i gk {—1; 1}.
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We now patrticularize the results for homogeneduspaces of orders 3 and 4
only.

Corollary 1 ([1,3]). Let G/H be a homogeneous-space of ordeB. There are
(up to the sighonly the following canonical structures of classical type ofH3

1

J = — 9 — 62 N P = 1

N

We note that the existence of the structdrand its properties are well known
(see [6, 14, 16]).

Corollary 2 ([1,3]). On a homogeneous-space of orde# there are(up to the

sign) the following canonical classical structures
P=6% f=30-0% h=31-6% hy=31+67.

The operators hand h, form a pair of complementary projectors; + h, = 1,
h2 = hy, h3 = h,. Moreoveythe following conditions are equivalent
. —1 ¢ spec?d,
. the structure P is trivialP = —1);
. the f-structure is an almost complex structure
. the structure his trivial (h; = 1);
. the structures his null.

abrwnN -

It is important to note that the procedure of describing all canonical structures
on homogeneou$-spaces of finite order is constructive (see [3], 84 and §5). We
briefly present it for future reference.

Suppose the spectrum sp@containss pairs of conjugaté-th roots of unity
(apart from—1, which can also be an eigenvalue). Consider the correspofieing
invariant decomposition of the canonical reductive supplemegndm formula (1):

(2) m=mp®m & Dms,

wheremy is the subspace for the eigenvalué (if —1 € specf) andmg, ..., ms
the subspaces far pairs of roots. Then any canonicétstructure can be repre-
sented in the form

(3) f = (0, ;1\]1, coo o é‘st),
whereJ, ..., Js are the specially defined complex structuresman. .. , mg re-
spectivelys; € {(—=1;0; 1}, j = 1, 2,... ,s. Asto any canonicat-structure, it can

be represented in the form

(4) h = (&lo, &1l1, ..., &ls),

wherelg, I4, ..., s are the identical operators amy, mg, ..., mg respectively,
£ €{-1,0,1},)=0,1,2,...,s.

It should be noted that in particular case of homogen@spaces of any odd
orderk = 2n + 1 the method of constructing invariant almost complex structures
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was described in [10]. It is easy to see that all these structures are canonical in the
above sense.

3. The algebraic structure of. A(0) for homogeneouk-symmetric spaces

Here we explicitly characterize the construction of the algehi® for arbitrary
homogeneouk-symmetric spaces.

Theorem 4. Let G/H be a homogeneous-space of order ks the number of
pairs of conjugate k-th roots of unjtyhich are included into the spectruspecs.
1. If —1 € spec#, then the algebrad(9) is isomorphic to
ReCe---aC.
_r_'/
S
2. If —1 ¢ speco, then
A@)=Ceo---@C.
———
S

Proof. By the procedure of describing canonidalstructures andh-structures
we construct the isomorphism required (see Section 2).
1) Suppose—-1 € specd. Consider the corresponding decomposition of the
canonical reductive supplement
m=mg®Pm P... pms.

Using (3) and (4), we define the canonibastructures and -structures o /H
by setting

ho = (lo,0,...,0),
hy =(0,14,...,0),

(5) hs = (0,0, ..., 1y,

fS:(O’Os--~a‘]S)9

wherelg, 14, ..., |5 are the identical operators on the subspaggsng, .. ., mg re-

spectively andly, . . ., Js are special complex structureswas, . . ., mg respectively.
By Theorem 3, there exist real polynomisilgx), h1(x), ..., hs(X) and f1(x), .. .,

fs(X) such that

hi(Q):hi, iIO,l,...,S,
fj(9)=fj, j=1,...,S.

It is evident that operatorgh;, f;} in (5) are linearly independent. Since in the
case dimA(9) = degv = 2s + 1, we obtain that the collectiong, hy, ..., hg,
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f1,..., fsis exactly a basis id(9). It means that for anf < A(0) we have

S
F =aoho + ) _(@mhm + b fm),

m=1

whereag, am, bne R, m=1,...,s.
Now we define the following mapping:

AB) — RpCo---C,
—_———
S
F = (aglo, arly +b1J1, ..., asls + bsJs)
— (ag, a1 +bqi, ..., as+ bsi).

It is not difficult to verify that the correspondence is an isomorphism of the
commutative algebras under consideration. This proves the required result.
2) Suppose-1 ¢ spect. Then we obtain the decomposition

m=m;P--- S ms,
i.e.,mg = {0}. In the case dim4(#) = degv = 2s. Here we put
hy =(I1,0,...,0),

fs=1(0,0,..., Js).

All the other arguments can be realized in the same manner. This completes the
proof. [

Definition 3. The canonical structures (5), respectively (6), on a homogeneous
k-symmetric spac&/H corresponding to the casel € spect, respectively-1 ¢
spec#, are calleccanonical generatorsf the algebrad(6).

Now we dwell on particular cases of Theorem 4.

Corollary 3. For any homogeneoussymmetric space @H its algebra A(6)
is isomorphic tdC. Moreoveythe canonical almost complex structure

1
V3

(see Corollaryl) plays a role of the imaginary unit il (9).

J= 6 — 6%

Proof. Indeed, in this case spé&c= {¢, ¢}, wheree is a primitive third root of
unity. It follows from Theorem 4 (2) tha® = 1 andJ are canonical generators in
AG)=C. O
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We recall that reductive homogeneous sp@gedd with the corresponding re-
ductive decompositiog = h @ m is calledlocally symmetridf [m, m] C b (see
[14]).

Corollary 4. For any homogeneoussymmetric space @ there are the fol-
lowing two possibilities

1. If spectd = {i; —1;, —i}, thenA = R @ C. Besidesthe canonical structures
hi, hy, f (see Corollary2) are canonical generators isl(6).

2. If specd = {i, —i}, then A(®) = C. MoreoverG/H is a locally symmetric
homogeneous space. In particyldr= J = 0 is the integrable canonical almost
complex structure on ¢H.

Proof. (1) This statement directly follows from Theorem 4 (1).

(2) The subspacm, = Ker f is trivial in the case. Then, using [2], we obtain:
[m,m] C h. It immediately implies that the canonical structuire= J = 6 is
integrable. O

Remark 1. Itis clear that there are no fundamental obstructions to considering
homogeneou®-spaces of higher ordeks We also emphasize that the key point
for the algebraic structure od(0) is the spectrum speg but not an ordek. As
a result, Theorem 4 gives a possibility to classify all homogen&esyammetric
spaces with respect to the algeb4&). Obviously, this classification contains a
denumerable set of equivalent classes.

4. Examples

4.1. The spheress?, &°, S°

It is well known that any standard sphedis a Riemannian globally symmetric
space. That is why its algebra of canonical affinor structures is isomorplic to
However among all the spheres 018§, S°, and<° can be realized as Riemannian
homogeneous-spaces with automorphisnis that are not involutions (see [10,
12)).

The spheres® = SO(3)/SO(2) can be represented as a homogenebspace
of any orderk (k > 2). If k > 2, then any invariant affinor structure @&t is
canonical, i.e.,A4(6) = A (see [3]). It is evident now thal = A@®) = C. In
particular, the standard complex structure $nis determined by the canonical
almost complex structure.

The sphereS® represented as a homogeneous sgBidé3)/SU(2) admits the
structure of a homogeneous-space of order 4 (see [10,12]). The canoniéal
structure for this representation was calculated in ([3]). It has deficiency 1 and de-
fines an invariant almost contact structure®nFrom Corollary 4 (1) it evidently
follows that the algebrad(9) is isomorphic toR & C. We note that the fact was
obtained (in [11]) by the straightforward computation.

The spheres® = G,/SU(3) is the most significant example in the theory of
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nearly Kahler manifolds (see, for instance, [5]). Its nearlgiter structure is de-
fined by the canonical almost complex structure of the corresponding homogeneous
3-symmetric space. It follows that(9) = C for the spheres®.

4.2. The 6-dimensional generalized Heisenberg group

We briefly formulate some notions and results related to the 6-dimensional gen-
eralized Heisenberg groyN, g). As to details, we refer to ([7, 8, 15]).

Let V and Z be two real vector spaces of dimensiorandm (m > 1) both
equipped with an inner product which we shall denote for both spaces by the same
symbol(, ). Further, letj : Z — End(V) be a linear map such that

lj(@x| =Ix|lal, j@?*=-la’l, xeV,aeZ
Next we putn := V @ Z together with the bracket defined by
[a+x.b+yl =[xyl €Z, (Ixyl.a)=(j@xy)

wherea, b € Z andx, y € V. Itis a 2-step nilpotent Lie algebra with centér

The simply connected, connected Lie graMpvhose Lie algebra is is called
ageneralized Heisenberg grouote thatN has a left invariant metrig induced
by the following inner product on:

(a+x,b+y)=(ab)+{x,y), abeZ x,yeV.

The 6-dimensional generalized Heisenberg groNpg) is of especial interest
(see [8,15]). The brackets for the Lie algelara= L (X1, X2, X3, X4) @ L (a1, &) =
V @ Z were explicitly indicated, see [15], p. 111:

[x1, Xo] = @1, [X1, Xs] = @,
[X2, Xa] = —a@2,  [X3, Xa] = a4,
all the other brackets being zero.

It is known (see [15], p. 112) thaiN, g) is a Riemannian homogeneods
space of order 4. More exactly, the automorphibns determined by means of the
isometric automorphisma of the Lie algebra such thaip* = id. For convenience,
we considerp written in the form

% (X].’ X23 X37 X4’ ala az) - (_X45 _X37 X27 Xla _al’ _a2)

By our notations we havé = ¢. Directly calculating the canonicdl-structure
f =2 — 6% on(N, g), we obtain

f (Xl’ X25 X35 X49 al7 3-2) - (_X4’ _X39 X27 le Oa 0)

It follows f|yv = ¢|v, flz =0, hencem; =Imf =V, m, =Kerf = Z. It
means thaff has deficiency 2. By Corollary 4 (1), we obtaiA@) =R & C.

On the other hand N, g) is simultaneously a homogeneofisspace of order 3
(see [15], p. 111). Denote = ¢, whereg is the corresponding isometric automor-
phism ofn such thaiz3® = id. In the case we obviously obtairt(d) = C. It can
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easily be checked that the canonical almost complex strudteg1/+/3) (6 —62)
is defined by the mapping
J (Xls X29 X37 X4’ ala a-z) — (_X45 _X3’ X25 le a25 _al)
In particular, we havd |y = f|v.

Remark 2. The above example illustrates two distinbtspaces having the
same underlying structure of a homogeneous space. It follows that the same homo-
geneous space may correspond to various classes in the classification with respect
to the algebrad(9), see Remark 1.

4.3. The group of hyperbolic motions of the planeR?

Finally, we consider the well-known example of a 3-dimensional Riemannian
homogeneou$-space of order 4, see [10], p. 18.

Let
e’ 0 a
G= 0 € bllabceR
0O O

be the Lie group of hyperbolic motions of the plaké& This is a solvable Lie group
diffeomorphic toR3. The Riemannian metrig on G determined by the formula

ds® = e*da? + e ©db? + A%d®, A >0

is invariant with respect t& for any X indicated. The automorphisi of the Lie
groupG given by the formula

e® 0 a e 0 —b
d: 1 0 &€ b]— |0 e°¢ a
0O o 0O O 1

is an isometry of order 4 with the only fixed point. Heri& = R%(a, b, ¢), g) is a
Riemanniand-space of order 4.

Directly calculating in the case the canonidaktructuref = %(0 — 0%, we
obtain that the subspace, = Ker f is 1-dimensional. Applying again Corol-
lary 4(1), we get

A@B)=ReC.
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