
Differential Geometry and Its Applications 3
Proc. Conf., Opava (Czech Republic), August 27–31, 2001
Silesian University, Opava, 2001, 3–13
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Abstract. The commutative algebra of all canonical affinor structures on ho-
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tion of these spaces with respect to the algebra.
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1. Introduction

Invariant structures on homogeneous spaces reveal an important information
about the geometry of these spaces. In this sense homogeneous spaces defined
by Lie group automorphisms� (briefly, homogeneous�-spaces) possess invari-
ant structures of special interest. More exactly, any homogeneous regular�-space
admits in a natural way the commutative algebraA(θ) of all canonical affinor struc-
tures, see [3]. It is well known ([13]) that the class of regular�-spaces includes a
widespread class of homogeneous�-spaces of any finite orderk (homogeneousk-
symmetric spaces, [10]). Specifically, for any homogeneous symmetric space (the
casek = 2) the algebraA(θ) is isomorphic toR.

The main goal of the paper is to describe completely the algebraA(θ) for arbi-
trary homogeneousk-symmetric spaces. This description gives the opportunity to
classify homogeneousk-symmetric spaces with respect toA(θ).

The paper is organized as follows.
In Section 2, we collect some basic notions and results about homogeneous reg-

ular �-spaces and canonical affinor structures. In particular, the full algebraic de-
scription of all canonical structures of classical type (almost complex, almost prod-

1This paper is in final form and no version of it will be submitted for publication elsewhere.
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uct, f -structures, etc.) is formulated as well as a geometric idea of the structures is
presented.

In Section 3, the algebraic structure of the algebraA(θ) for any homogeneousk-
symmetric space is completely characterized. This structure is entirely determined
by the spectrum of the operatorθ . As an example, for all homogeneous 3-symmetric
spacesA(θ) is isomorphic toC, where the imaginary unit is just the classical canon-
ical almost complex structure (see [6,14,16]).

Finally, in Section 4, we consider several particular examples the algebraA(θ)

of which is C or R ⊕ C. They are the spheresS2, S5, S6 in their non-symmetric
representations, the 6-dimensional generalized Heisenberg group (two representa-
tions), the group of hyperbolic motions of the planeR

2.

2. Canonical structures on regular�-spaces

Here we briefly formulate some basic definitions and results related to regular
�-spaces and canonical affinor structures on them. More detailed information can
be found in [3,4,10,13,14,16].

Let G be a connected Lie group,� its (analytic) automorphism. Denote byG�

the subgroup of all fixed points of� andG�
o the identity component ofG�. Sup-

pose a closed subgroupH of G satisfies the condition

G�
o ⊂ H ⊂ G�.

ThenG/H is called ahomogeneous�-space.
Homogeneous�-spaces include homogeneous symmetric spaces(�2 = id)

and, more general,homogeneous�-spaces of order k(�k = id) or, in other termi-
nology,homogeneous k-symmetric spaces(see [10]). Note that there exist homoge-
neous�-spaces that are not reductive. That is why so-called regular�-spaces first
introduced by N.A. Stepanov ([13]) are of fundamental importance.

Let G/H be a homogeneous�-space,g andh the corresponding Lie algebras for
G andH , ϕ = d�e the automorphism ofg. Consider the linear operatorA = ϕ− id
and the Fitting decompositiong = g0⊕g1 with respect toA, whereg0 andg1 denote
0- and 1-component of the decomposition respectively. It is clear thath = Ker A
andh ⊂ g0.

Definition 1 ([3,4,13]). A homogeneous�-space G/H is called a regular�-
space if one of the following equivalent conditions is satisfied:

1. h = g0;
2. g = h ⊕ Ag;
3. The restriction of the operator A to Ag is non-singular;
4. A2X = 0 �⇒ AX = 0 for all X ∈ g;
5. The matrix of the automorphismϕ can be represented in the form(

E 0

0 B

)
,

where the matrix B does not admit the eigenvalue1.
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We recall two basic facts:

Theorem 1([13]).
– Any homogeneous�-space of order k(�k = id) is a regular�-space.
– Any regular�-space is reductive. More exactly, the Fitting decomposition

(1) g = h ⊕ m, m = Ag

is a reductive one.

Decomposition (1) is thecanonical reductive decompositioncorresponding to a
regular�-spaceG/H , andm is thecanonical reductive complement.

Decomposition (1) is obviouslyϕ-invariant. Denote byθ the restriction ofϕ to
m. As usual, we identifym with the tangent spaceTo(G/H) at the pointo = H . It
is important to note that the operatorθ commutes with every element of the linear
isotropy group Ad(H) (see [13]).

An affinor structureon a manifold is known to be a tensor field of type(1,1).
SupposeF is an invariant affinor structure on a homogeneous manifoldG/H . Then
F is completely determined by its valueFo at the pointo, whereFo is invariant
with respect to Ad(H). For simplicity, we will denote by the same manner both
any invariant structure onG/H and its value ato throughout the rest of the paper.

Definition 2 ([3]). An invariant affinor structure F on a regular�-space G/H
is calledcanonicalif its value at the point o= H is a polynomial inθ .

Denote byA(θ) the set of all canonical affinor structures on a regular�-space
G/H . It is easy to see thatA(θ) is a commutative subalgebra of the algebraA of
all invariant affinor structures onG/H . Moreover,

dim A(θ) = degν ≤ dim G/H,

whereν is the minimal polynomial of the operatorθ . Note that the algebraA(θ)

for any symmetric�-space(�2 = id) consists of scalar structures only, i.e., it is
isomorphic toR.

It should be mentioned that all canonical structures are invariant with respect to
the “symmetries” ofG/H , which are generated by the automorphism� (see [13]).

The most remarkable example of canonical structures is the canonical almost
complex structureJ = (1/

√
3)(θ − θ2) on a homogeneous 3-symmetric space

(see [6,14,16]). It turns out that it is not an exception. In other words, the algebra
A(θ) contains many affinor structures of classical type.

In the sequel we will concentrate on the following affinor structures of classi-
cal type:almost complex structures J(J2 = −1); almost product structures P
(P2 = 1); f -structures( f 3 + f = 0), see [17]; f -structures of hyperbolic type or,
briefly, h-structures(h3 − h = 0), see [9]. Clearly,f -structures andh-structures
are generalizations of structuresJ andP respectively.

All the canonical structures of classical type on regular�-spaces have already
been completely described, see [1,3]. In particular, for homogeneousk-symmetric
spaces, precise computational formulae were indicated. For future reference we
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select here some results.
Denote bys̃s (respectively,s) the number of all irreducible factors (respectively,

all irreducible quadratic factors) overR of a minimal polynomialν.

Theorem 2([1,3]). Let G/H be a regular�-space.
1. The algebraA(θ) contains precisely2s̃s structures P.
2. G/H admits a canonical structure J if and only if s= s̃s . In this caseA(θ)

contains2s different structures J .
3. G/H admits a canonical f -structure if and only if s
= 0. In this caseA(θ)

contains3s − 1 different f -structures. Suppose s= s̃s . Then2s f -structures are
almost complex and the remaining3s − 2s − 1 have non-trivial kernels.

4. The algebraA(θ) contains3s̃s different h-structures. All these structures form
a (commutative) semigroup inA(θ) and include a subgroup of order2s̃s of canonical
structures P.

Further, letG/H be a homogeneousk-symmetric space. Theñss = s+1 if −1 ∈
specθ , ands̃s = s in the opposite case. We indicate explicit formulae enabling us to
compute all canonicalf -structures andh-structures. We shall also use the notation

u =
{

n if k = 2n + 1,

n − 1 if k = 2n.

Theorem 3([1,3]). Let G/H be a homogeneous�-space of order k.
1. All non-trivial canonical f -structures on G/H can be given by the operators

f = 2

k

u∑
m=1

( u∑
j =1

ζ j sin

(
2πmj

k

))
(θm − θk−m),

whereζ j ∈ {−1; 0; 1}, j = 1, 2, . . . , u, and not all coefficientsζ j are zero. More-
over, the polynomials f define canonical structures J if and only if allζ j ∈ {−1; 1}.

2. All canonical h-structures on G/H can be given by the polynomials

h =
k−1∑
m=0

amθm,

where:
(a) if k = 2n + 1, then

am = ak−m = 2

k

u∑
j =1

ξ j cos

(
2πmj

k

)
;

(b) if k = 2n, then

am = ak−m = 1

k

(
2

u∑
j =1

ξ j cos

(
2πmj

k

)
+ (−1)mξn

)
.

Here the numbersξ j , j = 1, 2, . . . , u, take their values from the set{−1; 0; 1} and
the polynomials h define canonical structures P if and only if allξ j ∈ {−1; 1}.
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We now particularize the results for homogeneous�-spaces of orders 3 and 4
only.

Corollary 1 ([1,3]). Let G/H be a homogeneous�-space of order3. There are
(up to the sign) only the following canonical structures of classical type on G/H :

J = 1√
3

(θ − θ2), P = 1.

We note that the existence of the structureJ and its properties are well known
(see [6,14,16]).

Corollary 2 ([1,3]). On a homogeneous�-space of order4 there are(up to the
sign) the following canonical classical structures:

P = θ2, f = 1
2
(θ − θ3), h1 = 1

2
(1 − θ2), h2 = 1

2
(1 + θ2).

The operators h1 and h2 form a pair of complementary projectors: h1 + h2 = 1,
h2

1 = h1, h2
2 = h2. Moreover, the following conditions are equivalent:

1. −1 /∈ specθ ;
2. the structure P is trivial(P = −1);
3. the f -structure is an almost complex structure;
4. the structure h1 is trivial (h1 = 1);
5. the structures h2 is null.

It is important to note that the procedure of describing all canonical structures
on homogeneous�-spaces of finite order is constructive (see [3], § 4 and § 5). We
briefly present it for future reference.

Suppose the spectrum specθ containss pairs of conjugatek-th roots of unity
(apart from−1, which can also be an eigenvalue). Consider the correspondingθ -
invariant decomposition of the canonical reductive supplementm from formula (1):

(2) m = m0 ⊕ m1 ⊕ · · · ⊕ ms,

wherem0 is the subspace for the eigenvalue−1 (if −1 ∈ specθ ) andm1, . . . , ms

the subspaces fors pairs of roots. Then any canonicalf -structure can be repre-
sented in the form

(3) f = (0, ζ1J1, . . . , ζsJs),

whereJ1, . . . , Js are the specially defined complex structures onm1, . . . , ms re-
spectively,ζ j ∈ {−1; 0; 1}, j = 1, 2, . . . , s. As to any canonicalh-structure, it can
be represented in the form

(4) h = (ξ0I0, ξ1I1, . . . , ξsIs),

where I0, I1, . . . , Is are the identical operators onm0, m1, . . . , ms respectively,
ξ j ∈ {−1, 0, 1}, j = 0, 1, 2, . . . , s.

It should be noted that in particular case of homogeneous�-spaces of any odd
orderk = 2n + 1 the method of constructing invariant almost complex structures
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was described in [10]. It is easy to see that all these structures are canonical in the
above sense.

3. The algebraic structure ofA(θ) for homogeneousk-symmetric spaces

Here we explicitly characterize the construction of the algebraA(θ) for arbitrary
homogeneousk-symmetric spaces.

Theorem 4. Let G/H be a homogeneous�-space of order k, s the number of
pairs of conjugate k-th roots of unity, which are included into the spectrumspecθ .

1. If −1 ∈ specθ , then the algebraA(θ) is isomorphic to

R ⊕ C ⊕ · · · ⊕ C︸ ︷︷ ︸
s

.

2. If −1 /∈ specθ , then

A(θ) ∼= C ⊕ · · · ⊕ C︸ ︷︷ ︸
s

.

Proof. By the procedure of describing canonicalf -structures andh-structures
we construct the isomorphism required (see Section 2).

1) Suppose−1 ∈ specθ . Consider the corresponding decomposition of the
canonical reductive supplementm:

m = m0 ⊕ m1 ⊕ . . . ⊕ ms.

Using (3) and (4), we define the canonicalh-structures andf -structures onG/H
by setting

(5)

h0 = (I0, 0, . . . , 0),

h1 = (0, I1, . . . , 0),

· · · · · · · · · · · · · · · · · ·
hs = (0, 0, . . . , Is),

f1 = (0, J1, . . . , 0),

· · · · · · · · · · · · · · · · · ·
fs = (0, 0, . . . , Js),

whereI0, I1, . . ., Is are the identical operators on the subspacesm0, m1, . . ., ms re-
spectively andJ1, . . ., Js are special complex structures onm1, . . ., ms respectively.
By Theorem 3, there exist real polynomialsh0(x), h1(x), . . ., hs(x) and f1(x), . . .,
fs(x) such that

hi (θ) = hi , i = 0, 1, . . . , s,

f j (θ) = f j , j = 1, . . . , s.

It is evident that operators{hi , f j } in (5) are linearly independent. Since in the
case dimA(θ) = degν = 2s + 1, we obtain that the collectionh0, h1, . . . , hs,
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f1, . . . , fs is exactly a basis inA(θ). It means that for anyF ∈ A(θ) we have

F = a0h0 +
s∑

m=1

(amhm + bm fm),

wherea0, am, bm ∈ R, m = 1, . . . , s.
Now we define the following mapping:

A(θ) −→ R ⊕ C ⊕ · · · ⊕ C︸ ︷︷ ︸
s

,

F = (a0I0, a1I1 + b1J1, . . . , asIs + bsJs)

→ (a0, a1 + b1i, . . . , as + bsi ).

It is not difficult to verify that the correspondence is an isomorphism of the
commutative algebras under consideration. This proves the required result.

2) Suppose−1 /∈ specθ . Then we obtain the decomposition

m = m1 ⊕ · · · ⊕ ms,

i.e.,m0 = {0}. In the case dimA(θ) = degν = 2s. Here we put

(6)

h1 = (I1, 0, . . . , 0),

· · · · · · · · · · · · · · · · · ·
hs = (0, 0, . . . , Is),

f1 = (J1, 0, . . . , 0),

· · · · · · · · · · · · · · · · · ·
fs = (0, 0, . . . , Js).

All the other arguments can be realized in the same manner. This completes the
proof. �

Definition 3. The canonical structures (5), respectively (6), on a homogeneous
k-symmetric spaceG/H corresponding to the case−1 ∈ specθ , respectively−1 /∈
specθ , are calledcanonical generatorsof the algebraA(θ).

Now we dwell on particular cases of Theorem 4.

Corollary 3. For any homogeneous3-symmetric space G/H its algebraA(θ)

is isomorphic toC. Moreover, the canonical almost complex structure

J = 1√
3

(θ − θ2)

(see Corollary1) plays a role of the imaginary unit inA(θ).

Proof. Indeed, in this case specθ = {ε, ε}, whereε is a primitive third root of
unity. It follows from Theorem 4 (2) thatP = 1 andJ are canonical generators in
A(θ) ∼= C. �
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We recall that reductive homogeneous spaceG/H with the corresponding re-
ductive decompositiong = h ⊕ m is calledlocally symmetricif [m, m] ⊂ h (see
[14]).

Corollary 4. For any homogeneous4-symmetric space G/H there are the fol-
lowing two possibilities:

1. If specθ = {i ; −1; −i }, thenA ∼= R ⊕ C. Besides, the canonical structures
h1, h2, f (see Corollary2) are canonical generators inA(θ).

2. If specθ = {i, −i }, thenA(θ) ∼= C. Moreover, G/H is a locally symmetric
homogeneous space. In particular, f = J = θ is the integrable canonical almost
complex structure on G/H.

Proof. (1) This statement directly follows from Theorem 4 (1).
(2) The subspacem0 = Ker f is trivial in the case. Then, using [2], we obtain:

[m, m] ⊂ h. It immediately implies that the canonical structuref = J = θ is
integrable. �

Remark 1. It is clear that there are no fundamental obstructions to considering
homogeneous�-spaces of higher ordersk. We also emphasize that the key point
for the algebraic structure ofA(θ) is the spectrum specθ but not an orderk. As
a result, Theorem 4 gives a possibility to classify all homogeneousk-symmetric
spaces with respect to the algebraA(θ). Obviously, this classification contains a
denumerable set of equivalent classes.

4. Examples

4.1. The spheresS2, S5, S6

It is well known that any standard sphereSn is a Riemannian globally symmetric
space. That is why its algebra of canonical affinor structures is isomorphic toR.
However among all the spheres onlyS2, S5, andS6 can be realized as Riemannian
homogeneous�-spaces with automorphisms� that are not involutions (see [10,
12]).

The sphereS2 ∼= SO(3)/SO(2) can be represented as a homogeneous�-space
of any orderk (k ≥ 2). If k > 2, then any invariant affinor structure onS2 is
canonical, i.e.,A(θ) = A (see [3]). It is evident now thatA = A(θ) ∼= C. In
particular, the standard complex structure onS2 is determined by the canonical
almost complex structure.

The sphereS5 represented as a homogeneous spaceSU(3)/SU(2) admits the
structure of a homogeneous�-space of order 4 (see [10,12]). The canonicalf -
structure for this representation was calculated in ([3]). It has deficiency 1 and de-
fines an invariant almost contact structure onS5. From Corollary 4 (1) it evidently
follows that the algebraA(θ) is isomorphic toR ⊕ C. We note that the fact was
obtained (in [11]) by the straightforward computation.

The sphereS6 ∼= G2/SU(3) is the most significant example in the theory of
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nearly K̈ahler manifolds (see, for instance, [5]). Its nearly Kähler structure is de-
fined by the canonical almost complex structure of the corresponding homogeneous
3-symmetric space. It follows thatA(θ) ∼= C for the sphereS6.

4.2. The 6-dimensional generalized Heisenberg group

We briefly formulate some notions and results related to the 6-dimensional gen-
eralized Heisenberg group(N, g). As to details, we refer to ([7,8,15]).

Let V and Z be two real vector spaces of dimensionn andm (m ≥ 1) both
equipped with an inner product which we shall denote for both spaces by the same
symbol〈 , 〉. Further, letj : Z −→ End(V) be a linear map such that

| j (a)x| = |x||a|, j (a)2 = −|a|2I , x ∈ V, a ∈ Z.

Next we putn := V ⊕ Z together with the bracket defined by

[a + x, b + y] = [x, y] ∈ Z,
〈
[x, y], a

〉 = 〈
j (a)x, y

〉
,

wherea, b ∈ Z andx, y ∈ V . It is a 2-step nilpotent Lie algebra with centerZ.
The simply connected, connected Lie groupN whose Lie algebra isn is called

a generalized Heisenberg group. Note thatN has a left invariant metricg induced
by the following inner product onn:

〈a + x, b + y〉 = 〈a, b〉 + 〈x, y〉, a, b ∈ Z, x, y ∈ V.

The 6-dimensional generalized Heisenberg group(N, g) is of especial interest
(see [8,15]). The brackets for the Lie algebran = L(x1, x2, x3, x4) ⊕ L(a1, a2) =
V ⊕ Z were explicitly indicated, see [15], p. 111:


[x1, x2] = a1, [x1, x3] = a2,

[x2, x4] = −a2, [x3, x4] = a1,

all the other brackets being zero.

It is known (see [15], p. 112) that(N, g) is a Riemannian homogeneous�-
space of order 4. More exactly, the automorphism� is determined by means of the
isometric automorphismϕ of the Lie algebran such thatϕ4 = id. For convenience,
we considerϕ written in the form

ϕ : (x1, x2, x3, x4, a1, a2) −→ (−x4, −x3, x2, x1, −a1, −a2).

By our notations we haveθ = ϕ. Directly calculating the canonicalf -structure
f = 1

2(θ − θ3) on (N, g), we obtain

f : (x1, x2, x3, x4, a1, a2) −→ (−x4, −x3, x2, x1, 0, 0).

It follows f |V = ϕ|V , f |Z = 0, hencem1 = Im f = V, m2 = Ker f = Z. It
means thatf has deficiency 2. By Corollary 4 (1), we obtain:A(θ) ∼= R ⊕ C.

On the other hand,(N, g) is simultaneously a homogeneous�̃�-space of order 3
(see [15], p. 111). Denotẽθθ = ϕ̃ϕ , whereϕ̃ϕ is the corresponding isometric automor-
phism ofn such thatϕ̃ϕ 3 = id. In the case we obviously obtain:A(θ̃θ ) ∼= C. It can
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easily be checked that the canonical almost complex structureJ = (1/
√

3)(θ̃θ −θ̃θ 2)

is defined by the mapping

J : (x1, x2, x3, x4, a1, a2) −→ (−x4, −x3, x2, x1, a2, −a1).

In particular, we haveJ|V = f |V .

Remark 2. The above example illustrates two distinct�-spaces having the
same underlying structure of a homogeneous space. It follows that the same homo-
geneous space may correspond to various classes in the classification with respect
to the algebraA(θ), see Remark 1.

4.3. The group of hyperbolic motions of the planeR2

Finally, we consider the well-known example of a 3-dimensional Riemannian
homogeneous�-space of order 4, see [10], p. 18.

Let

G =




e−c 0 a

0 ec b

0 0 1




∣∣∣∣∣∣a, b, c ∈ R




be the Lie group of hyperbolic motions of the planeR
2. This is a solvable Lie group

diffeomorphic toR
3. The Riemannian metricg on G determined by the formula

ds2 = e2c da2 + e−2c db2 + λ2 dc2, λ > 0

is invariant with respect toG for anyλ indicated. The automorphism� of the Lie
groupG given by the formula

� :


e−c 0 a

0 ec b

0 0 1


 −→


ec 0 −b

0 e−c a

0 0 1




is an isometry of order 4 with the only fixed point. Hence(G = R
3(a, b, c), g) is a

Riemannian�-space of order 4.
Directly calculating in the case the canonicalf -structure f = 1

2(θ − θ3), we
obtain that the subspacem0 = Ker f is 1-dimensional. Applying again Corol-
lary 4(1), we get

A(θ) ∼= R ⊕ C.

Acknowledgments

The author would like to thank Vicente Cortes for the stimulating discussion that
initiated the paper.



The algebra of canonical structures 13

References

[1] V.V. Balashchenko, Canonicalf -structures of hyperbolic type on regular�-spaces,
Russian Math. Surveys.53 (1998) (4) 861–863.

[2] V.V. Balashchenko and O.V. Dashevich, Geometry of canonical structures on ho-
mogeneous�-spaces of order 4,Russian Math. Surveys49 (1994) (4) 149–150.

[3] V.V. Balashchenko and N.A. Stepanov, Canonical affinor structures of classical type
on regular�-spaces,Sbornik: Mathematics186 (1995) (11) 1551–1580.

[4] A.S. Fedenko,Spaces with Symmetries(Belarusian State University, Minsk, 1977)
(in Russian).

[5] A. Gray, Nearly K̈ahler manifolds,J. Diff. Geom.4 (1970) (3) 283–309.
[6] A. Gray, Riemannian manifolds with geodesic symmetries of order 3,J. Diff. Geom.

7 (1972) (3–4) 343–369.
[7] A. Kaplan, Riemannian nilmanifolds attached to Clifford modules,Geom. Dedicata

11 (1981) 127–136.
[8] A. Kaplan, On the geometry of groups of Heisenberg type,Bull. London Math. Soc.

15 (1983) 35–42.
[9] V.F. Kirichenko, Methods of generalized Hermitian geometry in the theory of al-

most contact manifolds,Itogi Nauki i Tekhniki: Probl. Geom.18 (VINITI, Moscow,
1986) 25–71 (in Russian); English translationJ. Soviet Math.42 (1988) (5).

[10] O. Kowalski,Generalized Symmetric Spaces, Lecture Notes in Mathematics 805
(Berlin, Springer, 1980).

[11] L.V. Lipagina, On the structure of the algebra of invariant affinor structures on the
sphereS5, Izv. Vyssh. Uchebn. Zaved. Mat.1997 (9), 17–20 (in Russian); English
translationRussian Math.(Iz. VUZ) 41 (1997) (9) 15–18.

[12] C.U. Sanchez, Regulars-structure on spheres,Indiana Univ. Math. J.37 (1988) (1)
165–180.

[13] N.A. Stepanov, Basic facts of the theory ofϕ-spaces,Izv. Vyssh. Uchebn. Zaved.
Mat. 1967 (3) 88–95 (in Russian); English translationSoviet Math.(Iz. VUZ) 11
(1967) (3).

[14] N.A. Stepanov, Homogeneous 3-cyclic spaces,Izv. Vyssh. Uchebn. Zaved. Mat.1967
(12) 65–74 (in Russian); English translationSoviet Math.(Iz. VUZ) 11 (1967) (12).

[15] F. Tricerri and L. Vanhecke,Homogeneous Structures on Riemannian Manifolds,
London Math. Soc. Lecture Notes Ser. 83 (London, 1983).

[16] J.A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms,
J. Diff. Geom.2 (1968) (1–2) 77–159.

[17] K. Yano, On a structure defined by a tensor fieldf of type(1,1) satisfying f 3+ f =
0, Tensor14 (1963) 99–109.

Vitaly V. Balashchenko
Faculty of Mathematics and Mechanics
Belarusian State University
F.Scorina av. 4
Minsk 220080
Belarus
E-mail: balashchenko@bsu.by


