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A multiserver queueing system, the dynamics of which depends on the state of some external continuous-time Markov chain
(random environment, RE), is considered. Change of the state of the RE may cause variation of the parameters of the arrival
process, the service process, the number of available servers, and the available buffer capacity, as well as the behavior of customers.
Evolution of the system states is described by the multidimensional continuous-time Markov chain. The generator of this Markov
chain is derived.The ergodicity condition is presented. Expressions for the key performance measures are given. Numerical results
illustrating the behavior of the system and showing possibility of formulation and solution of optimization problems are provided.
The importance of the account of correlation in the arrival processes is numerically illustrated.

1. Introduction

Queueing theory is widely used for decision making about
the resources needed to provide service in a variety of real life
systems including contact centers, intelligent transportation
systems, telecommunication networks, manufacturing and
administrative systems, and banking. Due to the increas-
ing technical and logical complexity of real life systems
and diversity of the provided services, queueing models of
these systems and their fragments become more and more
involved. One of the essential features of modern systems,
which should be accounted in queueing models, is that the
parameters of the system operation may vary, for example,
depending on time of a day or night, available amount of
required resources, and possible sharing with some other
systems. This fact gave rise to the progress in the study of the
so-called queues operating in the random environment (RE).

In contrast to the classical queueing models, where
the parameters and the distributions characterizing arrival,
service, and other processes describing dynamics of the
system are assumed to be fixed in advance, queues oper-
ating in the RE presuppose that some or all parameters

may dynamically vary due to influence of some external
medium called RE. Early research in this topic was done by
Gnedenko and Kovalenko [1], Yechiali and Naor [2], Yadin
and Syski [3], O’Cinneide and Purdue [4], Purdue [5], Neuts
[6, 7], and others. A brief history of the development of
theory of queues in the RE, the reference list, and real life
examples of queues in the RE can be found, for example,
in the papers [8–12]. In [8], an unreliable 𝑀/𝑀/1 retrial
queue in a Markovian random environment is analyzed via
matrix-analytic methods. Ergodicity condition is proved and
approximate distribution of the number of customers in
the system is computed. Optimization problem of choosing
the arrival and service rates for each environment state is
considered. In [9, 10], the finite source MAP/PH/𝑁 retrial
queue operating in a random environment is studied. The
arrival flow is described by theMarkov arrival process (MAP)
(for definition, more details, and usefulness in modelling
in telecommunications, see [13–15]), and the service time
has a phase-type (PH) distribution (for definition and more
details, see [7]). It is assumed that the parameters defining
the MAP process and PH distribution depend on the state
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of the RE that is a continuous-time Markov chain with a
finite state space. In [9], it is assumed that there is additional
MAP arrival process of negative customers. The arrival
of the negative customer with equal probability goes to
any busy server to remove the customer being in service.
In [9, 10], the finite state multidimensional Markov chain
describing the behavior of the systems is investigated. The
algorithms for calculating the stationary state probabilities
are elaborated.Main performancemeasures are obtained and
the illustrative numerical examples are presented. In [11], the
BMAP/PH/𝑁/𝑁 queue operating in the RE is investigated.
The arrival flow is described by the batch Markov arrival
process (BMAP). The system does not have a buffer. An
arriving customer who did not succeed to find a free server
upon arrival is lost. Due to possibility of batch arrivals,
disciplines of partial admission, complete admission, and
complete rejection are analyzed. The stationary distribution
of the system states and thewaiting timedistribution are com-
puted. Numerical illustrations are presented. In particular, it
is demonstrated that reasonable engineering approximations
of performance measures of the system may be very poor. In
[12], the BMAP/PH/𝑁 retrial queue operating in the RE is
investigated. As in the previously describedmodel, the system
does not have a buffer. But the customer who did not succeed
to find a free server upon arrival is not lost, but he proceeds
to the retrial orbit, which is a location from which customers
may attempt to gain or regain service. The intensities of
repeating the attempts are also assumed to be dependent
on the state of the RE. In [12], the sufficient condition of
stability of the system is proved, the stationary distribution
of the system states is computed. The presented numerical
examples illustrate a poor quality of the approximation of the
main performance measures of the system by means of the
simpler queueing models. An effect of possible smoothing
the traffic and an impact of the retrial intensity are shown.
Analysis presented in [12] is more complicated than the
analyses in [9, 10] due to two evident reasons: (i) the state
space of the multidimensional Markov chain describing the
behavior of the system is finite in [9, 10] and is infinite in
[12]; (ii) the generator of the multidimensional Markov chain
has tridiagonal structure in [9, 10] (i.e., the chain is level
dependent quasi-birth-and-death process) while it has more
general upper-Hessenbergian structure in [12].

The main advantages of the model considered in this
paper, compared to the ones analyzed in [11, 12] and to all the
other papers devoted to multiserver queues operating in the
RE, are as follows.

(i) The model under study has more flexible service
discipline that combines the features of loss sys-
tems, systems with a finite buffer and systems with
retrials. The queueing systems that incorporate both
normal queues and retrial orbits are called hybrid
retrial queues. The importance of their investigation
stems from the fact that many modern technologies
of customers random access assume the existence
of some places where the customers, who did not

succeed to get access upon arrival,may be temporarily
kept (in registers for handover customers in cells of
mobile communication networks, in IVR (Interactive
Voice Response) machines in call centers, etc.). Such
hybrid systems were considered, for example, in [16,
17]. Queueing systems in RE with customers loss
considered in [11] and with retrials considered in [12]
are obtained as special cases of the hybrid retrial
queue in RE considered in this paper.

(ii) We suppose that the capacity of the service area of
the system (the number of servers and places in the
buffer) may depend on the state of the RE, while it
is usually assumed that the capacity is constant and
the RE influences only the parameters of the arrival
and service processes. Note that the changes in service
capacity may be considered as server breakdowns,
among other possibilities.

(iii) Customers balking, impatience (abandonment), and
nonpersistence are taken into account. This allows us
to account psychology of customers, use of visible
queue option, information obsolescence during the
waiting time, customer’s mobility, service provider’s
competition, and so forth.

Due to the generality of the considered queueing model,
it has a lot of possible applications for the investigation of a
variety of real life systems. Besides the examples of applica-
tion to the performance evaluation, capacity planning, and
optimization of some systems, which coincide with the ones
described in [12] (application tomodelling hot spot in airport
and wireless local area network), it is worth to mention
important potential applications for work force management
in call-centers. Fluctuation of the intensities of customer
arrivals and retrials occurs here, for example, due to the well
known existence of hours of low, middle, and peak load of
the center.The servers correspond to the operators of the call-
center and places in the buffer correspond to IVR machines.
Impatience of customers staying in the buffer reflects the
possibility to get the requested information directly from
IVR without contacting to an operator. It is necessary to
create the schedule of the work of the operators and IVRs to
dynamically fit the number of the active operators and IVRs
to the current level of the load of the call-center in such a
way as to guarantee the best quality of the customer’s service
under the existing restrictions imposed on the total number
of available operators and their working schedule and on
energy consumption by IVRs.

The rest of the paper is organized as follows. In Section 2,
the mathematical model is described. The process of the
system states is defined; its generator in a blockmatrix form is
presented. In Section 3, the stability condition is derived and
the problem of computation of the stationary probabilities of
the system states is touched on. Formulas for computation
of the steady state performance measures of the system are
presented in Section 4. Numerical illustrations are given and
briefly discussed in Section 5. Section 6 concludes the paper.
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Figure 1: Queueing system under study.

2. Mathematical Model

We consider a retrial multiserver queueing system with
varying capacity and behavior of the customers.The structure
of the system under study is presented in Figure 1.

The dynamics of the system depends on the state of the
RE. The RE is defined by the stochastic process 𝑟

𝑡
, 𝑡 ≥ 0,

which is an irreducible continuous-time Markov chain with
the state space {1, 2, . . . , 𝑅} and the infinitesimal generator𝐻.

Under the fixed state 𝑟 of the RE, capacity of the system
is equal to 𝐾

(𝑟) including 𝑁

(𝑟) servers, 0 ≤ 𝑁

(𝑟)
≤ 𝐾

(𝑟), and
a waiting room (buffer) of size 𝐾

(𝑟)
− 𝑁

(𝑟), 𝑟 ∈ {1, . . . , 𝑅}.
Without the loss of generality, we assume that the states of
the RE are enumerated in ascending order of the capacity of
the system; that is, 0 ≤ 𝐾

(1)
≤ 𝐾

(2)
≤ ⋅ ⋅ ⋅ ≤ 𝐾

(𝑅)
. We also

suggest that 0 ≤ 𝑁

(1)
≤ 𝑁

(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑁

(𝑅)
.We call the servers

and the buffer as the service area of the system.
Arrival of customers is defined by the Markovian arrival

process (MAP). The underlying process of this MAP is
{𝑟

𝑡
, ]
𝑡
}, 𝑡 ≥ 0, where 𝑟

𝑡
is the state of the RE and the process

]
𝑡
has a finite state space {0, 1, . . . ,𝑊}. Under the fixed state 𝑟

of the RE the process ]
𝑡
behaves as irreducible continuous-

time Markov chain. The sojourn time of this chain in the
state ] is exponentially distributed with the positive finite
parameter 𝜆(𝑟)] .When the sojourn time in the state ] expires,
with probability 𝑝(𝑟)0 (], ]󸀠), the process ]

𝑡
jumps to the state ]󸀠

without generation of a customer, ], ]󸀠 ∈ {0, . . . ,𝑊}, ] ̸= ]󸀠,
𝑟 ∈ {1, . . . , 𝑅}. With probability 𝑝

(𝑟)

1 (], ]󸀠), the process ]
𝑡

jumps to the state ]󸀠 with generation of a customer, ], ]󸀠 ∈
{0, . . . ,𝑊}, 𝑟 ∈ {1, . . . , 𝑅}.

The behavior of the arrival process under the fixed state
𝑟 of the RE is completely characterized by the matrices 𝐷(𝑟)0
and𝐷

(𝑟)

1 defined by the entries

(𝐷

(𝑟)

0 )

],]
= −𝜆

(𝑟)

] , ] ∈ {0, . . . ,𝑊} ,

(𝐷

(𝑟)

0 )

],]󸀠
= 𝜆

(𝑟)

] 𝑝

(𝑟)

0 (], ]󸀠) ,

], ]󸀠 ∈ {0, . . . ,𝑊} , ] ̸= ]󸀠,

(𝐷

(𝑟)

1 )

],]󸀠
= 𝜆

(𝑟)

] 𝑝

(𝑟)

1 (], ]󸀠) ,

], ]󸀠 ∈ {0, . . . ,𝑊} , 𝑟 ∈ {1, . . . , 𝑅} .

(1)

The squarematrix𝐷(𝑟)(1) = 𝐷

(𝑟)

0 +𝐷

(𝑟)

1 of dimension𝑊 =

𝑊+ 1 represents the generator of the process ]
𝑡
, 𝑡 ≥ 0, under

the fixed state 𝑟, 𝑟 ∈ {1, . . . , 𝑅}.
The average arrival rate 𝜆(𝑟) under the fixed state 𝑟 of the

RE is given as

𝜆

(𝑟)
= 𝜃
(𝑟)
𝐷

(𝑟)

1 e, (2)

where 𝜃(𝑟) is the invariant vector of the stationary distribution
of the Markov chain ]

𝑡
, 𝑡 ≥ 0, under the fixed state 𝑟. The

vector 𝜃(𝑟) is the unique solution to the system

𝜃
(𝑟)
𝐷

(𝑟)
(1) = 0,

𝜃
(𝑟)e = 1.

(3)

The squared coefficient of variation 𝑐

(𝑟)

var of intervals
between successive arrivals under the fixed state 𝑟 of the RE
is given as

𝑐

(𝑟)

var = 2𝜆(𝑟)𝜃(𝑟) (−𝐷(𝑟)0 )

−1
e− 1, 𝑟 ∈ {1, . . . , 𝑅} . (4)

The coefficient of correlation 𝑐

(𝑟)

cor of two successive inter-
vals between arrivals under the fixed state 𝑟 of the RE is given
as

𝑐

(𝑟)

cor

=

(𝜆

(𝑟)
𝜃
(𝑟)

(−𝐷

(𝑟)

0 )

−1
(𝐷

(𝑟)
(1) − 𝐷

(𝑟)

0 ) (−𝐷

(𝑟)

0 )

−1
e − 1)

𝑐

(𝑟)

var
,

𝑟 ∈ {1, . . . , 𝑅} .

(5)

Let us introduce the following matrices:

̃

𝐷1 = diag {𝐷(𝑟)1 , 𝑟 ∈ {1, . . . , 𝑅}} ,

̃

𝐷0 = 𝐻⊗ 𝐼

𝑊
+ diag {𝐷(𝑟)0 , 𝑟 ∈ {1, . . . , 𝑅}} ,

̃

𝐷 (1) = ̃

𝐷0 + ̃

𝐷1.

(6)

The averaged (over all the states of the RE) intensity 𝜆 of
input flow of customers is defined as

𝜆 = 𝜃̃𝐷1e, (7)

where the vector 𝜃 is the unique solution of the system

𝜃̃𝐷 (1) = 0,

𝜃e = 1.
(8)

The squared coefficient of variation 𝑐var of intervals between
successive arrivals is given as

𝑐var = 2𝜆𝜃 (−̃

𝐷0)
−1
e− 1. (9)

The coefficient of correlation 𝑐cor of two successive intervals
between arrivals is given as

𝑐cor =
(𝜆𝜃 (−̃

𝐷0)
−1

̃

𝐷1 (−̃

𝐷0)
−1
e − 1)

𝑐var
.

(10)
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We assume that, during the epochs of the transitions of
process 𝑟

𝑡
, 𝑡 ≥ 0, the states of the process ]

𝑡
, 𝑡 ≥ 0, do not

change, and only the intensities of transitions of this process
change.

If, at an arbitrary arrival moment, some server is free, an
arriving customer starts the service. If all servers are busy, but
the buffer is not full, the customer is placed to the buffer. If the
buffer is full and the state of the RE is 𝑟, the customer balks
(leaves the system permanently) with probability 1 − 𝑝

(𝑟)

1 or,
with the complementary probability, moves to orbit and tries
again later on.

If the RE transits from the state 𝑟 to the state 𝑟

󸀠, where
𝑟

󸀠
< 𝑟, the capacity of the system (the number of available

servers and/or places in the buffer) decreases. If the current
number of customers in service and/or in the buffer exceeds
the available number of servers and/or places in the buffer
under the state 𝑟

󸀠 of the RE, the redundant customers leave
the service area. The customers leaving the service area go,
independently of each other, into orbit with probability 𝑝

(𝑟)

2
or leave the system permanently with the complementary
probability.

When the state of the RE is 𝑟, 𝑟 ∈ {1, . . . , 𝑅}, each
customer staying in orbit repeats the attempts to reach the
service area after an exponentially distributed time described
by the parameter 𝛼(𝑟), 𝛼(𝑟) ≥ 0. Customers retry independent
of each other and are not absolutely persistent. If the attempt
is successful, the customer leaves orbit and moves to service
or to the buffer. Otherwise, the customer returns to orbit
with probability 𝑝

(𝑟)

3 . With the complementary probability,
the customer leaves the system permanently.

Customers in orbit are impatient. When the state of the
RE is 𝑟, 𝑟 ∈ {1, . . . , 𝑅}, each customer may leave the orbit and
the system after an exponentially distributed time described
by the parameter 𝛾(𝑟), 𝛾(𝑟) > 0. If the customers staying in the
orbit are patient, we put 𝛾(𝑟) = 0.

We assume that the probability of the service completion
of a customer during the time interval (𝑡, 𝑡 + Δ𝑡) is equal to
𝜇

(𝑟)
Δ𝑡 + 𝑜(𝑡) when the state of the RE is 𝑟, 𝑟 ∈ {1, . . . , 𝑅}.
If the RE transits from the state 𝑟 to the state 𝑟

󸀠, where
𝑟

󸀠
> 𝑟, the capacity of the system increases and the

corresponding number of customers from the buffer, if any,
occupies additional𝑁(𝑟

󸀠
)
− 𝑁

(𝑟) servers.
Mention that in the described queueing model the dis-

cipline of customers admission may be different under the
various states of the RE. For example, if 𝑝(𝑟)1 = 1 and 𝛼

(𝑟)
= 0,

no customers are admitted to the system if the buffer is full;
that is, the system operates as the system with a finite buffer.
If, additionally,𝐾(𝑟) = 𝑁

(𝑟), the system operates as the system
with customers loss (Erlang loss model). If 𝑝(𝑟)1 = 0, the
system operates as the usual retrial system where all arriving
customers, whomeet the service area full, go into orbit. In the
presented analysis, it is accounted that𝑁(𝑟) can be equal to 0,
that is, for some states of the RE service to customers are not
provided at all.

In order to improve the readability of the paper, we collect
and already introduced some new notation in Notation.

Consider the following:

(i) let 𝑖
𝑡
, 𝑖
𝑡
≥ 0, be the number of customers in orbit,

(ii) let 𝑟
𝑡
, 𝑟
𝑡
∈ {1, . . . , 𝑅}, be the state of the RE,

(iii) let 𝑛
𝑡
, 𝑛
𝑡
∈ {0, . . . , 𝐾(𝑟)}, be the number of customers

in the service area,
(iv) let ]

𝑡
, ]
𝑡

∈ {0, . . . ,𝑊}, be the state of the second
component of the underlying process of customers
arrivals
at the moment 𝑡, 𝑡 ≥ 0.

It is easy to see that the process 𝜉
𝑡
= {𝑖

𝑡
, 𝑟

𝑡
, 𝑛

𝑡
, ]
𝑡
}, 𝑡 ≥

0, is the four-dimensional irreducible Markov chain. Let us
enumerate the states of the Markov chain 𝜉

𝑡
, 𝑡 ≥ 0, in the

direct lexicographic order of the components (𝑖, 𝑟, 𝑛, ]). We
call the set of the states having value (𝑖, 𝑟) of the two first
components of the Markov chain the macrostate (𝑖, 𝑟).

Let 𝑄 be the generator of the Markov chain 𝜉

𝑡
, 𝑡 ≥ 0.

It is formed by the blocks 𝑄

𝑖,𝑗
, consisting of the matrices

(𝑄

𝑖,𝑗
)

𝑟,𝑟
󸀠 that define the intensities of the transitions of the

Markov chain 𝜉

𝑡
, 𝑡 ≥ 0, from the macrostate (𝑖, 𝑟) to the

macrostate (𝑗, 𝑟

󸀠
), 𝑟, 𝑟󸀠 ∈ {1, . . . , 𝑅}. The diagonal entries of

thematrix𝑄
𝑖,𝑖
are negative.Themodulus of each entry defines

the intensity of departing from the corresponding state of the
Markov chain 𝜉

𝑡
, 𝑡 ≥ 0.

Lemma 1. The generator 𝑄 has the following block structure:

𝑄

= (

𝑄0,0 𝑄0,1 𝑄0,2 . . . 𝑄0,𝐾 𝑂 𝑂 ⋅ ⋅ ⋅

𝑄1,0 𝑄1,1 𝑄1,2 . . . 𝑄1,𝐾 𝑄1,𝐾+1 𝑂 ⋅ ⋅ ⋅

𝑂 𝑄2,1 𝑄2,2 . . . 𝑄2,𝐾 𝑄2,𝐾+1 𝑄2,𝐾+2 ⋅ ⋅ ⋅

.

.

.

.

.

.

.

.

. d
.

.

.

.

.

.

.

.

. d

),

(11)

where𝐾 = max{max{𝐾(𝑅) − 𝐾

(1)
, 𝑁

(𝑅)
− 𝑁

(1)
}, 1}.

The nonzero blocks 𝑄
𝑖,𝑗
, 𝑖, 𝑗 ≥ 0, are defined as follows.

Consider
(i)

𝑄

𝑖,𝑖
= (𝑄

𝑖,𝑖
)

𝑟,𝑟
󸀠 , 𝑟, 𝑟

󸀠
∈ {1, . . . , 𝑅} , (12)

where

(𝑄

𝑖,𝑖
)

𝑟,𝑟
= − (𝜇

(𝑟)
𝐶

𝑟
+ 𝑖 (𝛼

(𝑟)
+ 𝛾

(𝑟)
) 𝐼

𝐾
(𝑟)
+1

+𝜇

(𝑟)
𝐶

𝑟
𝐸

−

𝐾
(𝑟) + 𝑖𝑝

(𝑟)

3 𝛼

(𝑟)
̂

𝐼

𝐾
(𝑟)) ⊗ 𝐼

𝑊

+ ((1−𝑝

(𝑟)

1 )

̂

𝐼

𝐾
(𝑟) +𝐸

+

𝐾
(𝑟)) ⊗𝐷

(𝑟)

1 + 𝐼

𝐾
(𝑟)
+1 ⊗𝐷

(𝑟)

0

+ (𝐻)

𝑟,𝑟
𝐼

(𝐾
(𝑟)
+1)𝑊,

(13)

(𝑄

𝑖,𝑖
)

𝑟,𝑟
󸀠 = (𝐻)

𝑟,𝑟
󸀠𝑀

(0)
𝑟,𝑟
󸀠
⊗ 𝐼

𝑊
, 𝑟

󸀠
< 𝑟, (14)

(𝑄

𝑖,𝑖
)

𝑟,𝑟
󸀠 = (𝐻)

𝑟,𝑟
󸀠𝑀

+

𝑟,𝑟
󸀠 ⊗ 𝐼

𝑊
, 𝑟

󸀠
> 𝑟, 𝑖 ≥ 0. (15)
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Hereinafter, the entry (𝑀

(𝑛)

𝑟,𝑟
󸀠
)

𝑘,𝑘
󸀠 of the matrix 𝑀

(𝑛)

𝑟,𝑟
󸀠
, 𝑟 ∈

{1, . . . , 𝑅}, 𝑟󸀠 ∈ {1, . . . , 𝑟−1}, of dimension (𝐾(𝑟)+1)×(𝐾(𝑟
󸀠
)
+1)

defines the probability that when the state of the RE changes
from 𝑟 to 𝑟

󸀠 (and the capacity of the service area decreases
from 𝐾

(𝑟) to 𝐾

(𝑟
󸀠
)) the number of customers in the service

area changes from 𝑘 to 𝑘

󸀠 and 𝑛 customers move to orbit. The
matrices𝑀(𝑛)

𝑟,𝑟
󸀠
have the following nonzero entries. Consider

(𝑀

(0)
𝑟,𝑟
󸀠
)

𝑘,𝑘
= 1, 𝑘 ∈ {0, . . . , 𝑁(𝑟

󸀠
)
} ,

(𝑀

(𝑛)

𝑟,𝑟
󸀠
)

𝑘,𝑁
(𝑟
󸀠
)
= 𝑝

(𝑟)
(𝑛, 𝑘 −𝑁

(𝑟
󸀠
)
) ,

𝑘 ∈ {𝑁

(𝑟
󸀠
)
+ 1, . . . , 𝑁(𝑟)} .

(𝑀

(𝑛)

𝑟,𝑟
󸀠
)

𝑘,𝑁
(𝑟
󸀠
)
+𝑘−𝑁

(𝑟)
= 𝑝

(𝑟)
(𝑛,𝑁

(𝑅)
−𝑁

(𝑟
󸀠
)
) ,

𝑘 ∈ {𝑁

(𝑟)
+ 1, . . . ,min {𝐾

(𝑟
󸀠
)
+ 𝑁

(𝑟)
− 𝑁

(𝑟
󸀠
)
, 𝐾

(𝑟)
}} ,

(𝑀

(𝑛)

𝑟,𝑟
󸀠
)

𝑘,𝐾
(𝑟
󸀠
)
= 𝑝

(𝑟)
(𝑛, 𝑘 −𝐾

(𝑟
󸀠
)
) ,

𝑘 ∈ {min {𝐾

(𝑟
󸀠
)
+ 𝑁

(𝑟)
− 𝑁

(𝑟
󸀠
)
, 𝐾

(𝑟)
} + 1, . . . , 𝐾(𝑟)} .,

(16)

The probability 𝑝(𝑟)(𝑛, 𝑘) that 𝑛 customers go into orbit in the
case when 𝑘 customers leave the service area is given by

𝑝

(𝑟)
(𝑛, 𝑘) =

{

{

{

𝐶

𝑛

𝑘
(1 − 𝑝

(𝑟)

2 )

𝑛

(𝑝

(𝑟)

2 )

𝑘−𝑛

, 𝑛 ≤ 𝑘,

0, 𝑛 > 𝑘.

(17)

The matrix 𝑀

+

𝑟,𝑟
󸀠 , 𝑟 ∈ {1, . . . , 𝑅 − 1}, 𝑟󸀠 ∈ {𝑟 + 1, . . . , 𝑅}, of

dimension (𝐾

(𝑟)
+ 1) × (𝐾

(𝑟
󸀠
)
+ 1), which defines the transition

probabilities of the component 𝑛

𝑡
when the state of the RE

changes from 𝑟 to 𝑟

󸀠 (and the capacity of the service area
increases from𝐾

(𝑟) to𝐾(𝑟
󸀠
)), is equal to thematrix (𝐼

𝐾
(𝑟)
+1 | 𝑂).

Consider

(ii)

𝑄

𝑖,𝑖+𝑘

=

(

(

(

(

(

𝑍

(𝑘)

1,1 𝑂 𝑂 . . . 𝑂 𝑂

𝑍

(𝑘)

2,1 𝑍

(𝑘)

2,2 𝑂 . . . 𝑂 𝑂

.

.

.

.

.

. d d
.

.

.

.

.

.

𝑍

(𝑘)

𝑅−1,1 𝑍

(𝑘)

𝑅−1,2 𝑍

(𝑘)

𝑅−1,3 d 𝑍

(𝑘)

𝑅−1,𝑅−1 𝑂

𝑍

(𝑘)

𝑅,1 𝑍

(𝑘)

𝑅,2 𝑍

(𝑘)

𝑅,3 . . . 𝑍

(𝑘)

𝑅,𝑅−1 𝑍

(𝑘)

𝑅,𝑅

)

)

)

)

)

,

𝑖 ≥ 0, 𝑘 ∈ {1, . . . , 𝐾} ,

(18)

where the entries of the matrices 𝑍(𝑘)
𝑟,𝑟
󸀠
define the intensities of

the transitions of components {𝑟
𝑡
, 𝑛

𝑡
, ]
𝑡
} of the Markov chain

𝜉

𝑡
leading to the arrival of 𝑘 customers into the orbit. These

matrices are defined by the following formulas:

𝑍

(1)
𝑟,𝑟

= 𝑝

(𝑟)

1
̂

𝐼

𝐾
(𝑟) ⊗𝐷

(𝑟)

1 ,

𝑍

(𝑘)

𝑟,𝑟
= 𝑂, 𝑘 > 1,

𝑍

(𝑘)

𝑟,𝑟
󸀠
= (𝐻)

𝑟,𝑟
󸀠𝑀

(𝑘)

𝑟,𝑟
󸀠
⊗ 𝐼

𝑊
,

𝑘 ≥ 1, 𝑟

󸀠
< 𝑟, 𝑟, 𝑟

󸀠
∈ {1, . . . , 𝑅} .

(19)

Consider
(iii)

𝑄

𝑖,𝑖−1 = diag {𝑖 (𝛼(𝑟) [𝐸+
𝐾
(𝑟) + (1 − 𝑝

(𝑟)

3 )

̂

𝐼

𝐾
(𝑟)] + 𝛾

(𝑟)

⊗ 𝐼

𝐾
(𝑟)
+1) ⊗ 𝐼

𝑊
, 𝑟 ∈ {1, . . . , 𝑅}} , 𝑖 ≥ 1.

(20)

Proof of the lemma is performed bymeans of the analysis
of the intensities of all possible transitions of the Markov
chain 𝜉

𝑡
during the time interval having infinitesimal length.

The generator 𝑄 is block upper-Hessenbergian matrix; that
is, all the blocks below the first subdiagonal are equal to zero
blocks.This stems from the fact that, at anymoment, nomore
than one customer may leave the orbit, so the blocks 𝑄

𝑖,𝑗

are equal to zero when 𝑗 < 𝑖 − 1. The number 𝐾 defines
the maximal number of customers that can simultaneously
move to the orbit at an arbitrary moment. We recall that
one customer may arrive to the orbit if the buffer is full
at the customer’s arrival moment and at most max{𝐾(𝑅) −
𝐾

(1)
, 𝑁

(𝑅)
−𝑁

(1)
} customers may arrive to the orbit if the RE

jumps from state𝑅 to state 1 when all servers are busy and the
buffer is full. So, the blocks𝑄

𝑖,𝑗
are equal to zero when 𝑗 > 𝐾.

This explains structure (11) of generator 𝑄.
Thenegative diagonal entries of thematrix (𝑄

𝑖,𝑖
)

𝑟,𝑟
define,

up to the sign, intensities of the exit of the Markov chain
𝜉

𝑡
from the macrostate (𝑖, 𝑟). This exit can happen due to a

customer service completion, attempt of a customer from the
orbit to reach the service area, departure of a customer from
the orbit due to impatience, change of the state of the RE,
and change of the state of the underlying process of MAP
arrivals. The nondiagonal entries of the matrix (𝑄

𝑖,𝑖
)

𝑟,𝑟
define

intensities of transition of the Markov chain 𝜉

𝑡
inside of the

macrostate (𝑖, 𝑟). These transitions can happen due to the
customer service completion, change of the state of the RE,
and change of the state of the underlying process of MAP
arrivals. This explains form (13) of the block (𝑄

𝑖,𝑖
)

𝑟,𝑟
.

Transition from the macrostate (𝑖, 𝑟) to the macrostate
(𝑖, 𝑟

󸀠
), 𝑟󸀠 < 𝑟, can happen when the state of the RE changes

from 𝑟 to 𝑟

󸀠, 𝑟󸀠 < 𝑟. Such a change of the state of the RE
implies the possible reduction of the number of available
servers and places in the buffer. This may cause departure of
𝑛 customers from the service to the orbit. Matrices𝑀(𝑛)

𝑟,𝑟
󸀠
, 𝑟 ∈

{1, . . . , 𝑅}, 𝑟󸀠 ∈ {1, . . . , 𝑟−1}, define the probability that when
the state of the RE changes from 𝑟 to 𝑟

󸀠 (and the capacity
of the service area decreases from 𝐾

(𝑟) to 𝐾

(𝑟
󸀠
)) the number

of customers in the service area changes from 𝑘 to 𝑘

󸀠 and
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𝑛 customers move to the orbit. This explains formula (14).
Careful analysis of probabilities, which form the matrices
𝑀

(𝑛)

𝑟,𝑟
󸀠
, 𝑟 ∈ {1, . . . , 𝑅}, 𝑟󸀠 ∈ {1, . . . , 𝑟 − 1}, leads to formulas

(16).
Transition from the macrostate (𝑖, 𝑟) to the macrostate

(𝑖, 𝑟

󸀠
), 𝑟󸀠 > 𝑟, can happen when the state of the RE changes

from 𝑟 to 𝑟

󸀠, 𝑟󸀠 > 𝑟. Such a change of the state of the
RE implies the possible increase of the number of available
servers and places in the buffer. This explains formula (15).

The increase of the value of the first components of the
Markov chain 𝜉

𝑡
from 𝑖 to 𝑖 + 𝑘, 𝑘 ∈ {1, . . . , 𝐾}, may happen if

one customer arrives to the orbit from outside (for 𝑘 = 1) or
𝑘 customers leave the service area due to the reduction of the
available space there. This explains formulas (18)-(19).

Finally, the decrease of the value of the first components
of theMarkov chain 𝜉

𝑡
from 𝑖 to 𝑖−1may happen if a customer

makes an attempt from the orbit when the service area is not
full or a customer leaves the orbit due to impatience. This
explains formula (20). Lemma is proved.

Remark 2. It is easy to verify that the following limits exist:

𝑌0 = lim
𝑖→∞

𝑅

−1
𝑖
𝑄

𝑖,𝑖−1,

𝑌1 = lim
𝑖→∞

𝑅

−1
𝑖
𝑄

𝑖,𝑖
+ 𝐼,

𝑌

𝑘
= lim
𝑖→∞

𝑅

−1
𝑖
𝑄

𝑖,𝑖+𝑘−1,

𝑘 ∈ {2, . . . , 𝐾 + 1} ,

(21)

where 𝑅
𝑖
is a diagonal matrix with the diagonal entries which

are defined as the moduli of the corresponding diagonal
entries of the matrix 𝑄

𝑖,𝑖
, 𝑖 ≥ 0. The matrices 𝑌

𝑘
, 𝑘 ∈

{0, . . . , 𝐾 + 1}, have the following form:

𝑌0 = diag {̃Ω1, . . . , ̃Ω𝑅} ,

𝑌1 = (

(

̃

𝑄1,1 ̃

𝑄1,2 . . .

̃

𝑄1,𝑅

̃

𝑄2,1 ̃

𝑄2,2 . . .

̃

𝑄1,𝑅

.

.

.

.

.

. d
.

.

.

̃

𝑄

𝑅,1 ̃

𝑄

𝑅,2 . . .

̃

𝑄

𝑅,𝑅

)

)

,

𝑌

𝑘

=

(

(

(

(

(

̃

𝑍

(𝑘−1)
1,1 𝑂 𝑂 . . . 𝑂 𝑂

̃

𝑍

(𝑘−1)
2,1

̃

𝑍

(𝑘−1)
2,2 𝑂 . . . 𝑂 𝑂

.

.

.

.

.

. d d
.

.

.

.

.

.

̃

𝑍

(𝑘−1)
𝑅−1,1

̃

𝑍

(𝑘−1)
𝑅−1,2

̃

𝑍

(𝑘−1)
𝑅−1,3 d ̃

𝑍

(𝑘−1)
𝑅−1,𝑅−1 𝑂

̃

𝑍

(𝑘−1)
𝑅,1

̃

𝑍

(𝑘−1)
𝑅,2

̃

𝑍

(𝑘−1)
𝑅,3 . . .

̃

𝑍

(𝑘−1)
𝑅,𝑅−1

̃

𝑍

(𝑘−1)
𝑅,𝑅

)

)

)

)

)

,

𝑘 > 1,

(22)

where

̃

Ω

𝑟
= 𝐸

+

𝐾
(𝑟) ⊗ 𝐼

𝑊
, if 𝑝(𝑟)3 = 1, 𝛼

(𝑟)
> 0, 𝛾

(𝑟)
= 0,

̃

Ω

𝑟
= (

𝛾

(𝑟)

𝛾

(𝑟)
+ 𝛼

(𝑟)
(𝐼

𝐾
(𝑟)
+1 − ̂

𝐼

𝐾
(𝑟)) +

𝛼

(𝑟)

𝛾

(𝑟)
+ 𝛼

(𝑟)
𝐸

+

𝐾
(𝑟) +

̂

𝐼

𝐾
(𝑟))⊗ 𝐼

𝑊
if (𝑝

(𝑟)

3 ̸= 1, 𝛼

(𝑟)
> 0) or 𝛾(𝑟) ̸= 0,

̃

Ω

𝑟
= 𝑂, if 𝛼(𝑟) = 0, 𝛾

(𝑟)
= 0, 𝑟 ∈ {1, . . . , 𝑅} ,

̃

𝑄

𝑟,𝑟
󸀠 =

{

{

{

{

{

{

{

{

{

{

{

𝑅

(𝑟)

1 (𝑄0,0)𝑟,𝑟󸀠 + 𝛿

𝑟−𝑟
󸀠
,0̂𝐼𝐾(𝑟) ⊗ 𝐼

𝑊
, if 𝑝(𝑟)3 = 1, 𝛼

(𝑟)
> 0, 𝛾

(𝑟)
= 0,

𝑅

(𝑟)

2 (𝑄0,0)𝑟,𝑟󸀠 + 𝛿

𝑟−𝑟
󸀠
,0𝐼𝐾(𝑟) ⊗ 𝐼

𝑊
, if 𝛼(𝑟) = 0, 𝛾

(𝑟)
= 0,

𝑂, if (𝑝

(𝑟)

3 ̸= 1, 𝛼

(𝑟)
> 0) or 𝛾(𝑟) ̸= 0,

𝑟, 𝑟

󸀠
∈ {1, . . . , 𝑅} ,

(23)

𝛿

𝑖,𝑗
indicates the Kronecker delta,

𝑅

(𝑟)

1 =

̂

𝐼

𝐾
(𝑟) ⊗ ((𝜇

(𝑟)
𝑁

(𝑟)
− (𝐻)

𝑟,𝑟
) 𝐼

𝑊
+Σ

(𝑟)

0

− (1−𝑝

(𝑟)

1 ) Σ

(𝑟)

1 )

−1
, 𝑟 ∈ {1, . . . , 𝑅} ,

𝑅

(𝑟)

2 = (𝜇

(𝑟)
𝐶

𝑟
𝐼

𝑊
+ 𝐼

𝐾
(𝑟) ⊗ (Σ

(𝑟)

0 − (𝐻)

𝑟,𝑟
𝐼

𝑊
) −

̂

𝐼

𝐾
(𝑟)

⊗ (1−𝑝

(𝑟)

1 ) Σ

(𝑟)

1 )

−1
, 𝑟 ∈ {1, . . . , 𝑅} ,

̃

𝑍

(𝑘)

𝑟,𝑟
󸀠

=

{

{

{

{

{

{

{

{

{

𝑅

(𝑟)

1 𝑍

(𝑘)

𝑟,𝑟
󸀠
, if 𝑝(𝑟)3 = 1, 𝛼

(𝑟)
> 0, 𝛾

(𝑟)
= 0,

𝑅

(𝑟)

2 𝑍

(𝑘)

𝑟,𝑟
󸀠
, if 𝛼(𝑟) = 0, 𝛾

(𝑟)
= 0,

𝑂, if (𝑝

(𝑟)

3 ̸= 1, 𝛼

(𝑟)
> 0) or 𝛾(𝑟) ̸= 0,

𝑟, 𝑟

󸀠
∈ {1, . . . , 𝑅} .

(24)
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Here, Σ(𝑟)0 and Σ

(𝑟)

1 are the diagonal matrices, the diagonal
entries of which are defined as the corresponding diagonal
entries of the matrices −𝐷(𝑟)0 and𝐷

(𝑟)

1 , respectively.
According to the definition given in [18], the existence

of the limits 𝑌
𝑘
, 𝑘 ∈ {0, . . . , 𝐾 + 1}, means that the Markov

chain 𝜉

𝑡
, 𝑡 ≥ 0, belongs to the class of continuous-time

asymptotically quasi-ToeplitzMarkov chains (AQTMC).This
fact allows us to use the results of [18] for derivation of the
sufficient condition of the ergodicity of the Markov chain 𝜉

𝑡

and computation of its steady state distribution.

3. System Stability and Stationary Distribution

As follows from [18], the sufficient condition for the ergodic-
ity of AQTMC is the fulfillment of the inequality

y𝑌0e > y
𝐾+1
∑

𝑘=2
(𝑘 − 1) 𝑌

𝑘
e, (25)

where the vector y is the unique solution to the system

y
𝐾+1
∑

𝑘=0
𝑌

𝑘
= y,

ye = 1.

(26)

Thus, to check whether or not the Markov chain 𝜉

𝑡
is

ergodic, it is necessary to substitute the matrices 𝑌

𝑘
, 𝑘 ∈

{0, . . . , 𝐾 + 1}, to system (26), solve this system, and verify
the fulfillment of inequality (25). If this inequality is fulfilled,
the Markov chain under study is ergodic. The solution of a
finite system of (26) on computer does not meet any essential
problems.

Mention that there exists an important particular case
(the customers are impatient or nonpersistent at least for one
state of the RE) when ergodicity of the Markov chain 𝜉

𝑡
can

be established more easy than via solution of system (26)
and verification of inequality (25). For this case, the following
statement is true.

Theorem3. If customers are impatient or nonpersistent (𝛾(𝑟) ̸=

0 or 𝑝(𝑟)3 ̸= 1) at least for one state 𝑟 of the RE, then the Markov
chain 𝜉

𝑡
is ergodic for any set of parameters of the queueing

system under study.

Proof. Let 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑆} be the set of the states of the RE
for which at least one of inequalities 𝑝(𝑟)3 ̸= 1 or 𝛾(𝑟) ̸= 0,
is fulfilled, 𝑟 ∈ 𝐿. It can be verified that, in this case, by
means of coordinated perturbations of the block rows and
block columns, the matrix 𝑌 = ∑

𝐾+1
𝑘=0 𝑌

𝑘
can be transformed

to the canonical normal form

𝑌 = (

𝑌1,1 𝑌1,2

𝑂 𝑌2,2
) . (27)

Here, 𝑌1,1 is the matrix obtained from the matrix 𝑌 by means
of removing the block rows and block columns with numbers
𝑙, 𝑙 ∈ 𝐿, 𝑌1,2 is the matrix obtained from the matrix 𝑌 by

means of removing the block rows with numbers 𝑙, 𝑙 ∈ 𝐿,
and the block columns with numbers 𝑟, 𝑟 ∈ {1, . . . , 𝑅} \ 𝐿,
and 𝑌2,2 = diag{̃Ω

𝑙
, 𝑙 ∈ 𝐿}. This means that the matrix 𝑌

is reducible. So, it follows, from Theorem 2 in [18], that the
sufficient condition for the ergodicity of the Markov chain 𝜉

𝑡

can be rewritten in the form

z𝑌0e > z
𝐾+1
∑

𝑘=2
(𝑘 − 1) 𝑌

𝑘
e, (28)

where the vector z is the unique solution to the system

z𝑌2,2 = z,

ze = 1,
(29)

and the matrices 𝑌0 and 𝑌

𝑘
are obtained from the matrices

𝑌0 and 𝑌

𝑘
by means of removing the block rows and block

columns with numbers 𝑟, 𝑟 ∈ {1, . . . , 𝑅} \𝐿. It is easy to check
that𝑌

𝑘
= 𝑂, 𝑘 ∈ {1, . . . , 𝐾+1} and𝑌0 is the stochasticmatrix.

Consequently,

z𝑌0e = ze = 1 > 0 = z
𝐾+1
∑

𝑘=2
(𝑘 − 1) 𝑌

𝑘
e. (30)

Theorem is proved.

In the sequel, we assume that the ergodicity condition is
fulfilled. Then, the following stationary probabilities exist:

𝜋 (𝑖, 𝑟, 𝑛, ]) = lim
𝑡→∞

𝑃 {𝑖

𝑡
= 𝑖, 𝑟

𝑡
= 𝑟, 𝑛

𝑡
= 𝑛, ]

𝑡
= ]} ,

𝑖 ≥ 0, 𝑟 ∈ {1, . . . , 𝑅} , 𝑛 ∈ {0, . . . , 𝐾(𝑟)} , ] ∈ {0, . . . ,𝑊} .

(31)

Let us form the row-vectors 𝜋
𝑖
as follows:

𝜋 (𝑖, 𝑟, 𝑛)

= (𝜋 (𝑖, 𝑟, 𝑛, 0) , 𝜋 (𝑖, 𝑟, 𝑛, 1) , . . . , 𝜋 (𝑖, 𝑟, 𝑛,𝑊)) ,

𝑛 ∈ {0, . . . , 𝐾(𝑟)} ,

𝜋 (𝑖, 𝑟) = (𝜋 (𝑖, 𝑟, 0) ,𝜋 (𝑖, 𝑟, 1) , . . . ,𝜋 (𝑖, 𝑟, 𝐾(𝑟))) ,

𝑟 ∈ {1, . . . , 𝑅} ,

𝜋
𝑖
= (𝜋 (𝑖, 1) ,𝜋 (𝑖, 2) , . . . ,𝜋 (𝑖, 𝑅)) , 𝑖 ≥ 0.

(32)

It is well known that the vectors 𝜋
𝑖
, 𝑖 ≥ 0, satisfy the

system

(𝜋0,𝜋1, . . .) 𝑄 = 0,

(𝜋0,𝜋1, . . .) e = 1,
(33)

where 𝑄 is the generator of 𝜉
𝑡
, 𝑡 ≥ 0. System (33) is infinite

and cannot be directly solved on computer. However, it can
be successfully solved by means of the numerically stable
algorithms developed in [18, 19].
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4. Performance Measures of the System

Having computed the vectors of the stationary probabilities
𝜋
𝑖
, 𝑖 ≥ 0, it is possible to compute a variety of the steady state

performance parameters of the system.
The distribution of the number of the customers in orbit

is

lim
𝑡→∞

𝑃 {𝑖

𝑡
= 𝑖} = 𝜋

𝑖
e, 𝑖 ≥ 0. (34)

The average number of customers in the service area is

𝐿 =

∞

∑

𝑖=0

𝑅

∑

𝑟=1

𝐾
(𝑟)

∑

𝑘=0
𝑘𝜋 (𝑖, 𝑟, 𝑘) e. (35)

Here and throughout this section, formulas for the main
performance measures contain the infinite sums. However,
this does not create essential difficulties in computer imple-
mentation. It is well known that if the ergodicity condition
is fulfilled, the stationary probability vectors 𝜋

𝑖
converge in

norm to zero vector when 𝑖 approaches infinity. So, compu-
tation of an infinite sum may be stopped if the summand
becomes less than some preassigned value 𝜀 (e.g., 𝜀 = 10−10).

The average number of customers in the buffer is

𝑁buffer =
∞

∑

𝑖=0

𝑅

∑

𝑟=1

𝐾
(𝑟)

∑

𝑘=𝑁
(𝑟)
+1
(𝑘 −𝑁

(𝑟)
)𝜋 (𝑖, 𝑟, 𝑘) e. (36)

The average number of busy servers is

𝑁server =
∞

∑

𝑖=0

𝑅

∑

𝑟=1

𝐾
(𝑟)

∑

𝑘=1
min {𝑘,𝑁

(𝑟)
}𝜋 (𝑖, 𝑟, 𝑘) e. (37)

The average number of customers in orbit is

𝐿orbit =
∞

∑

𝑖=1
𝑖𝜋
𝑖
e. (38)

The intensity of output of customers is

𝜆out =
∞

∑

𝑖=0

𝑅

∑

𝑟=1

𝐾
(𝑟)

∑

𝑘=1
min {𝑘,𝑁

(𝑟)
} 𝜇

(𝑟)
𝜋 (𝑖, 𝑟, 𝑘) e. (39)

Theprobability that a customer arrives at the systemwhen
the buffer is full and leaves the system is

𝑃

(loss-ent)
= 𝜆

−1
∞

∑

𝑖=0

𝑅

∑

𝑟=1
(1−𝑝

(𝑟)

1 )𝜋 (𝑖, 𝑟, 𝐾
(𝑟)
)𝐷

(𝑟)

1 e. (40)

Theprobability that a customer arrives at the systemwhen
the buffer is full and goes into orbit is

𝑃

(orb-ent)
= 𝜆

−1
∞

∑

𝑖=0

𝑅

∑

𝑟=1
𝑝

(𝑟)

1 𝜋 (𝑖, 𝑟, 𝐾
(𝑟)
)𝐷

(𝑟)

1 e. (41)

The loss probability of a customer is

𝑃

(loss)
= 1−

𝜆out
𝜆

.
(42)

The probability of customers loss due to the decrease of
the number of servers caused by change of the state of the RE
is

𝑃

(RE-loss)
=

1
𝜆

∞

∑

𝑖=0

𝑅

∑

𝑟=2

𝑟−1
∑

𝑟
󸀠
=1
(1−𝑝

(𝑟)

2 ) (𝐻)

𝑟,𝑟
󸀠

⋅

[

[

𝑁
(𝑟)

∑

𝑘=𝑁
(𝑟
󸀠
)
+1

(𝑘 − 𝑁

(𝑟
󸀠
)
)𝜋 (𝑖, 𝑟, 𝑘) + (𝑁

(𝑟)
− 𝑁

(𝑟
󸀠
)
)

min{𝐾(𝑟
󸀠
)
+𝑁
(𝑟)
−𝑁
(𝑟
󸀠
)
,𝐾
(𝑟)
}

∑

𝑘=𝑁
(𝑟)
+1

𝜋 (𝑖, 𝑟, 𝑘) +

𝐾
(𝑟)

∑

𝑘=𝐾
(𝑟
󸀠
)
+𝑁
(𝑟)
−𝑁
(𝑟
󸀠
)
+1

(𝑘 − 𝐾

(𝑟
󸀠
)
)𝜋 (𝑖, 𝑟, 𝑘)]

]

⋅ e.

(43)

This formula is quite transparent. The right hand side of
this formula represents the fraction. The denominator of
this fraction is the average rate 𝜆 of customers arrival to
the system. The numerator is the average rate of customers
loss due to the decrease of the number of servers caused by
the change of the state of the RE. Such a loss occurs, with
probability 1−𝑝(𝑟)2 , every timewhen the state 𝑟, 𝑟 ∈ {2, . . . , 𝑅},
of the RE changes to the state 𝑟󸀠, 𝑟󸀠 ∈ {1, . . . , 𝑟 − 1}, while the
number 𝑘 of customers in service area is greater than 𝑁

(𝑟
󸀠
)
.

The number of the simultaneously lost customers is equal to
(𝑘 −𝑁

(𝑟
󸀠
)
) if 𝑘 ∈ {𝑁

(𝑟
󸀠
)
+ 1, . . . , 𝑁(𝑟)}, equal to (𝑁

(𝑟)
−𝑁

(𝑟
󸀠
)
) if

𝑘 ∈ {𝑁

(𝑟)
+1, . . . ,min{𝐾(𝑟

󸀠
)
+𝑁

(𝑟)
−𝑁

(𝑟
󸀠
)
, 𝐾

(𝑟)
}}, and equal to

(𝑘 − 𝐾

(𝑟
󸀠
)
) if 𝑘 ∈ {𝐾

(𝑟
󸀠
)
+ 𝑁

(𝑟)
− 𝑁

(𝑟
󸀠
)
+ 1, . . . , 𝐾(𝑟)}. Applying

the formula of total probability, we get formula (43).
The probability of an arbitrary customer loss from orbit is

𝑃

(loss-from-orbit)
= 𝑃

(loss)
−𝑃

(loss-ent)
−𝑃

(RE-loss)
.

(44)

The probability that an arbitrary customer from orbit will
make an attempt to receive service when the system is full and
return to orbit is

𝑃

(return-to-orbit)
= 𝛼

−1
∞

∑

𝑖=1

𝑅

∑

𝑟=1
𝑖𝛼

(𝑟)
𝑝

(𝑟)

3 𝜋 (𝑖, 𝑟, 𝐾
(𝑟)
) e, (45)

where 𝛼 = ∑

∞

𝑖=1 ∑
𝑅

𝑟=1 𝑖𝛼
(𝑟)
𝜋(𝑖, 𝑟)e.
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The probability that an arbitrary customer from orbit
makes an attempt to receive service when the system area is
full and leaves the system without service is

𝑃

(loss-non-persistence)

= 𝛼

−1
∞

∑

𝑖=1

𝑅

∑

𝑟=1
𝑖𝛼

(𝑟)
(1−𝑝

(𝑟)

3 )𝜋 (𝑖, 𝑟, 𝐾
(𝑟)
) e.

(46)

5. Numerical Results

Let us consider the following set of the system parameters.
The number of the states of the RE is 𝑅 = 2.The generator of
the RE is given by

𝐻 = (

−0.03 0.03
0.07 −0.07

) , (47)

so the stationary probability of state 1 is 𝜑1 = 0.7 and the
stationary probability of state 2 is𝜑2 = 0.3.These probabilities
are the components of the vector 𝜑 = (𝜑1, 𝜑2) which is
computed as the unique solution to the system 𝜑𝐻 = 0,
𝜑e = 1.

We assume that the arrival flow under state 1 of the RE is
defined by the matrices

𝐷

(1)
0 = (

−2.7032 0
0 −0.0877

) ,

𝐷

(1)
1 = (

2.6853 0.0179
0.0488 0.0389

) ,

(48)

and under state 2 of the RE it is defined by the matrices

𝐷

(2)
0 = (

−6.7582 0
0 −0.2193

) ,

𝐷

(2)
1 = (

6.7133 0.0449
0.1221 0.0972

) .

(49)

For both arrival processes, the coefficient of correlation is
𝑐

(𝑟)

cor = 0.2 and the coefficient of variation is 𝑐

(𝑟)

var = 12.34,
𝑟 = 1, 2.The average arrival rate 𝜆(1) of customers under state
1 of the RE is 2, and the average arrival rate of customers 𝜆(2)
under state 2 of the RE is 5.

The rest of the system parameters under state 1 of the RE
are as follows:

𝐾

(1)
= 25,

𝑝

(1)
1 = 0.95,

𝑝

(1)
2 = 1,

𝑝

(1)
3 = 0.9,

𝛾

(1)
= 0.1,

𝛼

(1)
= 0.3,

𝜇

(1)
= 0.4.

(50)

Under state 2 of the RE, the parameters are as follows:

𝐾

(2)
= 25,

𝑝

(1)
1 = 0.9,

𝑝

(1)
2 = 1,

𝑝

(1)
3 = 0.9,

𝛾

(2)
= 0,

𝛼

(2)
= 0.5,

𝜇

(2)
= 0.5.

(51)

Because arrival rate 𝜆

(2) is 2.5 times higher than 𝜆

(1)

while the service rate 𝜇(2) is only 1.25 times higher than 𝜇

(1),
we may interpret state 1 as a normal mode of the system
operation while we interpret state 2 as a congestion mode.
To provide good quality of customers service, we should
properly adjust the number of available servers to the mode
of system. From economical considerations, let us assume
that the average number of servers operating at an arbitrary
moment of time should not exceed the predefined number
̃

𝑁. The average number of servers operating at an arbitrary
moment evidently is computed by formula 𝑁(1)𝜑1 + 𝑁

(2)
𝜑2.

Suppose that we have an opportunity to arbitrarily assign
the numbers of available servers 𝑁

(1) and 𝑁

(2) that satisfy
inequality

𝑁

(1)
𝜑1 +𝑁

(2)
𝜑2 ≤ ̃

𝑁
(52)

aiming to provide good quality of customers service. It is
intuitively obvious that the number 𝑁(2) of available servers
under operation in the congestion mode should be not less
than the number of available servers𝑁(1) in the normalmode.

Let us vary the number of available servers under the
different states of the RE, 𝑁(1) and 𝑁

(2), in such a way that
𝑁

(1)
≤ 𝑁

(2) and inequality (52) holds good.
Figures 2–6 illustrate the dependence of some perfor-

mance measures of the system for values 𝑁

(1) and 𝑁

(2)

varying in the described set when ̃

𝑁 = 9.
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Figure 2: Dependence of the average number of customers in orbit
on the numbers of servers𝑁(1) and𝑁

(2).
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Figure 3: Dependence of the average number of customers in the
buffer on the numbers of servers𝑁(1) and𝑁

(2).

It is seen, from Figure 2, that the average number of
customers in orbit significantly changes (from about 0 to
about 30) when 𝑁

(1) and 𝑁

(2) vary, and this number is
maximal when both 𝑁

(1) and 𝑁

(2) are small and is minimal
when about 9 servers are active in both modes.

Similar observations can be made about the average
number 𝑁buffer of busy servers based on Figure 3. However,
the value of𝑁buffer is less sensitive with respect to the change
of𝑁(2) compared to 𝐿orbit.

It is seen, from Figure 4, that the average number of busy
servers also significantly changes (from about 0 to about 7)
when 𝑁

(1) and 𝑁

(2) vary, and this number is minimal when
both 𝑁

(1) and 𝑁

(2) are small and maximal when about 9
servers are active in both modes.

Because the capacity of service area (the number of
servers plus the number of places in a buffer) under both
the states of the RE is pretty large, 25, the probability that
a customer arrives at the system when the buffer is full and
leaves the system is not very high (about 0.08) even when
the number of active servers is small; see Figure 5. This may
seem surprising. But, this effect is easily explained by Figure 6.
Due to the impatience of customers, the loss probability of
customers is very high (close to 1) when the number of active
servers is small. So, the system is never overcrowded. It is
worth noting, based on Figure 6, that the loss probability
of customers due to impatience essentially decreases with
growth of𝑁(2) and, especially, growth of𝑁(1).
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Figure 4: Dependence of the average number of busy servers on the
numbers of servers𝑁(1) and𝑁

(2).
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Figure 5: Dependence of the probability that a customer arrives
at the system when the buffer is full and leaves the system on the
numbers of servers𝑁(1) and𝑁

(2).
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Figure 6: Dependence of the loss probability of a customer on the
numbers of servers𝑁(1) and𝑁

(2).

All the mentioned performance measures of the system
are quite important. However, likely, the most important
measure from the point of view of the system manager is the
loss probability 𝑃

(loss) of an arbitrary customer because the
loss of a customer implies the loss of a potential profit from
his/her service. So, let us consider, namely, the loss probability
𝑃

(loss) as criterion of the quality of the system operation and
find the optimal number of the servers under the different
states of the RE, 𝑁(1), and 𝑁

(2), under the condition that
inequality (52) should be fulfilled.
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Table 1: Stationary probabilities of the system states under𝑁(1) = 7
and𝑁

(2)
= 13.

i\r 𝑟 = 1 𝑟 = 2
𝑖 = 0 0.56478 0.23043
𝑖 = 1 0.04455 0.01657
𝑖 = 2 0.02590 0.01007
𝑖 = 3 0.01818 0.00749
𝑖 = 4 0.01352 0.00597
𝑖 = 5 0.01027 0.00491
𝑖 = 6 0.00786 0.00409
𝑖 = 7 0.00414 0.00344
𝑖 = 8 0.00296 0.00290
𝑖 = 9 0.00214 0.00245
𝑖 = 10 0.00154 0.00206
𝑖 = 11 0.00111 0.00173
𝑖 = 12 8.06E − 4 0.00145
𝑖 = 13 5.86E − 4 0.00121
𝑖 = 14 4.28E − 4 0.00100
𝑖 = 15 3.15E − 4 8.25E − 4

Because, to build Figure 6, we have computed the prob-
ability 𝑃

(loss) for all feasible 𝑁

(1) and 𝑁

(2), the solution of
optimization problem is trivial. The optimal (minimal) value
of the loss probability is 𝑃(loss) = 0.02519 when𝑁

(1)
= 7 and

𝑁

(2)
= 13.The values of stationary probabilities 𝜋(𝑖, 𝑟) under

the optimal values 𝑁(1) = 7 and 𝑁

(2)
= 13 are presented in

Table 1. Probabilities 𝜋(𝑖, 𝑟) for 𝑖 > 15 are less than 0.001 and
they are omitted here.

It is worth noting that if 𝑁(1) = 𝑁

(2)
= 9, that is, the

number of active servers is constant and is not adjusted to
the alternation of the normal and congestionmode, the value
of the loss probability is about three times higher: 𝑃(loss) =
0.067389. So, the adjustment of the number of active servers
to the current load of the system definitely makes sense.

To briefly illustrate the profound effect of correlation
and variance of interarrival times in the arrival process, let
us assume now that, instead of the MAP flows with the
coefficient of correlation 0.2 considered above, arrival flows
are described by the stationary Poisson processes with the
same mean arrival rates. These processes are defined by

𝐷

(1)
0 = (−2) ,

𝐷

(1)
1 = (2) ,

𝐷

(2)
0 = (−5) ,

𝐷

(2)
1 = (5) .

(53)

Let us repeat the experiment described above with these
arrival processes having zero correlation and coefficient of
variation equal to 1. We obtain that the minimal value of
the loss probability (𝑃(loss) = 0.005102) is achieved when
𝑁

(1)
= 8 and 𝑁

(2)
= 11. At the same time, under these

values of 𝑁

(1) and 𝑁

(2), 𝑃(loss) is equal to =0.037619 for

arrival flows with 𝑐

(𝑟)

cor = 0.2, 𝑟 = 1, 2. So, the ignorance of
the possible correlation in the arrival process gives relative
error in the prediction of the value of 𝑃

(loss) equal to
(0.037619 − 0.005102)/0.005102 × 100 = 637 percent. This
is not admissible in the performance evaluation and capacity
planning of real life systems. Note that our experience of
investigation of arrival flows in contact centers of several
banks shows that these flows are indeed correlated.

6. Conclusion

We considered a multiserver queuing system, the dynamics
of which depends on the state of the RE. Change of the state
of the RE may cause variation of the parameters of arrival,
service, retrial, impatience processes, number of available
servers, and available buffer capacity, as well as the behavior
of the customers. Evolution of the system is described by
the multidimensional continuous-time Markov chain. The
generator of this Markov chain is derived in a block matrix
form. The ergodicity condition is presented. In particular, it
is shown that if the customers are impatient or nonpersistent
at least in one state of the RE, then the Markov chain is
ergodic for any set of the system parameters. Expressions for
the key performance measures are given. Numerical results
illustrating the behavior of the system and showing the pos-
sibility of formulation and solution of optimization problems
are provided. Positive effect of adjusting the number of active
servers to the current load of the system is demonstrated.
The importance of the account of correlation in the arrival
processes is numerically illustrated.

Notation

𝐾

(𝑟): The service area capacity under the state
𝑟 of the RE

𝑁

(𝑟): The number of servers under the state 𝑟
of the RE

𝐷

(𝑟)

0
, 𝐷

(𝑟)

1
: The square matrices of size𝑊 = 𝑊 + 1

that characterize MAP under the state 𝑟
of the RE

𝜆

(𝑟): The average arrival intensity of customers
under the state 𝑟 of the RE

𝜆: The averaged arrival intensity
𝛼

(𝑟): The retrial intensity under the state 𝑟 of
the RE

𝛾

(𝑟): The intensity of impatience of customers
from orbit under the state 𝑟 of the RE

𝜇

(𝑟): The service intensity under the state 𝑟 of
the RE

𝑝

(𝑟)

1
: The probability that a customer goes to

the orbit in the case of its arrival when
the buffer is full under the state 𝑟 of the
RE

𝑝

(𝑟)

2
: The probability that a customer goes to

orbit in the case of leaving the service
area due to the decrease of its capacity
under the state 𝑟 of the RE



12 Mathematical Problems in Engineering

𝑝

(𝑟)

3
: The probability that a customer returns

to orbit after unsuccessful attempt
under the state 𝑟 of the RE

e: A column vector of appropriate size
consisting of 1’s

0: A row vector of appropriate size
consisting of zeroes

𝐼: The identity matrix of the
corresponding dimension

𝑂: A zero matrix
⊕ and ⊗: The Kronecker sum and product of

matrices, respectively (see, e.g., [20, 21])
diag{𝐴

1
, . . . , 𝐴

𝑙
}: The block diagonal matrix with the
diagonal entries 𝐴

1
, . . . , 𝐴

𝑙

𝐶

𝑟
: The square matrix of dimension𝐾

(𝑟)
+ 1

defined by formula
𝐶

𝑟
= diag{0, 1, . . . , 𝑁(𝑟), . . . , 𝑁(𝑟)}

𝐸

−

𝑙
: The square matrix of dimension 𝑙 + 1

with all zero entries except the entries
(𝐸

−

𝑙
)

𝑘,𝑘−1
, 𝑘 ∈ {1, . . . , 𝑙}, that are equal to

1
𝐸

+

𝑙
: The square matrix of dimension 𝑙 + 1

with all zero entries except the entries
(𝐸

+

𝑙
)

𝑘,𝑘+1
, 𝑘 ∈ {0, . . . , 𝑙 − 1}, that are

equal to 1
̂

𝐼

𝑙
: The square matrix of dimension 𝑙 + 1

with all zero entries except the entry
(

̂

𝐼

𝑙
)

𝑙,𝑙
= 1.
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