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Abstract

We show that the origin of the nonequivalence of Hamiltonians in different representations is a

change of the form of the time-derivative operator at a time-dependent unitary transformation.

This nonequivalence does not lead to an ambiguity of the energy expectation values of a particle

in nonstationary fields but assigns the basic representation. It has been explicitly or implicitly

supposed in previous investigations that this representation is the Dirac one. We prove the alter-

native assertion about the basic role of the Foldy-Wouthuysen representation. We also derive the

general equation for the energy expectation values in the Dirac representation. As an example,

we consider a spin-1/2 particle with anomalous magnetic and electric dipole moments in strong

time-dependent electromagnetic fields. We apply the obtained results to a spin-1/2 particle in a

plane monochromatic electromagnetic wave and give an example of the exact Foldy-Wouthuysen

transformation in the nonstationary case.
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I. INTRODUCTION

The important problem of energy expectation values (EEVs) of a particle in nonstationary

external fields has a long history. The basic equation describing a unitary transformation

of a time-dependent Hamiltonian operator is well known [1, 2]. The problem of the EEVs

has been considered in detail in Refs. [3–6]. In these works, the dependence of the EEVs on

the representation used has been clearly demonstrated. It has been claimed in Refs. [4–6]

that this fact definitely results in a physical nonequivalence of the initial and transformed

Hamiltonians in the time-dependent case. The problem of physical equivalence of these

Hamiltonians has been recently reexamined in Refs. [7–9]. This problem is very important

in relation to the Foldy-Wouthuysen (FW) transformation [1].

Gorbatenko and Neznamov [8, 9] have demonstrated the possibility of connecting Hamil-

tonians in different representations and have also considered the problem of their physical

equivalence.

Goldman [4] and Nieto [5] have shown that derivation of the EEVs from the time-

dependent Hamiltonians may lead to controversial and even incorrect results. They pro-

ceeded from the nonequivalence of different representations in the time-dependent case and

explicitly or implicitly supposed that the basic representation is the Dirac one. The same

supposition was used in Refs. [6, 10].

We will show that further developments of the theory of the FW transformation ful-

filled after the publication of Refs. [3–6, 10] lead to a different conclusion about the basic

representation. We will also give a first example of the exact FW transformation in the

nonstationary case.

We use the system of units with c = 1 while h̄ is included in quantum-mechanical equa-

tions.

II. UNITARY TRANSFORMATIONS OF A TIME-DEPENDENT HAMILTO-

NIAN OPERATOR

Operators used in quantum mechanics are self-adjoint. Many authors claim that such

operators should be Hermitian. However, this assertion is inexact. When any operator is

Hermitian, it does not necessarily mean that this operator is self-adjoint. A densely defined
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operator T on the Hilbert space H is called symmetric (or Hermitian) if T ⊂ T ∗, that is, if

D(T ) ⊂ D(T ∗) and Tϕ = T ∗ϕ for all ϕ ∈ D(T ). Here T ∗ is the adjoint operator and D(T ∗)

is the domain of its definition. Equivalently, T is symmetric if and only if (Tϕ, χ) = (ϕ, Tχ)

for all ϕ, χ ∈ D(T ) [11]. T is called self-adjoint if T = T ∗, that is, if and only if T is

symmetric and D(T ) = D(T ∗).

Thus, every self-adjoint operator is symmetric. However, the converse may be unsatisfied.

Let the operator T = i(d/dx) be defined on the interval [0, 1] as follows:

D(T ) = {ϕ|ϕ ∈ AC[0, 1], ϕ(0) = ϕ(1) = 0}.

It can be proven (see Refs. [12]) that the operator T is closed and symmetric (Hermitian)

but it is not self-adjoint.

If T is continuous and is defined on the whole Hilbert space, D(T ) = H, then the

symmetric operator T is also self-adjoint.

A unitary transformation of any operator except for the Hamiltonian one is given by

A′ = UAU−1, (1)

where U is a unitary operator transforming the wave function (ψ′ = Uψ) from the un-

primed representation to the primed one. The transformation of the Hamiltonian operator

is different because this operator is defined by

ih̄
∂ψ

∂t
= Hψ. (2)

As a result, the transformation also involves the operator ih̄ (∂/∂t). The transformed Hamil-

tonian is given by [1, 2]

H′ = U

(
H− ih̄

∂

∂t

)
U−1 + ih̄

∂

∂t
= UHU−1 − ih̄U

∂U−1

∂t
. (3)

Since ∂(UU−1)/(∂t) = 0, the result of the transformation can also be presented as follows

[8]:

H′ = UHU−1 + ih̄
∂U

∂t
U−1. (4)

Evidently, the connection between the initial and transformed Hamiltonians substantially

differs from Eq. (1).

The EEV of the particle is defined by

E(t) =
∫
ψ†(r, t)H(t)ψ(r, t)dV . (5)
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For a particle in nonstationary fields, the operators H and U explicitly depend on time.

In this case, the EEVs in the unprimed and primed representations are not equal to each

other [3–7, 10]. The use of Eqs. (3) and (4) results in
∫
ψ′†(r, t)H′(t)ψ′(r, t)dV =

∫
ψ†(r, t)H(t)ψ(r, t)dV

−ih̄
∫
ψ†(r, t)U

∂U−1

∂t
ψ(r, t)dV =

∫
ψ†(r, t)H(t)ψ(r, t)dV

+ih̄
∫
ψ†(r, t)

∂U

∂t
U−1ψ(r, t)dV .

(6)

A comparison of Eqs. (5) and (6) demonstrates the nonequivalence of the initial and

transformed Hamiltonians in the time-dependent case [4–7, 10]. Equation (6) shows that

Eq. (5) for the particle EEV can be satisfied in one and only one representation. This

representation is basic and it cannot be physically equivalent to others.

It has been claimed by Gorbatenko and Neznamov [8, 9] that Hamiltonians related to

each other by unitary transformations are physically equivalent. However, the problem of

the EEVs was not considered in Refs. [8, 9].

Nieto [5] has stated that the operator UHU−1 has the same expectation values as H:
∫
ψ′†(r, t)UH(t)U−1ψ′(r, t)dV =

∫
ψ†(r, t)H(t)ψ(r, t)dV .

Let the unprimed representation be basic and U is the unitary transformation operator

from the unprimed representation to the primed one. Therefore, the energy operator in the

primed representation is H̃′ = UHU−1 but not H′ (see Ref. [13]). This property allows us

to obtain correct EEVs in any representation. If the Hamiltonian in a nonbasic (primed)

representation is known, the EEV is given by

E(t) =
∫
ψ′†(r, t)H̃′(t)ψ′(r, t)dV =

∫
ψ′†(r, t)H′(t)ψ′(r, t)dV

−ih̄
∫
ψ′†(r, t)

∂U

∂t
U−1ψ′(r, t)dV =

∫
ψ′†(r, t)H′(t)ψ′(r, t)dV

+ih̄
∫
ψ′†(r, t)U

∂U−1

∂t
ψ′(r, t)dV

(7)

or

E(t) =
〈
H̃′
〉
= 〈H′〉 − ih̄

〈
∂U

∂t
U−1

〉
= 〈H′〉+ ih̄

〈
U
∂U−1

∂t

〉
. (8)

The possibility to use any representation for a correct description of a quantum system

corresponds to fundamental principles of quantum mechanics (QM).

It is easy to explain the origin of the nonequivalence. Equation (2) can be transformed

to the form

ih̄U
∂

∂t
U−1ψ′ = ih̄

(
∂

∂t

)′

ψ′ = H̃′ψ′. (9)
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Thus, time-dependent unitary transformations change the form of the operator ih̄(∂/∂t) (as

well as that of the time operator, t). The spatial components of the four-momentum opera-

tors pµ = ih̄(∂/∂xµ) and xµ possess similar properties. Therefore, the operator ih̄(∂/∂t) is

equivalent to the energy operator H̃ in one and only one representation.

Now we need to determine the basic representation in order to calculate the EEVs. It has

been (explicitly or implicitly) supposed in preceding investigations [3–6, 10] that the Dirac

Hamiltonians and the Dirac wave functions satisfy Eq. (5). We will obtain a different result

below.

III. FUNDAMENTAL ROLE OF THE FOLDY-WOUTHUYSEN REPRESENTA-

TION IN DETERMINATION OF THE ENERGY EXPECTATION VALUES

A determination of the basic representation results from: i) an ascertainment of a clas-

sical limit of the relativistic QM and ii) a comparison of classical and quantum-mechanical

Hamiltonians and equations of motion. The choice of the Dirac representation as a basic

one [3–6, 10] may by mostly motivated by the perfect covariance of the Dirac equation. On

the other hand, the fundamental role of the FW representation in QM has become evident

relatively recently.

It has been proven in Ref. [14] (with the extension of the Wentzel-Kramers-Brillouin

method) that the transition to the classical limit of relativistic QM in the FW representation

is obtained by the replacement of operators in the quantum-mechanical Hamiltonians and

equations of motion with the respective classical quantities. This wonderful property shows

that the relativistic quantum-mechanical equations for particles with different spins should

become very similar after the FW transformation. Thus, this transformation results in a

unification of the relativistic QM.

Otherwise, investigations performed during last twenty years in the framework of the FW

transformation in relativistic QM (see Refs. [15–20] and references therein) have ascertained

a strong resemblance between the Hamiltonians and equations of motion in the FW represen-

tation and the corresponding classical counterparts. It is important that such a resemblance

covers all considered stationary and nonstationary problems in electrodynamics [18, 20–25]

and gravity [26–30]. It holds true for relativistic particles with spins zero [20, 23], one-half

[18, 20, 22] and unity [20, 21, 24, 25] in arbitrary (generally, strong) time-dependent electro-

5



magnetic fields as well as for Dirac particles in arbitrary (generally, strong) time-independent

[26–28] and time-dependent [30] gravitational fields and noninertial frames. A similar result

has been recently obtained for spin-0 particles in gravitational fields and noninertial frames

[29]. It is instructive to mention that the quantum-mechanical description of single particles

in strong external fields does not allow for specific effects of quantum field theory except for

a phenomenological treatment of anomalous magnetic moments.

We can conclude that the above mentioned replacement of operators brings the relativistic

quantum-mechanical FW Hamiltonians to the corresponding classical Hamiltonians. The

considered properties cause relativistic QM in the FW representation to be analogous to

nonrelativistic QM.

We need to comment on the relation between the operator r in the FW Hamiltonians

and the radius-vector r in classical physics. The latter quantity corresponds to the Newton-

Wigner position operator [31] (“mean position operator” [1]) which is equal to r only in the

FW representation. In the Dirac representation, this operator substantially differs from r

and is given by a cumbersome formula [1].

The operators of canonical variables, xµ and pµ, are equal to xµ and ih̄(∂/∂xµ), respec-

tively, in one and only one representation. The previous explanations definitely show that

this is the FW representation. In classical physics, p0 is equal to the Hamiltonian which

defines the particle energy and is a function of r,p, t, and the spin s. In the FW represen-

tation, the operator p0 = ih̄(∂/∂t) should be equal to the Hamiltonian operator and should

define the particle energy. As a result, the Hamiltonian operator is equal to the energy

operator just in this representation:

HFW = H̃FW . (10)

Therefore,

E(t) =
∫
ψ†
FW (r, t)HFW (t)ψFW (r, t)dV . (11)

In the Dirac representation, xµ and ih̄(∂/∂xµ) [in particular, ih̄(∂/∂t)] are not the op-

erators of canonical coordinates and momenta. In this representation, the determination of

the EEVs should therefore be based on the general formulas (7) and (8). In these formulas,

the operator U is the operator of transformation from the FW to the Dirac representation.

Thus, the nonequivalence of Hamiltonians in different representations does not lead to

the ambiguity of the EEVs.
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Let us consider a spin-1/2 particle with anomalous magnetic and electric dipole moments

in strong time-dependent electromagnetic fields as an example of the fundamental role of

the FW representation. In this case, the FW Hamiltonian has the form [22]

HFW = βǫ′ + eΦ +
1

4

{(
µ0m

ǫ′ +m
+ µ′

)
1

ǫ′
,
(
Σ·[π×E]−Σ·[E×π]− h̄∇·E

)}

−1

2

{(
µ0m

ǫ′
+ µ′

)
,Π·B

}

+β
µ′

4

{
1

ǫ′(ǫ′ +m)
,
[
(B ·π)(Σ·π) + (Σ·π)(π ·B) + 2πh̄(π ·j + j ·π)

]}

−dΠ·E +
d

4

{
1

ǫ′(ǫ′ +m)
,
[
(E ·π)(Π·π) + (Π·π)(π ·E)

]}

−d
4

{
1

ǫ′
,
(
Σ·[π×B]−Σ·[B×π]

)}
,

(12)

where π = p − eA ≡ −ih̄∇ − eA is the kinetic momentum operator, µ0 = eh̄/(2m) and

µ′ = (g − 2)eh̄/(4m) are the Dirac and anomalous magnetic moments, d is the electric

dipole moment, ǫ′ =
√
m2 + π2, and j = (1/4π) (∇×B − ∂E/∂t) is the density of external

electric current. To obtain the classical limit of the FW Hamiltonian, we set the Planck

constant to zero (h̄ → 0) and substitute the classical quantities for the operators. As a

result, we arrive at the equation

H = ǫ′ + eΦ+ s ·Ω, (13)

where ǫ′ is the classical counterpart of the corresponding operator and Ω is the angular

velocity of spin precession:

Ω =
2

h̄

[(
µ0m

ǫ′ +m
+ µ′

)
1

ǫ′
π ×E −

(
µ0m

ǫ′
+ µ′

)
B +

µ′

ǫ′(ǫ′ +m)
π(π ·B)

−dE +
d

ǫ′(ǫ′ +m)
π(π ·E)− d

ǫ′
π ×B

]
.

(14)

In classical physics, the Hamiltonian and the angular velocity of spin precession [32] are

defined by the same equations as Eqs. (13) and (14).

Now we can check the consequences of the assumption that the Dirac representation is

the basic one. With this assumption, the difference between the energy operator and the

FW Hamiltonian is given by

H̃FW −HFW = −ih̄∂UFW

∂t
U−1

FW . (15)

The right-hand side of this equation contains both even and odd terms. However, odd terms

can be disregarded. Since the FW wave functions have only one nonzero spinor (upper and

7



lower for states with positive and negative total energy, respectively [19]), averaging the odd

terms eliminates their contribution to the EEVs.

Partial derivatives with respect to time are hereinafter denoted by dots. The relativistic

method of the FW transformation [18, 20] allows us to derive the following equation for the

even part of H̃FW −HFW :

H̃FW −HFW =
1

4

{
µ0m

ǫ′(ǫ′ +m)
,
[
Σ ·

(
π × Ȧ− Ȧ× π

)
− h̄∇ · Ȧ

]}

+β
h̄

8

{
1

ǫ′(ǫ′ +m)
,
[
µ′
(
π · Ė + Ė · π

)
− d

(
π · Ḃ + Ḃ · π

)]}
.

(16)

Terms presented in this equation are exact. Terms of the second and higher orders in h̄

which do not relate to the contact interactions are not taken into account (µ0, µ
′, and d are

proportional to h̄). An importance of terms presented in Eq. (16) for a derivation of the

EEVs has been shown in Ref. [6]. In this work, the nonrelativistic approximation has been

used.

Evidently, the energy operator corresponds to the classical Hamiltonian. Therefore, the

assumption of the basic character of the Dirac representation [3–6, 10] destroys the agreement

between the relativistic QM and the classical physics. The considered example confirms

the fundamental role of the FW representation in relativistic QM, in particular, in the

determination of the EEVs.

IV. DERIVATION OF THE ENERGY EXPECTATION VALUES IN THE DIRAC

REPRESENTATION

Quantum-mechanical equations are usually solved in the Dirac representation. A deriva-

tion of the general equation for the EEVs in this representation is therefore rather important.

For this purpose, it is convenient to split the Dirac Hamiltonian into even and odd operators

commuting and noncommuting with the operator β, respectively:

H = βm+ E +O, βE = Eβ, βO = −Oβ. (17)

Even and odd operators are diagonal and off-diagonal in two spinors, respectively. To fulfill

the FW transformation of the initial Hamiltonian (17), one uses a priori information about

commutation relations. Any commutator of the momentum and coordinate operators adds

the factor h̄, while a commutator of different Pauli (or Dirac) matrices does not affix such
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a factor. So one supposes that commutators like [O, E ] have the additional factor h̄ as

compared with the product of operators OE . Since the Pauli matrices do not commute with

each other, we assume that multiple commutators of the form [O, [O, . . . [O, E ] . . .]] add the

factor h̄ with respect to the operator product OO . . .OE . This factor already appears due

to the first commutation. Since O2 is an even (block-diagonal) operator, the commutators

of the forms [O2, [O, E ]], [O2, [O2, E ]], and [[O, E ], E ] add the factor h̄2 as compared with

the corresponding products of the operators. Contemporary methods of the relativistic FW

transformation use an expansion in power series in the Planck constant [16, 20].

Equations (3) and (8) show that the energy operator in the Dirac representation is defined

by

H̃D = HD + ih̄

(
U
∂

∂t
U−1 − ∂

∂t

)
, U = U−1

FW , (18)

where U and UFW are the transformation operators from the FW representation to the Dirac

one and other way round, respectively.

Let us determine H̃D with allowance for terms proportional to the zeroth and first powers

of h̄. The relativistic FW transformation is fulfilled by iterative methods [18, 20] and the

total transformation operator has the form UFW = . . . ·U2U1. Since the first transformation

performed with the operator U1 eliminates the main odd terms, 1−U2 ∼ h̄. With the given

accuracy, ih̄U−1

2
(∂/∂t)U2 ≈ ih̄(∂/∂t). The transformation with the operator [18] (see also

Ref. [20])

U1 =
ǫ+m+ βO√
2ǫ(ǫ+m)

results in

H̃D = HD + i
h̄

8

{
1

ǫ(ǫ+m)
,
(
β{ǫ, Ȯ}+ 2βmȮ − β{ǫ̇,O}+ [O, Ȯ]

)}
, (19)

where ǫ =
√
m2 +O2.

This general equation provides one with the possibility of calculating the EEVs with

time-dependent Dirac Hamiltonians.

As an example, we can consider a spin-1/2 particle in strong time-dependent electromag-

netic fields. In this case, the Dirac Hamiltonian has the form (17) where

E = eΦ− µ′Π ·B − dΠ ·E, O = cα · π + iµ′γ ·E − idγ ·B. (20)
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The energy operator which defines the EEVs by averaging is given by

H̃D = HD +
eh̄

8

{
1

ǫ′(ǫ′ +m)
,
[
−i{ǫ′,γ · Ȧ} − 2imγ · Ȧ+Σ · (π × Ȧ− Ȧ× π)

]}

+i
eh̄

8

{
1

ǫ′2(ǫ′ +m)
,
[
(π · Ȧ)(γ · π) + (γ · π)(Ȧ · π)

]}
.

(21)

The contribution to the EEVs given by the two last terms in Eq. (21) can be rather

important. In a similar case, the importance of such a contribution has been shown in Ref.

[6] with the use of the nonrelativistic approximation.

V. EXACT FOLDY-WOUTHUYSEN TRANSFORMATION OF NONSTATION-

ARY HAMILTONIANS

The even (block-diagonal) form of the final Hamiltonian was the only condition of trans-

formation used by Foldy and Wouthuysen [1]. However, this condition does not define the

FW Hamiltonian unambiguously. The additional condition eliminating this ambiguity has

been proposed by Eriksen [33] and substantiated by Eriksen and Kolsrud [34]. Additional

substantiation of the Eriksen method has been given in Ref. [35].

The operator transforming the initial Hamiltonian to the FW representation can be

presented in the exponential form:

UFW = exp (iS). (22)

The transformation remains unique if the operator S is odd and Hermitian [33, 34]. This

condition is equivalent to [33, 34]

βUFW = U †
FWβ. (23)

We kept above the term “Hermitian” used in Refs. [33, 34] while the operator S should also

be self-adjoint (see the beginning of Sec. II).

Eriksen [33] has found the operator satisfying Eq. (23) and therefore performing the

exact FW transformation:

UE = UFW =
1 + βλ√

2 + βλ+ λβ
, λ =

H
(H2)1/2

, (24)

where λ is the sign operator. The denominator is an even operator and commutes with the

numerator [33, 34] (see also Ref. [19]).
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In Refs. [33–35], only the stationary case was considered. However, we can extend the

Eriksen method on the nonstationary case under discussion. The operator λ is the sign

operator even in this case: λψ = ±ψ [ψ is the initial wave function defined by Eq. (2)]. As

a result, the operators 1 + βλ and UE cause either a lower or a upper spinor to vanish for

positive and negative energy states, respectively. In the nonstationary case, these operators

can be time dependent. Since the operator ih̄(∂/∂t) in the FW representation (but not in

the Dirac one) corresponds to p0 in classical physics, the Dirac operator ∂/(∂t) corresponds

to the following FW operator:
(
∂

∂t

)

FW

= UE
∂

∂t
U−1

E . (25)

As

ih̄
∂ψFW

∂t
= HFWψFW , (26)

the exact FW Hamiltonian is equal to

HFW = UE

(
H− ih̄

∂

∂t

)
U−1

E + ih̄
∂

∂t
. (27)

While Eq. (27) solves the problem of the exact FW transformation in the nonstationary

case, an explicit exact FW Hamiltonian can be obtained only in some special cases. In the

general case, only an approximate expression for the FW Hamiltonian can be derived (see

Ref. [20]).

A sufficient condition for the exact FW transformation has been found in Refs. [18, 36]

for the stationary case. In the nonstationary case, it takes the form

[F ,O] = 0, F = E − ih̄
∂

∂t
. (28)

When it is satisfied, the FW Hamiltonian is given by

HFW = βǫ+ E , ǫ =
√
m2 +O2. (29)

Possibilities of satisfying the condition (28) are very restricted. In particular, the opera-

tors ∂/(∂t) and O do not commute for a spin-1/2 particle in nonstationary electromagnetic

fields because Ȯ 6= 0. Nevertheless, we can give an example of the exact FW transformation

in the nonstationary case. Let us consider the Dirac particle in a nonstationarily rotating

frame. The angular velocity of frame rotation, ω(t), may arbitrarily depend on time. This

frame is flat and its metric is given by

ds2 = c2dt2 − (dr + [ω(t)× r]dt)2. (30)
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The corresponding Dirac Hamiltonian is equal to [28, 37]

H = βm+α · p− ω(t) ·
(
r × p+

h̄Σ

2

)
. (31)

This Hamiltonian satisfies the condition (28) and its FW transformation is exact. The

transformed Hamiltonian is given by

HFW = β
√
m2 + p2 − ω(t) ·

(
r × p+

h̄Σ

2

)
. (32)

This is the first example of the exact FW transformation in the nonstationary case. For

a stationarily rotating frame (ω = const), the FW Hamiltonian has been derived in Ref.

[27]. The exact operator equation of spin motion is given by

dΣ

dt
= −ω(t)×Σ. (33)

Thus, the spin rotates with the instantaneous angular velocity −ω(t). This conclusion fully

agrees with classical gravity.

VI. SPIN-1/2 PARTICLE IN A PLANE MONOCHROMATIC ELECTROMAG-

NETIC WAVE

As an example demonstrating the validity of Eq. (10) and the invalidity of Eq. (15), we

can consider a spin-1/2 particle in a plane monochromatic electromagnetic wave. In this

case, the conventional approach consists in

Φ = 0, A =
E

iκ
, E = E0 exp [i(κ · r − ω′t)], B = n×E, κ =

ω′

c
n, (34)

where n and ω′ are the direction and the angular frequency of the wave. The corresponding

Dirac equation admits an exact solution obtained by Volkov (see Ref. [38]). The FW

transformation is not exact but it ensures a high accuracy.

It has been mentioned in Sec. III that averaging eliminates the contribution of odd terms

in the operator −ih̄(∂UFW/∂t)U
−1

FW to the EEVs. The leading even term in this operator is

proportional to [O, Ȯ] and therefore contains the operator h̄Σ. As a result, it significantly

affects the spin motion while its influence on the evolution of the momentum is rather weak.

The FW Hamiltonian of the particle is given by the general equation (12) where the fields

are presented by Eq. (34). If we consent to the fundamental role of the FW representation
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in a determination of the EEVs, the classical limit of the operator of angular velocity of

spin precession is presented by Eq. (14) and the spin motion fully corresponds to the

Thomas-Bargmann-Michel-Telegdi [39, 40] equation. If the fundamental role of the Dirac

representation in such a determination is assumed, the energy operator of the particle is

equal to H̃FW and is defined by Eqs. (15) and (16). In the considered case, Ȧ = −cE.

When all terms of the second order in h̄ are disregarded, the above equations result in

H̃FW = HFW − 1

4

{
µ0m

ǫ′(ǫ′ +m)
,Σ ·

(
π ×E −E × π

)}

= βǫ′ +
µ′

4

{
1

ǫ′
,Σ ·

(
π ×E −E × π

)}
− 1

2

{(
µ0m

ǫ′
+ µ′

)
,Π·B

}

+β
µ′

4

{
1

ǫ′(ǫ′ +m)
,
[
(B · π)(Σ · π) + (Σ · π)(π ·B)

]}
.

(35)

The classical limit of the energy operator is the classical Hamiltonian. In this limit, the

angular velocity of spin precession corresponding to Eq. (35) is equal to [see Eq. (13)]

Ω̃ = Ω− 2

h̄
· µ0m

ǫ′(ǫ′ +m)
π ×E

=
2

h̄

[
µ′

ǫ′
π ×E −

(
µ0m

ǫ′
+ µ′

)
B +

µ′

ǫ′(ǫ′ +m)
π(π ·B)

]
,

(36)

where Ω is given by Eq. (14) (with d = 0). The quantity Ω̃ disagrees with the Thomas-

Bargmann-Michel-Telegdi result. This demonstrates that the supposition about the funda-

mental role of the Dirac representation in the determination of the EEVs is incorrect.

The EEVs in the Dirac representation are defined by Eqs. (19) and (21). With allowance

for terms proportional to the zeroth and first powers of h̄, they take the form

H̃D = HD +
eh̄

8

{
1

ǫ′(ǫ′ +m)
, [i{ǫ′,γ ·E}+ 2imγ ·E −Σ · (π ×E −E × π)]

}

−ieh̄
8

{
1

ǫ′2(ǫ′ +m)
, [(π ·E)(γ · π) + (γ · π)(E · π)]

}
.

(37)

VII. SUMMARY

Thus, we confirm the result of the previous investigation [5] that the nonequivalence of

Hamiltonians in different representations does not lead to an ambiguity of the EEVs. We

show that the origin of this nonequivalence is a change of the form of the time derivative

operator at a time-dependent unitary transformation. For a particle in nonstationary fields,

the energy operator is equal to UHU−1 and does not coincide with the transformed Hamil-

tonian. Expectation values of the energy operator define the EEVs [5]. However, it has
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been explicitly or implicitly supposed in Refs. [3–6, 10] that the basic representation in the

time-dependent case is the Dirac one. We prove that the comparatively recent developments

of the theory of the relativistic FW transformation lead to an alternative conclusion about

the basic role of the FW representation. As an example of the importance of this prob-

lem, we have considered the spin-1/2 particle with anomalous magnetic and electric dipole

moments in strong time-dependent electromagnetic fields. The supposition that the Dirac

representation is basic leads to a wrong description of the particle spin motion in this case

and, in particular, in the case of a particle in a plane monochromatic electromagnetic wave.

This result is very natural. The operator ih̄ (∂/∂xi) (i = 1, 2, 3) in the Dirac represen-

tation does not correspond to the classical momentum pi and also the operator xi in this

representation does not correspond to the classical coordinate. Therefore, the assumption

that the operator ih̄ (∂/∂t) in this representation is the energy operator and corresponds to

the classical energy p0 ≡ E postulates different properties of the spatial and temporal com-

ponents of the operator ih̄ (∂/∂xµ) (µ = 0, 1, 2, 3) and contradicts the relativistic invariance

of the Dirac equation.

Since quantum-mechanical equations are usually solved in the Dirac representation, we

have derived the general equation for the EEVs in this representation. We have also found

the sufficient condition of the exact FW transformation in the nonstationary case and have

given the first example of such a transformation (the Dirac particle in a nonstationarily

rotating frame).
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