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Abstract

The new derivation of the equation of the spin precession is given for a particle possessing electric

and magnetic dipole moments. Contributions from classical electrodynamics and from the Thomas

effect are explicitly separated. A fully covariant approach is used. The final equation is expressed in

a very simple form in terms of the fields in the instantaneously accompanying frame. The Lorentz

transformations of the electric and magnetic dipole moments and of the spin are derived from

basic equations of classical electrodynamics. For this purpose, the Maxwell equations in matter

are used and the result is confirmed by other methods. An antisymmetric four-tensor is correctly

constructed from the electric and magnetic dipole moments.
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I. INTRODUCTION

A spin motion of a particle with an anomalous magnetic moment (AMM) and an electric

dipole moment (EDM) in electric and magnetic fields is an important problem of classical

spin physics. A search for the EDM [1] is a part of exploration of new physics beyond

the Standard Model. For charged particles in storage rings, this search is based on the

relativistic equation of spin motion. The corresponding equation for a particle without the

EDM has been derived by Thomas [2] (also by Frenkel [3]) and, in a more general form, by

Bargmann, Michel and Telegdi [4]. This is so-called Thomas-Bargmann-Michel-Telegdi (T-

BMT) equation. There are two main methods of derivation of this equation. The Thomas

method [2] (clearly explained in Ref. [5]) is based on separated calculations of the spin

precession in the instantaneously accompanying frame and of the contribution from the

Thomas effect. Addition of this contribution to the angular velocity of the spin precession

obtained with a Lorentz transformation from the instantaneously accompanying frame leads

to the needed equation. The Bargmann-Michel-Telegdi method [2] (transparently clarified

in Ref. [6]) consists in the use of covariant equations of motions for the four-vectors of spin

and velocity, aµ and uµ, and the orthogonality condition aµu
µ = 0. The transition to the rest

frame spin, ζ, allows one to derive the T-BMT equation. This method does not explicitly

use the equation for the angular velocity of the Thomas precession.

An extension of the T-BMT equation due to the EDM has already been discussed in the

original paper of Bargmann, Michel and Telegdi [4]. Then, the equation of spin motion of

the particle with the AMM, µ′, and the EDM, d, has been obtained in Refs. [7, 8] by the

dual transformation µ′ → d, B → E, E → −B. The rigorous derivation of this equation

has been presented in Ref. [9]. The resulting equation of spin motion coincides with that

presented in Refs. [7, 8]. However, the derivation fulfilled in Ref. [9] has not used the

supplementary assumption of dual symmetry.

We demonstrate in the present work that including the EDM into a consideration opens

new possibilities to relate the particle spin motion with basic equations of classical electro-

dynamics, namely, the Maxwell equations in matter and the Lorentz transformations of the

four-current and other four-vectors. We also extract a contribution from the Thomas effect

to the resulting spin motion with the use of a fully covariant approach.

II. ELECTROMAGNETIC INTERACTIONS OF A MOVING PARTICLE

We consider an extended charged particle in electric and magnetic fields. In fact, the fields

may be nonuniform and nonstationary if we neglect terms proportional to their derivatives.

In the framework of classical electrodynamics, we can divide the particle into point-like
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charges e and currents J . Let R be the radius-vector of the center of mass of the particle:

R =

∑

Er
∑

E
, (1)

where E and r are the total energy and the radius-vector of a constituent part of the particle.

One defines an interaction of the electric and magnetic dipole moments, d and µ, with

the external fields by the Hamiltonian

H = −d ·E − µ ·B, (2)

where

d =
∑

er =

∫

ρ(r)rdV , (3)

µ =
1

2c

∑

[r × J ] =
1

2c

∫

[r × j]dV . (4)

Here ρ(r) and j(r) are the charge and current densities. The sums are replaced with the

integrals. This conventional definition becomes inexact for the moving particle. The rigorous

definition should take into account a motion of the center of mass R(t). When its velocity

is V , the EDM takes the form

d =
∑

er, r = r −R(0)− V t. (5)

Similar correction should be made for the magnetic moment:

µ =
1

2c

∑

[r× J ] =
1

2c

∫

[r× j]dV . (6)

The center-of-mass velocity is given by

V =
c2
∑

π
∑

E
=

c
∑

π
∑

√
M2c2 + π2

, (7)

where M is the mass and π is the kinetic momentum of a constituent part of the particle.

Equation (5) defines the EDM relative to the center of mass. It is important to consider

any another definition. The definition of the EDM relative to the center of charge Rc(t)

results in

dc =
∑

e[r −Rc(0)− Vct] (8)

instead of Eq. (5). However, the difference between Eqs. (5) and (8) is not very important.

Detailed classical description of an extended spinning particle has been presented in Ref.

[10]. The spin and the averaged magnetic moment of such a particle are collinear. The

electric and magnetic dipole moments are orthogonal in the particle rest frame. Therefore,

the EDM oscillates and its average value in the particle rest frame is equal to zero. More
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exactly, it can be nonzero only when the CP invariance is violated. These properties are

valid for any definition of d and µ. When we neglect the CP violation, < d >= 0 and

< dc >= 0 in the particle rest frame. As a result, their averaged difference is also equal to

zero and < Rc >= R. For example, the center of a proton in a deuteron is equal to Rc and

the proton rotates and oscillates relative to the center of mass. The CP violation changes

nothing because its influence on an atomic and nuclear structure can be neglected.

In the present paper, we use the standard definition of the EDM relative to the center of

mass.

Electric and magnetic dipole moments of the particle depend on a reference frame. In

this section, we find a connection between the dipole moments in the lab frame and in the

instantaneously accompanying one. The connection between the latter frame and the rest

frame (which is noninertial) has been found by Thomas [2].

To express the electromagnetic interactions of the moving particle in terms of the in-

trinsic dipole moments, we can use the covariant form of the well-known expression for the

relativistic transformation of lengths:

ri = r
(0)
i − γ

γ + 1
βiβkr

(0)
k , βi =

Vi

c
=

1

c
· dXi

dt
, (9)

where Xi are components of R and r
(0)
i relate to the instantaneously accompanying frame.

A motion of the magnetic moment leads to the appearance of the EDM and other way

round. Since the charge and current densities form a four-vector, the charge density is

influenced by the motion of currents constituting a magnetic dipole:

ρ =
γ

c
β · j(0). (10)

The current EDM [11] appearing due to a motion of the magnetic dipole is given by d =

β × µ(0), where µ(0) is the magnetic moment in the instantaneously accompanying frame.

To derive general equations for the dipole moments and for the Hamiltonian of the moving

particle, it is convenient to use the Maxwell equations in matter (specifically, the Lorentz

transformations of the Maxwell fields). It is possible to determine physical quantities which

are based on the electric and magnetic dipole moments and form an antisymmetric four-

tensor. These are the electric and magnetic dipole moment densities

P =
dd

dV
, M =

dµ

dV
.

They enter into the Maxwell equations in matter:

∇×E = −1

c
· ∂B
∂t

, ∇×H =
4π

c
j(ext) +

1

c
· ∂D
∂t

,

∇ ·D = 4πρ(ext), ∇ ·B = 0, D = E + 4πP , B = H + 4πM ,
(11)
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where ρ(ext) and j(ext) are the densities of external charges and currents. As a result, P and

M transform like the electric and magnetic fields, E and B. Since F µν = (−E,B) and

G
µν = (−D,H) are antisymmetric four-tensors, the electric and magnetic dipole moment

densities also form the antisymmetric four-tensor Pµν = (P ,M) ([14], p. 557).

The Lorentz contraction defined by Eq. (9) results in

dV =
dV (0)

γ
. (12)

Therefore, the electric and magnetic dipole moments do not form a four-tensor and the

related four-tensor has the form

Dµν = (γd, γµ). (13)

It is not evident that Eq. (12) ensures the Lorentz invariance of charge. The elementary

charge is given by de = ρdV , where the charge density ρ is a zeroth component of a four-

vector. When there are not any currents in the instantaneously accompanying frame (j(0) =

0), the lab frame charge density is equal to ρ = γρ(0). As a result, de = de(0). Certainly, the

current j = cβρ = cβγρ(0) also appears in the lab frame. When there are only currents in

the instantaneously accompanying frame (ρ(0) = 0, j(0) 6= 0), the lab frame charge density

is given by Eq. (10). Nevertheless, this does not violate the Lorentz invariance of charge.

Any real current is closed. For a closed current, the sum of all positive charges appearing

in the lab frame is equal (with an opposite sign) to the sum of all negative charges.

The use of the well-known transformation law for four-tensors leads to the following

equations (γ(0) = 1):

d = d(0) − γ

γ + 1
β(β · d(0)) + β × µ(0), (14)

µ = µ(0) − γ

γ + 1
β(β · µ(0))− β × d(0). (15)

It is important that the Lorentz transformation of the dipole moments can be connected

with the Maxwell equations. Equations (14) and (15) can be obtained when P and M are

small as compared with E and B, respectively.

Equations (14) and (15) can also be derived by other methods. Let us consider a particle

possessing a magnetic moment in the instantaneously accompanying frame. To obtain the

two first terms in the right hand side of Eq. (15), we can use the fact that the quantity

r × j is the vector product of spatial parts of two four-vectors. As a result, its Lorentz

transformation is similar to that of the angular momentum. This transformation written in

a covariant form is given by

r× j = γ

{

[r× j](0) − γ

γ + 1
β(β · [r× j](0))

}

.
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Taking into account Eqs. (6) and (12) allows us to obtain the right expression

µ = µ(0) − γ

γ + 1
β(β · µ(0)). (16)

To derive the last term in Eq. (14), we can take into account the Lorentz transformation

of the four-current (10). Equations (5), (9), and (10) result in

d =
1

c

∫

(β · j(0))
[

r
(0) − γ

γ + 1
β(β · r(0))

]

dV (0). (17)

An averaged time derivative of a quantity varying within a finite interval is equal to zero.

Therefore,
〈

d

dt

(

ρ(0)r
(0)
i x

(0)
j dV (0)

)

〉

=
1

c

〈(

r
(0)
i j

(0)
j + r

(0)
j j

(0)
i

)

dV (0)
〉

= 0

and
〈

r
(0)
i j

(0)
j dV (0)

〉

=
1

2
eijk

〈[

r
(0) × j(0)

]

k
dV (0)

〉

.

As a result of this transformation, Eq. (17) takes the form [11]

d =
1

2c

∫

[

β × [r(0) × j(0)]
]

dV (0) = β × µ(0). (18)

The motion of a magnetic dipole leads to an appearance of an electric dipole in the lab

frame but the total electric charge is equal to zero in any frame.

The validity of the two first terms in the right hand side of Eq. (14) can be easily confirmed

with Eq. (9). Thus, different methods lead to the same formulas defining the transformation

of the electric and magnetic dipole moments from the instantaneously accompanying frame

to the lab one.

A possibility to construct a four-tensor from the electric and magnetic dipole moments

was first mentioned by Frenkel [12]. However, his assumption that this four-tensor has

the form Dµν = (d,µ) [cf. Eq. (13)] had resulted in incorrect transformation laws of the

quantities d and µ. Similar error has been made by Nyborg [13]. Thus, a correct analysis

has not be done in Refs. [12, 13].

To describe spin effects, we need to express the intrinsic dipole moments in the particle

rest frame in terms of the spin (pseudo)vector. In this case, d0 = dζ/s, µ0 = µζ/s, where

s = |ζ|. The quantities ζ and s have the dimensionality of the angular momentum. The

quantity s in classical physics corresponds to ~s (s is here the spin quantum number) in

quantum mechanics. The dynamics of the dipole moments in the particle rest frame and

in the instantaneously accompanying frame differs owing to the Thomas effect. Let us

determine a part of the Hamiltonian (2) which is not conditioned by this effect. It has the

form

H = −µ

s

[

B · ζ − γ

γ + 1
(β ·B)(β · ζ)− (β ×E) · ζ

]

−d

s

[

E · ζ − γ

γ + 1
(β ·E)(β · ζ) + (β ×B) · ζ

]

.
(19)
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It is important that this expression for the Hamiltonian can be reduced with the use of

the fields in the instantaneously accompanying frame, E(0) and B(0), satisfying the relations

(see Ref. [14])

E(0) = γ

[

E − γ

γ + 1
β(β ·E) + β ×B

]

,

B(0) = γ

[

B − γ

γ + 1
β(β ·B)− β ×E

]

.
(20)

Therefore, the Hamiltonian can be presented as follows:

H = −dE(0) · ζ
sγ

− µB(0) · ζ
sγ

. (21)

The use of the Poisson brackets allows one to obtain the corresponding angular velocity of

spin precession:

ω = −dE(0)

sγ
− µB(0)

sγ
. (22)

Equations (19) and (21) for the Hamiltonian and Eq. (22) for the angular velocity of

spin precession in the lab frame are general. The angular velocity of spin precession in the

instantaneously accompanying frame can be obtained from Eq. (22) with γ → 1.

However, we have started from the instantaneously accompanying frame while the spin

(pseudo)vector ζ is defined in the noninertial particle rest frame. Angular velocities of spin

precession in the two frames differ due to the famous Thomas effect which should also be

taken into consideration.

III. GENERAL DERIVATION WITH ALLOWANCE FOR THE THOMAS EF-

FECT

The Thomas effect [2] consists in a change of the angular velocity of spin precession due

to a rotation of the particle rest frame. Thomas has shown [2] that the difference between

the spin precession in the nonrotating instantaneously accompanying frame and in the rest

frame is defined by
(

∂ζ

∂t

)

nonrot

=

(

∂ζ

∂t

)

rest frame

+ ωT × ζ, (23)

where ωT is the angular velocity of the Thomas precession:

ωT = − γ2

γ + 1

(

β × dβ

dt

)

. (24)

A very short and clear derivation of Eq. (24) has been recently given in Ref. [15].

We can immediately find the total angular velocity of spin precession of the particle with

the AMM and EDM with Eqs. (23) and (24). However, it is more consistent to keep the

fully covariant approach.
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An inclusion of the EDM brings the covariant equation of spin motion to the general

form [9]
daµ

dτ
= A1F

µνaν + A2βu
µF νλuνaλ + A3G

µνaν + A4u
µGνλuνaλ, (25)

where the four-vectors of spin and velocity are defined by

aµ = (a0, a), a = ζ +
γ2β(β · ζ)

γ + 1
, a0 = β · a = γβ · ζ, uµ = (γ, γβ) (26)

and Gµν = ǫµναβFαβ/2 is the antisymmetric four-tensor dual to the electromagnetic field

tensor Fαβ . The translational motion of the particle is given by

duµ

dτ
=

e

mc
F µνuν. (27)

The transition to the instantaneously accompanying frame and the use of the orthogo-

nality condition aµu
µ = 0 result in (see Ref. [9])

A1 =
µ

s
, A2 = −1

s

(

µ− es

mc

)

= −µ′

s
, A3 = −d

s
, A4 =

d

s
. (28)

With the use of Eq. (27), the obtained equation can be presented in the form

daµ

dτ
=

µ

s

(

F µνaν − uµF νλuνaλ
)

− d

s

(

Gµνaν − uµGνλuνaλ
)

− uµdu
λ

dτ
aλ. (29)

Next derivations can be made similarly to Ref. [14]. It is convenient to denote

Φµ =
µ

s

(

F µνaν − uµF νλuνaλ
)

− d

s

(

Gµνaν − uµGνλuνaλ
)

. (30)

Evidently, Φµ = (Φ0,Φ) is a four-vector. Since uµΦ
µ = γ(Φ0 − β · Φ) = 0, it satisfies the

relation Φ0 = β ·Φ. The last term in Eq. (29) can be transformed as follows [14]:

uµdu
λ

dτ
aλ = −uµγa · dβ

dτ
. (31)

Thus, Eq. (29) leads to

da0

dτ
= Φ0 + γ2a · dβ

dτ
,

da

dτ
= Φ + γ2β

(

a · dβ
dτ

)

. (32)

Now we can calculate the equation of motion for the rest frame spin ζ with the use of

the relations

ζ = a− γ

γ + 1
β(β · a), d

dτ

(

γ

γ + 1
β

)

=
γ

γ + 1

dβ

dτ
+

γ3

(γ + 1)2
β

(

β · dβ
dτ

)

.

The needed equation has the form (cf. Ref. [14])

dζ

dτ
= Φ− γβ

γ + 1
Φ0 +

γ2

γ + 1
ζ ×

(

β × dβ

dτ

)

. (33)
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The transformation of the given four-vector Φµ to the instantaneously accompanying

frame results in
(

Φ(0)
)µ

=
(

0,Φ(0)
)

, where

Φ(0) = Φ− γ

γ + 1
β(β ·Φ) = Φ− γβ

γ + 1
Φ0.

Since dt = γ dτ , the derivation of Φ(0) from Eq. (30) brings the equation of spin motion

to the form
dζ

dt
= −

(

dE(0)

sγ
+

µB(0)

sγ

)

× ζ − γ2

γ + 1

(

β × dβ

dt

)

× ζ. (34)

The angular velocity of spin precession is given by

Ω = −
(

dE(0)

sγ
+

µB(0)

sγ

)

− γ2

γ + 1

(

β × dβ

dt

)

= ω + ωT , (35)

where ω and ωT are given by Eqs. (22) and (24), respectively.

Equations (34) and (35) show that the total angular velocity of spin precession is the

sum of two parts. The first part is given by the Lorentz transformation between the in-

stantaneously accompanying frame and the lab frame. The second one is the contribution

from the Thomas precession. This part defines the additional spin precession caused by a

purely kinematical effect of a rotation of the particle rest frame (see, e.g., Ref. [14, 16]).

The presented derivation of Eqs. (34) and (35) is fully covariant but it does not specify the

two contributions to the total effect. The origins of these contributions are considered in

detail in Sec. II and in the theory of the Thomas effect [2, 14–17].

The particle acceleration is expressed in terms of the lab frame fields as follows:

dβ

dt
=

e

mcγ
[E + β ×B − β(β ·E)] . (36)

With the use of Eqs. (20), (36), one can bring Eq. (35) to the form

Ω = − e

mc

[(

G +
1

γ

)

B − γG

γ + 1
(β ·B)β −

(

G +
1

γ + 1

)

β ×E

+
η

2

(

E − γ

γ + 1
(β ·E)β + β ×B

)]

,
(37)

where G = (g−2)/2, g = 2mcµ/(es), and η = 2mcd/(es). This equation has been previously

derived in Ref. [9].

The equation of spin motion takes a pretty simple form after an expression of the Thomas

precession in terms of the fields in the instantaneously accompanying frame. While

E + β ×B − β(β ·E) 6= E(0),

the angular velocity of the Thomas precession is equal to

ωT = − e

mc(γ + 1)

(

β ×E(0)
)

. (38)
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Therefore,
dζ

dt
= − e

mc

(

gB(0)

2γ
+

ηE(0)

2γ
+

β ×E(0)

γ + 1

)

× ζ. (39)

This final equation explicitly shows the contributions from the electric and magnetic

dipole moments and from the Thomas precession.

IV. DISCUSSION AND SUMMARY

The earlier derivations of the equation of spin motion of a particle with the AMM and

EDM [7, 8] used the dual transformation of terms proportional to the AMM in the T-BMT

equation describing a particle without the EDM. The rigorous derivation of the equation for

a particle with the AMM and EDM has been first performed in Ref. [9]. In the present work,

we have made a next step and have deduced this equation with the explicit separation of

contributions from the Lorentz transformation between the instantaneously accompanying

frame and the lab frame and from the Thomas effect. This deduction is fully covariant. The

transition to the fields in the instantaneously accompanying frame has allowed us to present

the final equation in the very simple form. Amazingly, one need not to divide the magnetic

moment into the normal and anomalous parts. This division is a result of expression of the

equation of spin motion in terms of the lab frame fields.

In fact, the obtained equation of motion (39) cannot exhaustively specify origins of the

two contributions. However, a needed specification of the Thomas term is presented by the

theory of the Thomas effect [2, 14–17]. This theory shows that the Thomas effect has a

purely kinematical origin and is caused by a rotation of the particle rest frame [14, 16].

The origin of the contributions of the electric and magnetic dipole moments to Eq. (39)

has been cleared in Sec. II. It has been demonstrated that the form of these contributions

is conditioned by the Lorentz transformations of the electric and magnetic dipole moments

from the instantaneously accompanying frame to the lab frame.

These transformations are the key moments of the analysis fulfilled in Sec. II. We have

determined the connection between the dipole moments in the lab frame and in the in-

stantaneously accompanying one and have corrected errors made in previous investigations

[12, 13]. We have derived this connection from basic equations of classical electrodynamics,

namely, from the Maxwell equations in matter and from the Lorentz transformations of the

four-current jµ and other four-vectors. We have also constructed a four-tensor from the

electric and magnetic dipole moments.

The above-mentioned new results have been obtained thank to the inclusion of the EDM

into the consideration. The existence of the direct relations between the particle spin motion

and basic equations of classical electrodynamics is an important fact. The results obtained
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show a deep self-consistency of classical electrodynamics.

Acknowledgements

The author is grateful to the referees of the journal for valuable remarks and propositions.

The author also acknowledges the support by the Belarusian Republican Foundation for

Fundamental Research (Grant No. Φ14D-007) and by the Heisenberg-Landau program

of the German Ministry for Science and Technology (Bundesministerium für Bildung und

Forschung).

[1] Fukuyama T 2012 Searching for new physics beyond the Standard Model in electric dipole

moment Int. J. Mod. Phys. A 27 1230015; Jungmann K 2013 Searching for electric dipole

moments Ann. Phys. (Berlin) 525 550-564; Pretz J 2013 Measurement of permanent electric

dipole moments of charged hadrons in storage rings Hyperfine Interactions 214 111-117

[2] Thomas L H 1926 The Motion of the Spinning Electron Nature (London) 117 514-514; Thomas

L H 1927 The Kinematics of an Electron with an Axis Philos. Mag. 3 1-22

[3] Frenkel J 1926 Die Elektrodynamik des rotierenden Elektrons Z. Phys. 37, 243-262

[4] Bargmann V, Michel L and Telegdi V L 1959 Precession of the Polarization of Particles Moving

in a Homogeneous Electromagnetic Field Phys. Rev. Lett. 2, 435-436

[5] Mane S R, Shatunov Yu M and Yokoya K 2005 Spin-polarized charged particle beams in

high-energy accelerators Rep. Prog. Phys. 68, 1997-2265

[6] Berestetskii V B, Lifshitz E M and Pitaevskii L P 1973 Quantum Electrodynamics 2nd edn

(Oxford: Pergamon Press)

[7] Nelson D F, Schupp A A, Pidd R W and Crane H R 1959 Search for an Electric Dipole

Moment of the Electron Phys. Rev. Lett. 2, 492-495

[8] Khriplovich I B 1998 Feasibility of search for nuclear electric dipole moments at ion storage

rings Phys. Lett. B 444, 98-102

[9] Fukuyama T and Silenko A J 2013 Derivation of Generalized Thomas-Bargmann-Michel-

Telegdi Equation for a Particle with Electric Dipole Moment Int. J. Mod. Phys. A 28, 1350147

[10] Rivas M 2002 Kinematical Theory of Spinning Particles: Classical and Quantum Mechanical

Formalism of Elementary Particles (New York: Kluwer Acad. Publ.).

[11] Silenko A J 1999 Electric Current Multipole Moments in Classical Electrodynamics Prog.

Theor. Phys. 101, 875-884

11



[12] Frenkel J 1926 Lehrbuch der Elektrodynamik. Bd. 1: Allgemeine Mechanik der Elektrizität

(Berlin: Verlag J. Springer)

[13] Nyborg P 1964 Approximate Relativistic Equations of Motion for an Extended Charged Par-

ticle in an Inhomogeneous External Electromagnetic Field Nuovo Cim. 31, 1209-1228

[14] Jackson J D 1998 Classical Electrodynamics 3rd edn (New York: John Wiley & Sons)
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