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Abstract. An approach has been developed to perform data processing for experiments on 
two-dimensional phase transition of first order. The approach represents itself the two stage 
filtration with subsequent merging of processed data and comparison with simulation results 
based on geometro-thermodynamical methods. The approach has been successfully applied to 
description of the phase transition in compressed monolayers of steric acid. 

1.  Introduction 
Development of formation methods for two-dimensional (2D) solid-state perfect structures, which 

can operate at room temperature, is an important problem of flexible electronics. Langmuir-Blodgett 
(LB) technique can be used to produce almost perfect two-dimensional structures, provided that the 
conditions on a phase boundary are under the control [1]. 

To utilize LB monolayers as a material for nanoelectronics it is necessary to correlate structural 
changes in a metastable compressed monolayer with changes of phenomenological parameters of the 
monolayer (e.g., compressibility coefficient). This requires a statistical analysis of experimental 
dependences of the surface tension π  upon the area A per molecule, followed by compressibility 
calculation. 

When modeling the Langmuir monolayer compression by Monte Carlo methods, a metastable state 
is excluded from consideration that does not allow for such a control [2]. A compressibility κ , for 
π –A isotherms being dependencies of surface tension π on an area A per one molecule, presents itself 
a derivative from the dependence ln ( )A π  over π . But, instead of it, the "apparent" compressibility 

app 1/ 'Kκ =  being an inverse elasticity of a Langmuir monolayer is calculated [3–5]. 
To construct the dependence of compressibility coefficient in the whole range of the surface 

pressure π , it is necessary to use the procedure of the statistical data processing on a huge 
experimental data set due to large fluctuations in critical regions for 2D phase transitions. Nowadays 
such data processing of π –A compression isotherms have not been proposed.  

In [6–8], a geometric approach to the thermodynamics of the first order phase transitions in 
compressed monolayers on the interphase boundary of air/water subphase has been developed. 

The goal of this work is to propose a method of compression isotherms statistical analysis for 
metastable Langmuir monolayers. It allows to evaluate the compressibility coefficient based on 
experimental data. We model the 2D phase transitions of first order using geometrodynamic methods 
and demonstrate that theoretical predictions and experimentally obtained compressibility of 
monolayers of stearic acid are close to each other. 

SPbOPEN2015 IOP Publishing
Journal of Physics: Conference Series 643 (2015) 012015 doi:10.1088/1742-6596/643/1/012015

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

2.  Materials and methods 
Langmuir monolayers are fabricated on an automated home-built Langmuir trough with controlled 

deposition on a substrate [9]. Hexan solution of stearic acid was dripped with the help of a 
micropipette on a liquid subphase surface. Langmuir monolayers were obtained by compressing of 
stearic acid molecules on air / aqueous subphase interface. Deionized water was used as a subphase for 
stearic acid monolayer formation. 

3.  Data processing 
In this paper, we propose a method of statistical analysis when at first stage we smoothen 2D 

fluctuations of the vector ( ),i i ir Aπ≡


  over an interval of n1 values of the surface tension i jπ +  and 

corresponding to them values of the area i jA +  per one molecule: ( )
1

1

/ 2

/ 21

1,
n

i i i i j
j n

r A r
n

π +
=−

≡ = ∑ 
 . Then, a 

filtering procedure based on the sliding mean with given window width m1 is applied to the smoothed 
set, when an experimental value is to replace by a mean value obtained from the m1 nearest points as: 

1

1
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/ 21

1 m
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j mm

π π π +
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→ = ∑   . The filtering on the sliding mean was applied only to the readings of the 

surface tension sensor, as its noise prevails over the noise of "inertial" position sensor. To find the 
compressibility ( )κ π  of monolayer, the logarithmic derivative of the dependence ( )A π  obtained after 
the data processing with filtering parameters {n1, m1} was calculated numerically. The existence of 
scale invariance property of phase transitions was accounted by merging several filtrations of original 
data.  

4.  Compressibility of amphiphilic two-dimensional membranes with Finsler–Lagrange space 
structure 

The amphiphilic molecules of fat acids form a monolayer on the surface of the water subphase. Let 
us consider the motion of a particle in the monolayer under the action of electrocapillary forces that 
take place on the interface and determine the magnitude of the surface tension σ  of such a 2D 
membrane [10]. The first order phase transition occurs for long compression time 1t∆  (long 
observation time). The experimentally measured quantity, interpreted as the surface pressure π  of the 
monolayer, is defined by the expression:  

 
2H O hydrocompπ σ σ= −       (1) 

 
where 

2H Oσ  is the surface tension of the subphase (e.g., water), hydrocompσ  is the surface tension of the 
subphase with hydrate complexes. According to (1), molecules which leave the hydrate complexes do 
not contribute to the experimentally measurable value of π . The surface pressure of the hydrated 
monolayer changes, but as a consequence of the diminishing of the Langmuir monolayer density ρ  
due to the complexes decay, the increment of surface pressure π∆  , observed during the phase 
transition of t∆ , is equal to zero: 0π∆ = . In this sense, at the first order phase transition, the 
parameters of molecules which leave hydrated complexes are hidden from the observer. This allows us 
to introduce an evolution parameter τ  as a parameter of the current state of the process of the first 

order phase transition in a hydrated complexes monolayer only. Then, the derivative d
d
π
τ
∆   is the rate 

of surface pressure change for the hydrated complexes monolayer. Since 
( )( ) pht

B B
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τ τ τ
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constants, and the change of the area S per one molecule is proportional to the square of variation 
2( )rδ τ , then we find a space–time derivative of the compressibility coefficient 1 S

S
κ

π
∂

=
∂ 

: 

 
2 2

2

1 2
''pht B

S r
r S t r k TC r
τκ δ

π δ τ
′∂ ∂ ∂
= − =

∂ ∆ ∂ ∂ ∂
   (2) 

where 
phttτ

κ κκ
τ
∂′ = ∝
∂ ∆

, '' 'C C C=  , ', 0C C > ; 2S rδ , phtt∆  is time of the phase transition, V is a 

compression rate.  
We apply a geometrodynamics of the first order phase transitions in two-dimensional systems to 

examine metastable compressed monolayers [6–8]. rδ  is determined by the flag curvature K as 
2

2

( )r K rδ τ δ
τ

∂
= − ⋅

∂
 [11]. We choose the trace cB  of Berwald curvature k

ikjB  as K: 

k
ij k ij
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τ τ τ
= = =  . Here, a vector kG  is determined 

by equating the variation of action ( ),j j
Fdl F x dx=∫ ∫  to zero. One uses a following metric function 

( ),j jF x dx  [6–8]: 
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where A, B and C are defined as follows: 
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2mcC =  
 

where m is a mass of a particle, 
2
0

2
0

0

22

R
qp ρ

εε
π

=  is a parameter dependent on a charge q  of monolayer 

molecule, density 0ρ  of molecules at initial moment, dielectric constant 0ε , dielectric permittivity 
ε of the subphase, and radius 0R  of a radial trough, c is speed of light; ,r ϕ  determine a displacement 
of the particle in the polar coordinate system; a special function Ei is an exponential integral function. 
The metric tensor is determined through the metric function as follows: 
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 one gets the compressibility after integration (2): 
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Here one takes into account that pht
t t

t
π π
τ τ
∂ ∂ ∂

= ∆
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 

 . The Berwald curvature Bc is equal to zero 

everywhere except of the isotherm plateau. Therefore the expression (7) can get the form 
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Here (0) ( (0))c cB B r≡  is a constant of the phase transition. 

The theoretical dependences Bc on displacement r at 0=ϕ  are shown for compression rates V = 2 
and V = 10 in Fig. 1. One can see that Bc(r) has two singularities, position of which depends on the 
compression rate. At increase of V, the singular points shift to each other, and, respectively, a region 

phtπ∆   of phase transition becomes narrower according to Fig. 1. 
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Figure 1. The dependences of Berwald 
curvature Bc on displacement r for compression 
rates V = 2 (blue solid line) and V = 10 (magenta 
dashed line). 

Figure 2. A−π -isotherms for a stearic acid 
monolayer formed at compression rates V equal 
to 8.0 (blue), 5.5 (green), 4.0 (red), 3.5 
(magenta), 2.5 mm/min (black). 

5.  Experimental results and discussion 
Typical compression A−π  isotherms at different compression rates V are shown in Fig. 2. One 

can see that depending on V, the phase transitions can vary in area per molecule and start at different 
molecular area A. At low V the surface pressure increases shaper in range of high value A than at high 
V: the first order phase transition begins at lower A and is smoother  (compare isotherm for rates 2.5 
and 8.0 mm/min). These isotherms have been used to get the dependences of compressibility on 
surface pressure according to data processing, described above.  

The dependences of compressibility ( )κ π  on π  at different compression rates V are represented in 
Fig. 3. Each of them represents itself three sets of data which correspond to three filtration parameters: 
{n1 = 6, m1=6}, {n1 = 6, m1=7}, {n1 = 7, m1=6} for V = 3.5, 4.0, and 5.5 mm/min (Fig. 3 (b – d)) and  
 

(a) (b) (c) 

   
(d) (e) 

  
Figure 3. The dependences of the compressibility κ on π  at the 2D-phase transition of first order in 
the monolayer at different compression rates: V = 2.5 (a), 3.5 (b), 4.0 (c), 5.5 (d), 8.0 mm/min (e). 
Symbols denote experimental data processing results, solid lines are fitting, dashed lines are the 
theoretical predictions. 
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{n1 = 3, m1=3}, {n1 = 4, m1=5}, {n1 = 5, m1=3} for V = 8.0 mm/min (Fig. 3 (e)). One can see that the 
dependences ( )κ π  have a complex non-linear character in the region of the first order phase 
transition. 

The experimental dependences of compressibility κ on surface pressure π  for the stearic acid 
monolayer at different compression rates V have been approximated by the theoretical curves (8), red 
dashed lines in Fig. 3. As one can see the theoretical curves elucidate the origin of dispersion of 
compressibility. The phase transition width phtπ∆   was defined as a difference between two singular 
points on a theoretical curve in Fig. 1. Table 1 demonstrates that phtπ∆   is a function of the 
compression rate V. The phase transition width was found out to decrease with the increasing of the 
compression rate that is in accordance with our theoretical results shown in Fig. 1. 
 

Table 1. The value of phase transition width 
phtπ∆   at different compression rates V. 

V, mm/min phtπ∆  , mN/m 

2.5 - 
3.5 6.5 
4.0 6.0 
5.5 5.7 
8.0 5.5 

6.  Conclusion 
Thus, the approach has been proposed that allows to examine the anomalous behavior of 

compressibility at 2D phase transition of first order. The proposed approach is used to describe the 
formation of Langmuir stearic acid monolayers. 
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