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ZIEGLER SPECTRA OF SERIAL RINGS

LORNA GREGORY AND GENA PUNINSKI

Abstract. In this paper we prove that the Ziegler spectra of all serial rings
are sober. We then use this proof to give a general framework for computing
and understanding Ziegler spectra of uniserial rings up to topological indis-
tinguishability. Finally, we illustrate this technique by computing the Ziegler
spectra of all rank one uniserial domains up to topological indistinguishability.

The (right) Ziegler spectrum, ZgR, of a ring R is a topological space attached
to its module category of R. The points of ZgR are isomorphism classes of inde-
composable pure-injectives and the closed subsets correspond to complete theories
of modules closed under arbitrary direct products.

In this article we investigate Ziegler spectra of serial rings.
The model theory of modules of serial rings was developed by Eklof and Herzog

[EH95] (see also [Pun95]) using the Drozd-Warfield theorem on the structure of
finitely presented modules.

In section 2, we show, 2.8, that the Ziegler spectrum of any serial ring is sober,
i.e. each of its irreducible closed subsets is the closure of a point. Soberness of
Ziegler spectra was first studied by Herzog in [Her93] where he showed that every
irreducible closed subset of ZgR with a countable neighbourhood basis of open sets
is the closure of a point. In particular, he showed that ZgR is sober whenever R is
countable. His main motivation for showing that ZgR is sober was to show that after
identifying topologically indistinguishable points, the left and right Ziegler spectra
of a ring are homeomorphic. Further, Ziegler spectra may be seen as analogous
to (duals of) prime spectra of rings, see [Pre09, Section 14] for details. Hochster,
[Hoc69], showed that prime spectra of rings are exactly those topological spaces
which are T0, quasi-compact, have a basis of compact open sets which is stable
under intersection and which are sober. We know that Ziegler spectra are quasi-
compact with a basis of compact open sets. Their basis of compact open sets is
rarely stable under intersection (for instance even the Ziegler spectrum of Z does
not have this property) and they are in general not T0. It is currently not known
if there exist Ziegler spectra which are not sober.

Recently Gregory [Gre13] established that the Ziegler spectra for arbitrary com-
mutative Prüfer domains are sober. Her proof is based on the corresponding result
for commutative valuation domains, which is proved by brute force. The proof we
give in this paper is much shorter and follows from the trichotomy theorem 2.6.
Namely, if T is the theory of an irreducible closed subset C of the Ziegler spectrum
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of a serial ring R and e1, . . . , en are a complete set of primitive orthogonal idem-
potents for R, then either the theory T of C contains a minimal pp-pair, or C is
the closure of a module realising the generic ei-type of T for some 1 ≤ i ≤ n or the
critical ei-type of T for some 1 ≤ i ≤ n. The generic ei-type is the smallest pp-type
of T containing the formula ei|x and the critical ei-type is the largest pp-type of T
containing the formula ei|x.

Despite Prüfer rings, that is, commutative rings with distributive ideal lattice,
not being serial, as a corollary to our result for serial rings we get that all Ziegler
spectra of Prüfer rings are sober, see 2.10.

In section 3, we turn our proof of soberness on its head and use it to give a
general framework for computing and understanding Ziegler spectra of uniserial
rings up to topological indistinguishability, equivalently up to elementary equiva-
lence. That is, we describe all generic and critical pp-types of the theory of an
indecomposable pure-injective module over a uniserial ring and describe the inde-
composable pp-types whose pure-injective hull is topologically distinguishable from
the indecomposable pure-injective modules realising their generic and critical types
3.10.

In section 4, we illustrate the techniques introduced in section 3 by computing the
Ziegler spectra, after factoring out by T0, of all rank one uniserial domains. These
computations are based on the classification of Brungs and Dubrovin in [BD03].

A coarse version of the classification in [BD03], separates rank one uniserial
domains into three classes: the nearly simple uniserial domains, that is, those
with only one non-zero two-sided proper ideal; the invariant rank one uniserial
domains, that is, those for which all right ideals are left ideals and visa-versa; and
the exceptional rank one uniserial domains, that is, those with a prime ideal which
is not completely prime.

The case of nearly simple uniserial domains was covered in [Pun01b]. We include
it here for completeness and to illustrate the techniques from section 3. We also
show, 4.2, that if R is a uniserial ring with only finitely many two-sided ideals then
ZgR has only finitely many pairwise topologically indistinguishable points. We
then go on to exhibit an example of a nearly simple uniserial domain whose Ziegler
spectrum is finite.

Unsurprisingly, the invariant case turns out to be very similar to the case of
commutative rank one valuation domains, in fact we show that for every invariant
rank one uniserial domain R there is a commutative rank one valuation domain S
such that ZgR and ZgS are homeomorphic. The techniques from section 3 don’t
play a role here. Instead, we attach a totally ordered abelian group ΓR, the value
group of R, to each invariant uniserial ring R. If R is rank one then ΓR is rank
one as a totally ordered abelian group and hence is a subgroup of R, in particular
ΓR is commutative. We then show that, as described in [Gre13] for the case of
commutative valuation rings, the Ziegler spectrum of an invariant rank one uniserial
domain R can be described in terms of ΓR. Finally, we give an explicit description
of ZgR up to topological indistinguishability for each ΓR.

By far the hardest case to deal with is that of the exceptional rank one uniserial
domains. Examples of such rings were constructed in [BD03] using an embedding
of the group ring of the universal covering of SL2(R) into a division ring. From the
point of view of classical ring theory, these examples are very hard to approach,
due to their extreme noncommutativity. However, the model theory of modules has
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proved to be very useful in this situation; for instance, the lattice of pp-1-formulae
carries information about left and right ideal structure of this ring, but also the
way they are interrelated.

The above model theoretic approach to the analysis of serial rings has already
found many uses, say, in constructing counterexamples in the theory of serial mod-
ules (see [Pun01c], [Pun01b]), and in tilting theory (see [BHP+17]). Due to the
rich source of highly nontrivial examples, we have no doubt that more applications
are on the way.

1. Preliminaries

For general background on Model theory of Modules see [Pre88] or for a more
algebraic perspective see [Pre09]. For information about serial rings see [Pun01a].

Through out this paper we will work with right modules by default.
We start by recalling basic results about the model theory of modules.
Let R be a ring. Let LR := (0,+, (r)r∈R) be the language of (right) R-modules.

A (right) pp-n-formula is a formula of the form

∃y (y, x)A = 0

where l, n,m are natural numbers, A is an (l+ n)×m matrix with entries from R,
y is an l-tuple of variables and x is an n-tuple of variables.

We write ϕ(M) for the solution set of a pp-formula ϕ in an R-module M . For
any pp-n-formula ϕ and R-module M , ϕ(M) is a subgroup of Mn under + and if
ϕ is a pp-1-formula then ϕ(M) is a left End(M)-submodule of M .

If we weaken our definition of a pp-formula to include all formulae (in one vari-
able) in the language of (right) R-modules, LR, which are equivalent over the theory
of R-modules, TR, to a pp-formula then the TR-equivalence classes of pp-n-formulae
become a lattice under implication with the join of two formulae ϕ, ψ given by

(ϕ+ ψ)(x) := ∃y, z(x = y + z ∧ ϕ(y) ∧ ψ(z))

and the meet given by ϕ ∧ ψ.
A pp-pair, written ϕ/ψ, is a pair of pp-formulae ϕ, ψ such that ϕ(M) ⊇ ψ(M)

for all R-modules M . If ψ does not imply ϕ then we identify ϕ/ψ with ϕ/ϕ ∧ ψ.
We write [ψ, ϕ] for the interval in ppnR. If M is an R-module and ϕ/ψ is a pp-pair
then we say that M opens ϕ/ψ if ϕ(M) ) ψ(M).

Definition 1.1. Let R be a ring. An invariants sentence is a sentence in LR

which expresses the statement
∣∣∣ϕ(x̄)ψ(x̄)

∣∣∣ ≥ n in all modules, for some ϕ, ψ pp-formulae

of the same arity and n ∈ N.

Theorem 1.2 (Baur-Monk Theorem). [Pre88] Let R be a ring. Every formula in
LR is equivalent over TR to a boolean combination of pp-formulae and invariants
sentences.

Corollary 1.3. [Pre88, 2.18] Let R be a ring and M,N be R-modules. Then M is
elementary equivalent to N if and only if for all pp-1-pairs ϕ/ψ,

|ϕ(M)/ψ(M)| = |ϕ(N)/ψ(N)|

whenever either side of the equality is finite.
3



A pure-embedding between two modules is an embedding which reflects the
solution sets of pp-formulae. We say a module N is pure-injective if for every
pure-embedding g : N → M , the image of N in M is a direct summand of M .
We write pinjR for the set of isomorphism classes of indecomposable pure-injective
modules.

The Ziegler spectrum of a ring R, denoted ZgR, is a topological space whose
points are isomorphism classes of indecomposable pure-injective modules and which
has a basis of open sets given by:

(ϕ/ψ) = {M ∈ pinjR | ϕ(M) ) ψ(M) ∧ ϕ(M)}

where ϕ, ψ range over pp-1-formulae.
The sets (ϕ/ψ) are compact, in particular, ZgR is compact.
The closed subsets of ZgR correspond to theories of modules closed under arbi-

trary products and direct summands via the following maps

C 7→ T (C) = Th{N
(ℵ0)
i | Ni ∈ C}

and
T 7→ {N ∈ ZgR | N (ℵ0) is a model of T }.

Given a closed subset C of ZgR, we write ppnRC for the lattice of pp-n-formulae
after factoring out by the equivalence relation given by setting ϕ equivalent to ψ if
and only if ϕ(N) = ψ(N) for all N ∈ C. We write ϕ ≥C ψ for the order on this
lattice. If ϕ/ψ is a pp-pair then we write [ψ, ϕ]C for the interval in ppnRC.

We say that a pair of pp-formulae ϕ/ψ is a C-minimal pair if there is no
pp-formula σ such that ϕ >C σ >C ψ.

A pp-type is a filter in ppnR. If M is an R-module and a ∈ M then the set of
pp-formulae satisfied by a in M is called the pp-type of a. Conversely, if a is an
n-tuple from a module M with pp-type p then we say that a realises p. For every
pp-type p there exists a pure-injective module M and a ∈ M such that a realises
p and such that if a ∈ M ′ ⊆ M and M ′ is pure-injective then M ′ = M . The
moduleM is determined up to isomorphism by p and we call it the pure-injective
hull of p and write N(p). See [Zie84, 3.6], [Pre88, Chapter 4] and for a different
perspective [Pre09, Section 4.3.5].

A pp-type is called irreducible if it is realised in an indecomposable pure-
injective module.

Lemma 1.4 (Ziegler’s irreducibility criterion). [Zie84, 4.4] A pp-type p is irre-
ducible if and only if for all ϕ1, ϕ2 /∈ p there exists σ ∈ p such that ϕ1∧σ+ϕ2∧σ /∈ p.

We say a pp-pair ϕ/ψ is contained in a pp-type p, and write ϕ/ψ ∈ p, if ϕ ∈ p
and ψ /∈ p.

Lemma 1.5. [Zie84, 7.10] Let p, q be irreducible pp-types containing ϕ/ψ. If N(p)
is not isomorphic to N(q) then there exists a pp-formula χ such that ψ ⊆ χ ⊆ ϕ
and either ϕ/χ ∈ p and χ/ψ ∈ q, or ϕ/χ ∈ q and χ/ψ ∈ p.

Two points x, y in a topological space T are topologically indistinguishable if
for all open sets U of T , x ∈ U if and only if y ∈ U . We call a point in a topological
space a T0-point if it is topologically distinguishable from all other points in the
space. If T is a topological space then we write T/T0 for the topological space with
underlying set the equivalence classes of topologically indistinguishable points and
the quotient topology induced by T .
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In this paper, we will often study ZgR/T0 rather than ZgR. The following propo-
sition explains why this is a reasonable thing to do. It is likely to be well known
but we include a proof since we were not able to find a reference.

Proposition 1.6. If N,M ∈ pinjR are topologically indistinguishable as points in
the Ziegler spectrum of R then N and M are elementary equivalent as R-modules.

Proof. First note that, by the Baur-Monk theorem, if for all pp-1-pairs ϕ/ψ we have
that either |ϕ(N)/ψ(N)| = 1 or |ϕ(N)/ψ(N)| is infinite, and |ϕ(M)/ψ(M)| = 1 or
|ϕ(M)/ψ(M)| is infinite then if N and M are topologically indistinguishable then
they are elementarily equivalent.

Suppose that there exists a pp-1-pair ϕ/ψ such that |ϕ(N)/ψ(N)| is finite but
not equal to 1. Then there exists ψ ≤ τ < ϕ such that ϕ/τ is an N -minimal pair.
Suppose, for a contradiction, thatM and N are topologically indistinguishable but
not isomorphic. Let p be the pp-type of an element a of N such a ∈ ϕ(N) and
a /∈ τ(N). Let q be the pp-type of an element b of M such that b ∈ ϕ(M) and
b /∈ τ(M). By 1.5, there exists ϕ ⊇ χ ⊇ τ such that either ϕ/χ ∈ p and χ/τ ∈ q,
or ϕ/χ ∈ q and χ/τ ∈ p. In the first case χ(N) = τ(N), so |χ(N)/τ(N)| = 1, and
χ/τ ∈ q, so |χ(N)/τ(N)| > 1. In the second case, χ(N) = ϕ(N) so |ϕ(N)/χ(N)| =
1, and ϕ/χ ∈ q, so |ϕ(M)/χ(M)| > 1. Thus N and M are not topologically
indistinguishable.

�

We now specialise to the case of serial rings.
A moduleM is said to be uniserial if its lattice of submodules is totally ordered

by inclusion and said to be serial if it is a direct sum of uniserial modules. A ring R
is called uniserial (serial) if it is uniserial (serial) as both a right and left module
over itself.

For any serial ring there exists orthogonal idempotents e1, . . . , en such that 1 =
e1 + . . . + en and, eiR and Rei are uniserial (and hence indecomposable). We
call an idempotent primitive if eR is uniserial and a set of primitive orthogonal
idempotents e1, . . . , en such that e1 + . . . + en = 1 a complete set of primitive
orthogonal idempotents.

Let R be a serial ring and e ∈ R a primitive idempotent. We call a pp-1-formula
ϕ(x) an e-formula if ϕ(x) → e|x, where e|x denotes the pp-formula ∃y x = ye.

Lemma 1.7. [EH95, Corollary 1.6][Pun01a, Lemma 11.1] Let R be a serial ring and
e1, ..., en a complete set of primitive orthogonal idempotents. Every pp-1-formula
over R is equivalent to a finite sum of pp-formulae of the form s|x ∧ xt = 0, where
s ∈ eiR and t ∈ Rej. Moreover, if ϕ is an e-formula then we may assume that
s ∈ eiRe and t ∈ eRej.

An e-pair is a pair 〈I, J〉, where I ⊆ eR is a right ideal and J ⊆ Re is a left ideal
of R.

Lemma 1.8. [Pun01a, Lemma 11.2] Let R be a serial ring and e a primitive
idempotent. The lattice of all e-formulae over R is distributive.

For an e-pair 〈I, J〉 we define a collection of pp-formulae and negations of pp-
formulae

J∗/I := {s|x | s /∈ J} ∪ {xr = 0 | r ∈ I} ∪ {¬(sr|xr) | s ∈ J, r /∈ I}.
5



Lemma 1.9. [Pun01a, 11.8][EH95, Theorem 2.7] Let R be a serial ring, e ∈ R a
primitive idempotent and 〈I, J〉 an e-pair. If the set of formulae J∗/I is consistent
then it has a unique extension to an irreducible e-type over R, that is an irreducible
pp-1-type containing the formula e|x. Moreover, all irreducible e-types over R are
obtained in this way.

We will write N(I, J) for the unique indecomposable pure-injective module real-
ising J∗/I. We say that an e-pair 〈I, J〉 is consistent if J∗/I is consistent. Note that
after fixing a complete set of primitive orthogonal idempotents e1, . . . , en, the above
lemma implies that all indecomposable pure-injectives are of the form N(I, J) for
some consistent ei-pair.

Lemma 1.10. [Pun01a, 11.9][Pun04, 4.5] Let e be a primitive idempotent of a
serial ring R. For a (right) e-pair 〈I, J〉 the following are equivalent:

(1) 〈I, J〉 is consistent
(2) for all r ∈ I, r∗ /∈ I, s ∈ J and s∗ /∈ J , s∗r∗ 6= sr∗ + s∗r
(3) for all r ∈ I, r∗ /∈ I, s ∈ J and s∗ /∈ J , s∗r∗ /∈ RsrR.

Lemma 1.11. [EH95, 2.10][Pun01a, 11.11] Let R be a serial ring. Let 〈I1, J1〉 be a
consistent e-pair and 〈I2, J2〉 be a consistent f -pair for primitive idempotents e, f ∈
R. The indecomposable pure-injectives N(I1, J1) and N(I2, J2) are isomorphic if
and only if there exist u ∈ eRf and v ∈ fRe such that either

(1) u 6= 0, I1 = uI2 and J1u = J2 or
(2) v 6= 0, vI1 = I2 and J1 = J2v.

2. Serial rings

In this section we will show that for any serial ring R, ZgR is sober. That is, we
will show that for every irreducible closed subset C, there exists N ∈ C such that
clN = C. Equivalently, we will show that for all irreducible closed subsets C, there
exists an N ∈ C such that for all open sets U such that U ∩C 6= ∅, N ∈ U . We call
such a point a generic point of C. Since Ziegler spectra are not always T0, generic
points are not necessarily unique.

Lemma 2.1. Let R be a ring, C ⊆ ZgR be an irreducible closed subset and ϕ/ψ a
pp-1-pair. If the interval [ψ, ϕ] is distributive then [ψ, ϕ]C is a totally ordered.

Proof. By [Tug98, Theorem 1.21] every distributive module over a local ring is unis-
erial. The endomorphism rings of indecomposable pure-injective modules are local.
Thus, for any indecomposable pure-injective module N , ϕ(N)/ψ(N) is uniserial
as a module over End(N). So for every indecomposable pure-injective module N ,
[ψ, ϕ]N is totally ordered. Therefore, if σ, τ ∈ [ψ, ϕ] then

[ZgR\ (σ/σ ∧ τ)] ∪ [ZgR\ (τ/σ ∧ τ)] = ZgR.

Hence for every irreducible closed subset of ZgR, either C ⊆ ZgR\ (σ/σ ∧ τ) or
C ⊆ ZgR\ (τ/σ ∧ τ). Thus [ψ, ϕ]C is totally ordered.

�

Lemma 2.2. [EH95, Corollary 2.5] Let R be a serial ring and e1, ..., en a complete
set of primitive orthogonal idempotents. Every pure-injective indecomposable mod-
ule N considered as an EndN -module has a direct sum decomposition N = ⊕ni=1Nei
into uniserial EndN -submodules Nei.
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It follows from the above lemma that for a serial ring R with e1, ..., en a complete
set of primitive orthogonal idempotents, we have

(e1|x/x = 0) ∪ ... ∪ (en|x/x = 0) = ZgR.

Corollary 2.3. Let R be a serial ring and e a primitive idempotent. Let C ⊆ ZgR
be an irreducible closed subset. Then the interval [x = 0, e|x]C is totally ordered.
In particular, if N is indecomposable pure-injective then the subsets defined by e-
formulae are totally ordered by inclusion.

Proof. By 1.8, the interval [x = 0, e|x] is distributive. So, by 2.1, [x = 0, e|x]C is
totally ordered. �

Let R be a serial ring, C an irreducible closed subset of ZgR. For each primitive
idempotent e ∈ R such that (e|x/x = 0)∩C 6= ∅, we define two important irreducible
pp-types ℘e−gen and ℘e−crit.

Any (irreducible) filter on the interval [x = 0, e|x]C may be extended, using
[Pre88, 4.33], to an irreducible pp-type and although there may be many different
extensions, they all have the same pure-injective hull by [Zie84, 7.10]. Thus we
define the generic pp-type ℘e−gen to be the filter on [x = 0, e|x]C containing e|x
but not containing any formula in this interval strictly below e|x (or more precisely
the pre-image in [x = 0, e|x] of this filter). We denote the pure-injective hull of this
type by Me−gen.

Similarly, we define the critical pp-type ℘e−crit as the filter on [x = 0, e|x]C
containing all formulae in the interval strictly above x = 0. We denote the pure-
injective hull of this type by Me−crit.

Note that if C is an irreducible closed subset then Me−gen,Me−crit ∈ C. This is
because if Me−gen /∈ C then, by [Zie84, 4.9] there exists ϕ/ψ such that ϕ ∈ ℘e−gen

and ψ /∈ ℘e−gen and (ϕ/ψ)∩C = ∅. Note thatMe−gen ∈ (ϕ ∧ e|x/ψ ∧ e|x) ⊆ (ϕ/ψ)
and by definition (ϕ ∧ e|x/ψ ∧ e|x) ∩C 6= ∅. Exactly the same argument works for
Me−crit. When we are not working in a fixed irreducible closed subset C we will
write ℘Ce−gen and ℘Ce−crit to indicate that these are the generic and critical types of
C.

We need the following auxiliary result.

Lemma 2.4. Let R be a serial ring and e1, e2 ∈ R be primitive idempotents.

(1) Suppose that ψ <C r | x for r ∈ e1Re2 and some e2-formula ψ. Then
Me1−gen opens the pair r | x/ψ.

(2) Suppose that e1 | x ∧ xr = 0 <C ϕ for r ∈ e1Re2 and some e1-formula ϕ.
Then Me2−crit opens the pair ϕ/e1 | x ∧ xr = 0.

Proof. Goursat’s theorem, [Zie84, 8.9], states that any ρ ∈ pp2R defines a lat-
tice isomorphism between the (possibly trivial) intervals [ρ(x, 0), ∃y ρ(x, y)] and
[ρ(0, y), ∃x ρ(x, y)] defined by

ϕ(x) ∈ [ρ(x, 0), ∃y ρ(x, y)] 7→ ∃x ϕ(x) ∧ ρ(x, y) ∈ [ρ(0, y), ∃x ρ(x, y)].

The inverse of this isomorphism sends ψ(y) ∈ [ρ(0, y), ∃x ρ(x, y)] to ∃y ψ(y)∧ρ(x, y).
(1) Goursat’s theorem with ρ(x, y) equal to x = yr ∧ e1|y implies that for any

module N , N opens r | x/ψ if and only if N opens e1|y/∃x(ψ(x) ∧ x = yr ∧ e1|y).
So if ψ <C r | x then by definition Me1−gen opens e1|y/∃x(ψ(x) ∧ x = yr ∧ e1|y).
Thus Me1−gen opens r | x/ψ.

7



(2) Again using Goursat’s theorem with ρ(x, y) equal to x = yr ∧ e1|y, we
get that for any module N , N opens ϕ(y)/e1|y ∧ yr = 0 if and only if N opens
∃y(ϕ(y)∧x = yr∧e1|y)/x = 0. Noting that ∃y(ϕ(y)∧x = yr∧e1|y) is an e2-formula
since r ∈ e1Re2, the proof is now as in (1).

�

The following lemma is an easy exercise in Ziegler topology.

Lemma 2.5. Let R be a ring and C be an irreducible closed subset of ZgR. Suppose
that ϕ/ψ is a pp-pair such that (ϕ/ψ) ∩C 6= ∅. Then M ∈ C is a generic point in
C if and only if it opens each pair ϕ′/ψ′ such that ψ ≤ ψ′ <C ϕ

′ ≤ ϕ.
In particular, if there is a C-minimal pair, then the unique indecomposable pure-

injective opening this pair is the generic point.

Proof. The forward direction is a direct consequence of the definition of generic
point. The reverse direction follows from [Zie84, 4.9]. �

Now we deal with the main claim.

Proposition 2.6. Let e1, . . . , en be a complete set of orthogonal indecomposable
idempotents of a serial ring R. Let C be an irreducible closed subset of ZgR and
suppose that (ei|x/x = 0) ∩ C 6= ∅ for 1 ≤ i ≤ m and (ei|x/x = 0) ∩ C = ∅ for
m+ 1 ≤ i ≤ n. Then at least one of the following holds.

(1) The interval [x = 0, ei | x] has a C-minimal pair for some 1 ≤ i ≤ m.
(2) There exists 1 ≤ i ≤ m such that C is the closure of Mei−gen.
(3) There exists 1 ≤ i ≤ m such that C is the closure of Mei−crit.

Proof. We know that the interval [x = 0, e1|x]C is totally ordered, hence each pp-
formula in it is equivalent to either a divisibility formula s|x, for some s ∈ eiRe1
with 1 ≤ i ≤ m, or to an annihilator formula xr = 0∧ e1|x for some r ∈ e1Rei with
1 ≤ i ≤ m.

Suppose (1) does not hold. We will show that every pair ϕ/ψ of e1-formulae
which is opened by some module in C is opened by Mei−gen or Mei−crit for some
1 ≤ i ≤ m. Since ϕ/ψ is not a C-minimal pair there exists σ such that ϕ >C σ >C
ψ.

If σ is equivalent to s | x for s ∈ eiRe1 then Mei−gen opens σ/ψ, by 2.4, and
hence opens ϕ/ψ.

If σ is equivalent to xr = 0 ∧ e1 | x for r ∈ e1Rei then Mei−crit opens the pair
ϕ/σ, by 2.4, and hence opens ϕ/ψ.

Thus

C =

m⋃

i=1

clMei−gen ∪
m⋃

i=1

clMei−crit.

Since C is irreducible, either C = clMei−gen or C = clMei−crit for some 1 ≤ i ≤
m.

�

If N ∈ ZgR then write Nei−gen for M clN
ei−gen and Nei−crit for M

clN
ei−crit.

Corollary 2.7. Let e1, . . . , en be a complete set of orthogonal indecomposable idem-
potents of a serial ring R. Let N be an indecomposable pure-injective R-module and
suppose that Nei 6= 0 for 1 ≤ i ≤ m and Nei = 0 for m+ 1 ≤ i ≤ n. Then at least
one of the following holds.
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(1) N has a minimal pair in the interval [x = 0, ei] for some 1 ≤ i ≤ m
(2) There exists 1 ≤ i ≤ m such that N is in the closure of Nei−gen and hence

N ≡ Nei−gen.
(3) There exists 1 ≤ i ≤ m such that N is in the closure of Nei−crit and hence

N ≡ Nei−crit.

Now we are in a position to prove the main result of this section.

Theorem 2.8. Let R be a serial ring. The Ziegler spectrum of R is sober.

Proof. Let e1, . . . , en be a complete set of orthogonal indecomposable idempotents
for R. Suppose that C is an irreducible closed subset of ZgR and suppose that
(x = x/xei = 0) ∩ C 6= ∅ for 1 ≤ i ≤ m and (x = x/xei = 0) ∩ C = ∅ for m + 1 ≤
i ≤ n. Then by 2.6, either [x = 0, e1|x] has a C-minimal pair or C is the closure of
Mei−gen or Mei−crit for some 1 ≤ i ≤ m. If C has a minimal pair then by 2.5, C is
the closure of the unique point opening that pair. �

Question 1. What is the relationship between the modules Mei−gen (respectively
Mei−crit) as i varies?

We say that a commutative ring is a valuation ring if its lattice of ideals is
totally ordered and a Prüfer ring if its localisation at each of its maximal ideals
is a valuation ring. Equivalently, a commutative ring is a Prüfer ring if its ideal
lattice is distributive [Jen66, Theorem 1]. Eklof and Herzog showed that the Prüfer
rings are exactly those commutative rings with distributive lattice of pp-1-formulas
[EH95, 3.1].

Proposition 2.9. [Gre13, 6.5] Let R be a commutative ring. The following are
equivalent:

(i) ZgR is sober,
(ii) for all p⊳R prime, ZgRp

is sober,

(iii) for all m⊳R maximal, ZgRm
is sober.

Since all valuation rings are trivially serial, we get the following corollary.

Corollary 2.10. Let R be a Prüfer ring. The Ziegler spectrum of R is sober.

3. Uniserial rings

Throughout this section, R will be a uniserial ring. The (unique) maximal right
ideal of R is equal to the Jacobson radical J(R) of R, which is equal to the (unique)
maximal left ideal of R. Thus, J(R) is the set of non-units of R.

Over a uniserial ring, each indecomposable pure-injective module N has a unique
generic and critical pp-type namely

℘Ngen := {ϕ ∈ pp1R | ϕ(N) = N}

and

℘Ncrit : {ϕ ∈ pp1R | ϕ(N) 6= {0}}.

These types are exactly ℘C1−gen and ℘C1−crit where C is the Ziegler closure of N .
We write Ngen (respectively Ncrit) for the indecomposable pure-injective module
realising ℘Ngen (respectively ℘Ncrit).
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Lemma 3.1. Let R be a uniserial ring, ϕ ∈ pp1R and N an indecomposable pure-
injective. If N ∈ (a|x/ϕ) then Ngen ∈ (a|x/ϕ). If N ∈ (ϕ/xb = 0) then Ncrit ∈
(ϕ/xb = 0).

Proof. This is a direct consequence of 2.4. �

Lemma 3.2. Let N be an indecomposable pure-injective over a uniserial ring R.
The Ziegler closure of N is equal to N together with the Ziegler closures of Ngen

and Ncrit.

Proof. Corollary 2.7 specialised to uniserial rings implies that either N is in the
closure of Ngen, N is in the closure of Ncrit or N has a minimal pair and is hence
isolated in its closure. So suppose that N is isolated in its closure.

We will now show that for any open set U with N ∈ U , either Ncrit ∈ U ,
Ngen ∈ U or U isolates N in its closure. It is enough to show that this condition
holds for basic open sets and thus we may assume U is given by a pair of pp-1-
formulae. Suppose that N ∈ (ϕ/ψ) but (ϕ/ψ) does not isolate N in its closure.
Thus there exists σ such that ϕ(N) > σ(N) > ψ(N). Since R is uniserial, working
with respect to the theory of N we may assume that σ is either of the form r|x or
xs = 0. If σ is of the form r|x then Ngen opens the pair σ/ψ and if σ is of the form
xs = 0 then Ncrit opens the pair ϕ/σ. Thus for all open sets U , either Ngen ∈ U ,
Ncrit ∈ U or U isolates N in its closure.

Thus the open set U := ZgR\cl{Ngen, Ncrit} isolates N in its closure. So, if
M ∈ cl{N} then either M ∈ cl{Ngen, Ncrit} or M ∈ U and thus N =M .

�

Corollary 3.3. If N,M ∈ ZgR are not isolated in their closures, Ngen =Mgen and
Ncrit =Mcrit then N ≡M .

Proof. This is true because ifM ∈ ZgR is not isolated in its closure thenM ≡Mgen

or M ≡Mcrit. �

Definition 3.4. Let N ∈ ZgR.

(1) AssN := {r ∈ R | mr = 0 for some 0 6= m ∈ N}
(2) DivN := {r ∈ R | r does not divide m for some m ∈ N}
(3) annRN := {r ∈ R | mr = 0 for all m ∈ N}

A right ideal P is completely prime if xy ∈ P implies x ∈ P or y ∈ P .
Note that for any N ∈ ZgR, AssN and DivN are completely prime two-sided

ideals and annRN is a two-sided ideal. Further, note that rs ∈ annRN implies
r ∈ annRN or s ∈ AssN , and, s ∈ annRN or r ∈ DivN .

Lemma 3.5. The generic type of N ∈ ZgR is 〈annRN,DivN〉 and the critical type
of N ∈ ZgR is 〈AssN, annRN〉.

Proof. By definition a|x < x = x in N if and only if a ∈ DivN and xb = 0 is
equivalent to x = x in N if and only if b ∈ annRN . By definition xa = 0 > x = 0
in N if and only if a ∈ AssN and b|x is equivalent to x = 0 if and only if b ∈
annRN . �

Lemma 3.6. Let P be a completely prime two-sided ideal and K a two-sided ideal
of R. If

(1) rs ∈ K implies r ∈ K or s ∈ P
10



then 〈P,K〉 is consistent and 〈P,K〉 is the critical type of N(P,K).

Proof. Suppose that c ∈ K and b ∈ P . Then RcbR ⊆ K since K is two-sided. Thus
by (1), rs ∈ RcbR implies r ∈ K or s ∈ P . Therefore, by 1.10, 〈P,K〉 is consistent.

We first show that Ass(N(P,K)) = P .
If I is a right ideal, u 6= 0 and uI = P then, since P is completely prime, either

u ∈ P or P ⊇ I. If u ∈ P then uI ⊆ uJ(R) ( uR ⊆ P . Thus P ⊇ I. So uI = P
implies u /∈ P and P ⊇ I. If I is a right ideal and I = uP then I = uP ⊆ P since
P is two-sided. Therefore, by 1.11, Ass(N(P,K)) = P .

We now show that a ∈ annRN(P,K) if and only if a ∈ K. Note that
if a ∈ annRN(P,K) then a does not divide any element of N(P,K). Thus
K ⊇ annRN(P,K).

First suppose that 〈I, J〉 is a consistent pair, uI = P and J = Ku. We have
shown above that this implies that u /∈ P .

If a ∈ K then a ∈ K ⊆ P ⊆ Ru. Thus a = λu for some λ ∈ R. By condition (1)
this implies λ ∈ K. So a ∈ Ku = J .

Now suppose that 〈I, J〉 is a consistent pair, I = uP and Ju = K. Note that
u /∈ I since if it were then uP ( uR ⊆ I. If a ∈ K then au ∈ K since K is
two-sided. Thus there exists j ∈ J such that au = ju. Thus (a − j)u = 0 and by
1.10, either a− j ∈ J or u ∈ I. Since u /∈ I, a− j ∈ J and hence a ∈ J .

Thus, by 1.11, a ∈ K implies a ∈ annRN(P,K). So annRN(P,K) = K.
�

Lemma 3.7. Let P be a completely prime two-sided ideal and K a two-sided ideal
of R. If

(1) sr ∈ K implies r ∈ K or s ∈ P

then 〈K,P 〉 is consistent and 〈K,P 〉 is the generic type of N(K,P ).

Proof. The proof of this lemma follows from the previous lemma using Herzog’s
duality [Her93]. Alternatively, it can be proved as the previous lemma making
appropriate modifications. �

Now that we have good descriptions of the generic and critical types of modules
in ZgR, we investigate those N ∈ ZgR which are not elementary equivalent to Ngen

or Ncrit.

Definition 3.8. Let P be a non-zero completely prime two-sided ideal and suppose
that b ∈ P is non-zero. Let

IPb := {c ∈ R | b /∈ cP}

and

b
P I := {c ∈ R | b /∈ Pc}.

Note that IPb is a right ideal and b
P I is a left ideal.

Lemma 3.9. Let N ∈ ZgR. Suppose that xb = 0/a|x is an N -minimal pair such
that a, b /∈ annRN . Then N = N(IPb , a

QI) where P := AssN and Q := DivN .

Proof. Suppose that xb = 0 > xc = 0 in N . Then there exists m ∈ N such that
mb = 0 and mc 6= 0. Thus b = cr and r ∈ P . So c /∈ IPb .

Suppose that c /∈ IPb . Then b = cr for some r ∈ P . Since b /∈ annRN , c /∈ annRN .
Thus m ∈ Ncrit realising the critical type on N is divisible by c and mr = 0. Take
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n ∈ Ncrit such that m = nc. Then nc 6= 0 and ncr = 0. So xb = 0 > xc = 0 in
Ncrit and hence also in N . Thus c ∈ IPb if and only if xc = 0 ≥ xb = 0.

A similar argument shows that a|x ≥ c|x if and only if c ∈ a
QI.

Suppose that m ∈ N is such that mb = 0 and a does not divide m. Then by the
above, m has pp-type 〈IPb , a

QI〉 and thus N = N(IPb , a
QI). �

Proposition 3.10. All points in ZgR are topologically indistinguishable from an
indecomposable pure-injective of one of the following forms:

(1) N(P,K) where K is a two-sided ideal, P is a completely prime two-sided
ideal and rs ∈ K implies r ∈ K or s ∈ P .

(2) N(K,P ) where K is a two-sided ideal, P is a completely prime two-sided
ideal and sr ∈ K implies r ∈ K or s ∈ P .

(3) N(IPb , a
QI) where 〈IPb , a

QI〉 is consistent.

Proof. If N is topologically indistinguishable from Ncrit or Ngen then, by 3.6 and
3.7, N is topologically indistinguishable from a module either from (1) or (2).

Suppose that N is topologically distinguishable from Ncrit and Ngen. Then there
exists a pair of pp-1-formulae such that N ∈ (ϕ/ψ) and Ncrit, Ngen /∈ (ϕ/ψ). By
3.1, we may assume that ϕ is xb = 0 for some b ∈ R and ψ is a|x for some a ∈ R.
Moreover, Ngen /∈ (xb = 0/a|x) implies b /∈ annRN and Ncrit /∈ (xb = 0/a|x) implies
a /∈ annRN .

Thus 3.9 implies that N ∼= N(IPb , a
QI) where P = AssN and Q = DivN .

�

Unfortunately, we are unable to find a simple characterisation of consistency of
pairs of the form 〈IPb , a

QI〉. However, we will see in section 4 that this is not always
a big problem when computing Ziegler spectra of uniserial rings.

The following lemma shows that the critical and generic type of an indecompos-
able pure-injective almost determines it up to topological indistinguishability.

Lemma 3.11. Suppose N,M ∈ ZgR, Ncrit = Mcrit, Ngen = Mgen and M,N /∈
cl{Ncrit, Ngen}. Then N =M .

Proof. Since N and M are not in the closure of Ngen = Mgen or Ncrit = Mcrit, N
has a minimal pair xb = 0/a|x andM has a minimal pair xd = 0/c|x. Since Ncrit =
Mcrit, AssN = AssM =: P . Thus b, d ∈ P . Since Ngen = Mgen, DivN = DivM =:
Q. Thus a, c ∈ Q. Finally, a, b /∈ annRN = annRM and c, d /∈ annRM = annRN .

Let n ∈ N be such that nb = 0 and a does not divide n. So, by 3.9, n has type
〈IPb , a

QI〉.
We may assume without loss of generality that b = td. Since d ∈ P , t /∈ IPb and

hence nt 6= 0.
Thus ntd = 0 and at does not divide nt. Moreover xd = 0/at|x is an N -minimal

pair since the interval [at|x, xd = 0] in N is isomorphic to the interval [a|x, xb = 0]
in N . Hence, xd = 0/at|x isolates N in its closure.

Since annRN = annRM and xd = 0 > at|x in N , atd ∈ annRN = annRM and
therefore xd = 0 ≥ at|x in M .

Thus either xd = 0 is equivalent to at|x in M and hence Ngen = Mgen ∈
(at|x/c|x) and hence Ngen = Mgen ∈ (xd = 0/c|x) or xd = 0 > at|x in M . The
first possibility can’t happen since Mgen /∈ (xd = 0/c|x). Thus xd = 0 > at|x in M .
But if xd = 0/at|x is not a minimal pair for M then Ngen =Mgen ∈ (xd = 0/at|x)
or Ncrit = Mcrit ∈ (xd = 0/at|x). Both of which contradict our assumptions, thus
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xd = 0/at|x is a minimal pair for M and at|x is equivalent to c|x in M . Thus,
at /∈ annRN = annRM .

Thus both N and M realise 〈IPd , at
QI〉 by 3.9. So N =M .

�

Lemma 3.12. The sets (x = x/xa = 0), (x = x/a|x), (xa = 0/x = 0), (xb = 0/a|x)
where a, b ∈ R is a sub-basis for ZgR. Moreover,

(1) N ∈ (x = x/xa = 0) if and only if a /∈ annRN
(2) N ∈ (xa = 0/x = 0) if and only if a ∈ AssN
(3) N ∈ (x = x/a|x) if and only if a ∈ DivN

Proof. By [Rey99, 2.1], the sets

(xa = 0 ∧ b|x/xc = 0 + d|x)

where a, b, c, d ∈ R are a basis for ZgR. Since the lattice of pp-definable subsets of
any indecomposable pure-injective module is totally ordered by inclusion,

(xa = 0 ∧ b|x/xc = 0 + d|x) =

(xa = 0/xc = 0) ∩ (xa = 0/d|x) ∩ (b|x/xc = 0) ∩ (b|x/d|x) .

If (xa = 0/xc = 0) is non-empty then a = cr for some r ∈ R and

(xa = 0/xc = 0) = (xr = 0/x = 0) ∩ (x = x/xc = 0) .

If (b|x/d|x) is non-empty then d = rb for some r ∈ R and

(b|x/d|x) = (x = x/r|x) ∩ (b|x/x = 0) = (x = x/r|x) ∩ (x = x/xb = 0) .

Finally

(b|x/xc = 0) = (x = x/xbc = 0) .

�

Corollary 3.13. If N1 is in the closure of N2 then AssN2 ⊇ AssN1, DivN2 ⊇
DivN1 and annRN1 ⊇ annRN2.

Question 2. When is 〈IPb , a
QI〉 consistent? When is 〈IPb , a

QI〉 topologically dis-
tinguishable from both its generic and critical modules? What is the annihilator of
〈IPb , a

QI〉?

4. Rank one uniserial domains

In this section we describe the Ziegler spectra, after factoring out by T0, of all
rank one uniserial domains R according to the classification in [BD03, 1.9]. A
uniserial domain is rank one if its only non-zero completely prime ideal is J(R).

The classification in [BD03, 1.9] is in terms of P -ideals where P is a rank one
cone of a group G but we will make the straightforward translation into ideals of
a rank one uniserial domains. Before giving the classification of rank one uniserial
domains, we need to introduce the groupoid of divisorial ideals. We say that a

right ideal I is divisorial if I = ∩I⊆aRaR =: Î. The ideal Î is called the divisorial
closure of I. Clearly all principal right ideals are divisorial. Moreover, it is shown
in [BD03, pg 2737] that a right ideal is not divisorial if and only if J(R) is not

principal as a right ideal and there exists z ∈ R such that I = zJ(R) and Î = zR.
Moreover, in the case where R is rank one and I is an ideal, I = zJ(R) = J(R)z

and Î = zR = Rz.
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The set of divisorial ideals becomes a groupoid under the multiplication ⋆ defined

by I1 ⋆ I2 := Î1I2.
According to [BD03, 1.9], every rank one uniserial domain R has exactly one of

the following properties.

(1) R is invariant, that is aR = Ra for all a ∈ R.
(2) R is nearly simple, that is R is not a division ring and J(R) is the only

non-zero two-sided ideal.
(3) R is exceptional, that is, there exists a prime ideal Q which is not com-

pletely prime. In this case,
(a) there are no ideals between J(R) and Q,
(b) the ideal Q is divisorial and generates the groupoid of divisorial ideals,
(c) ∩∞

n=1Q
n = 0 and

(d) there exists a k ∈ N0 such that Q̂k is principal and generates the
groupoid of principal ideals. In this situation we say that R is type
Ck.

Importantly to us, the above classification gives the following descriptions of the
chains of ideals.

If R is of type C0 then the chain of ideals is

R ⊇ J(R) ⊇ Q ⊇ Q2 ⊇ . . . .

In this case R has no ideals finitely generated as right ideals.
If R is of type C1 then the chain of ideals is

R ⊇ J(R) ⊇ Q = zR ⊇ zJ(R) ⊇ Q2 = z2R ⊇ z2J(R) . . . .

If R is of type Ck for k ≥ 2 then the chain of ideals is

R ⊇ J(R) ⊇ Q ⊇ Q2 ⊇ . . . ⊇ Qk−1 ⊇ zR ⊇ Qk = zJ(R) ⊇ Qk+1 . . .

. . . Q2k−1 ⊇ z2R ⊇ Q2k = z2J(R) ⊇ Q2k+1 . . .

Commutative valuation domains are examples of invariant rank one uniserial
domains. Examples of nearly simple uniserial domains can be found in [BBT84,
section 6.5] and [DP07, 3.8]. Finally, examples of exceptional uniserial rings of type
Cn for each n ∈ N are given in [BD03].

Before we go on, we sketch a proof of the following comforting fact, which we
were unable to find a direct reference for.

Lemma 4.1. If R is a rank one uniserial domain, a 6= 0 and aR is an ideal then
aR = Ra.

Proof. If I is an ideal then the following set is a completely prime ideal

{b ∈ R | bI ( I}.

It is straightforward to see that it is a right ideal and that it is completely prime.
In order to show that it is a left ideal one needs to note, [BBT84], that a right ideal
K is a left ideal if and only if uK ⊆ K for all u /∈ J(R).

Thus setting I = aR we have that {b ∈ R | bI ( I} = J(R) since if it were the
zero ideal then a2R = aR which would imply that a(aδ − 1) = 0 for some δ ∈ R
and hence a would be a unit.

Now if Ra ( aR then there exists r ∈ R such that ar /∈ Ra. So, since R is
uniserial there exists λ ∈ J(R) such that λar = a. But then aR ⊆ λaR and hence
λ /∈ J(R). So we have a contradiction. �
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4.1. Nearly simple uniserial domains. We start by considering some rings with
rather small Ziegler spectra.

Remark 4.2. The results in section 3 imply that if a uniserial ring R has only
finitely many two-sided ideals then, after factoring out by T0 its Ziegler spectrum
is finite. This is because 3.7 and 3.6 imply ZgR has only finitely many critical
and generic pairs, and 3.11 shows that if two indecomposable pure-injective mod-
ules N,M have Ngen = Mgen, Ncrit = Mcrit and both modules are topologically
distinguishable from Ngen and Ncrit then N ∼=M .

Since the Ziegler spectrum of a uniserial ring with only finitely many two-sided
ideals is finite after factoring out by T0, the topology is completely described by
the specialisation relation on ZgR/T0 (x specialises to y if y ∈ cl{x}) and the
T0-equivalence classes.

The above remark in particular implies that all nearly simple uniserial rings have
finite Ziegler spectra after factoring out by T0, in fact we will show below that they
are all homeomorphic to each other after factoring out by T0. They are however
very rarely finite before factoring out by T0. At the end of this subsection, we will
exhibit a rather surprising example, due to Dubrovin and Puninski, of a nearly
simple uniserial domain with finite Ziegler spectrum even before factoring out by
T0.

Lemma 4.3. If R is a nearly simple uniserial domain then all modules are topo-
logically indistinguishable from critical or generic modules. The generic pairs are
〈J(R), J(R)〉, 〈0, J(R)〉 and 〈0, 0〉 and the critical pairs are 〈J(R), J(R)〉, 〈J(R), 0〉
and 〈0, 0〉.

Proof. Since J(R) is the unique non-zero two-sided ideal of R, by 3.7, the generic
pairs are 〈J(R), J(R)〉, 〈0, J(R)〉 and 〈0, 0〉 and, by 3.6, the critical pairs are
〈J(R), J(R)〉, 〈J(R), 0〉 and 〈0, 0〉. If N is a module with annRN = 0 then
N ∈ (xb = 0/a|x) implies ab = 0. Thus a = 0 or b = 0. Considering the sub-basis
from 3.12, implies that if annRN = 0 then N is topologically indistinguishable from
its critical module or its generic module. On the other hand, if annRN = J(R), then
AssN = J(R) and DivN = J(R). Thus N = N(J(R), J(R)). Therefore, all points
are topologically indistinguishable from either generic or critical modules. �

The points of the Ziegler spectrum were described as modules in [Pun01b], we
have added descriptions of their critical and generic types. Here, PE(M) denotes
the pure-injective hull of M and E(M) denotes the injective hull of M .

Proposition 4.4. Let R be a nearly simple uniserial domain. The indecomposable
pure-injective right modules are the following:

(1) indecomposable injective modules E(R/I) where I is a non-zero right ideal.
This module corresponds to the consistent pair 〈I, 0〉 and E(R/I) ∼= E(R/J)
if and only if there exists r ∈ R such that rI = J or I = rJ . The critical
pair of E(R/I) is 〈J(R), 0〉 and the generic pair is 〈0, 0〉.

(2) indecomposable pure-injective torsion-free modules PE(I) where I is a non-
zero right ideal. This module corresponds to the consistent pair 〈0, I〉 and
PE(I) ∼= PE(J) if and only if there exists r ∈ R such that rI = J or I = rJ .
The generic pair of PE(I) is 〈0, J(R)〉 and the critical pair is 〈0, 0〉.

(3) R/J(R) This module corresponds to the consistent pair 〈J(R), J(R)〉 which
is both critical and generic.
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(4) E(RR) This module corresponds to the consistent pair 〈0, 0〉 which is both
critical and generic.

Lemma 4.5. Let R be a nearly simple uniserial domain. After identifying topo-
logically indistinguishable points

(1) clN(J(R), 0) = {N(0, 0), N(J(R), 0)}
(2) clN(0, J(R)) = {N(0, 0), N(0, J(R))}
(3) clN(J(R), J(R)) = {N(J(R), J(R))}
(4) clN(0, 0) = {N(0, 0)}

Proof. For each of the above equalities the inclusion of the left hand set in the right
is implied by 3.13. Since 〈0, 0〉 is the generic pair of 〈J(R), 0〉 (respectively critical
pair of 〈0, J(R)〉), N(0, 0) is in the closure of N(J(R), 0) (respectively N(0, 0) is in
the closure of N(0, J(R))). �

We will now give an example, taken from [DP07, 3.8], of a nearly simple uniserial
domain whose Ziegler spectrum is finite even before factoring out by T0.

Let G be the group of affine linear transformations of the real plane, whose
elements are linear increasing functions f = at + b, where 0 < a and b are reals,
and the multiplication is the composition:

(at+ b) · (ct+ d) = a(ct+ d) + b = act+ (ad+ b).

The identity function t is the unit of G and (at + b)−1 = a−1t− a−1b. The group
ring FG over a field F is a left and right Ore domain. This is because G is a
semi-direct product of the normal subgroup N := {t+ b | b ∈ R} and the subgroup
L := {at | 0 < a ∈ R} and both these groups are torsion-free and abelian. See also
[PP16, 3.2] where R replaced is with Q.

Fix an irrational ǫ and consider the set P of the functions f ∈ G such that
f(ǫ) ≥ ǫ. Then P is a right cone on G, i.e. P ∪P−1 = G; further P ∩P−1 consists
of the functions f ∈ G such that f(ǫ) = ǫ. It follows that the relation g ≤l h if
g−1h ∈ P defines a left linear quasi-ordering on G, where g ≤l h if and only if
g(ǫ) ≤ h(ǫ); and this ordering respects left multiplication by elements of G.

Similarly, setting f ≤r g if gf−1 ∈ P we obtain the right linear quasi-ordering
on G, which respects right multiplication by elements of G. Note that f ≤r g if
and only if the intercept of f with the vertical line y = ǫ is to the right of the
corresponding intercept for g.

Let P+ be the subsemigroup of P consisting of the functions f ∈ P such that
f(ǫ) > ǫ. Then T = FP \ FP+ is a left and right Ore set in the semigroup
ring FP . Since FP is a domain and it is fairly clear that T is a multiplicatively
closed subset. So we just need to show that T , in the terminology of [Lam99],
it is left and right permutable. To show this is slightly more complicated than
[PP16, 3.3] because there exist g ∈ G such that g(ǫ) = ǫ where g is not the identity
function. Despite this, the proof still works if instead of rewriting terms in FG as
(1+

∑
αihi)αu where u ∈ G, α, α1, . . . , αn ∈ F and all hi ∈ P+ we rewrite them as

(
∑n

i=1 αigi+
∑m

i=1 βihi)αu where u ∈ G, α, α1, . . . , αn, β1, . . . , βm ∈ F , all hi ∈ P+

and gi(ǫ) = ǫ for all 1 ≤ i ≤ n.
Finally the localisation R := (FP )T−1 = T−1(FP ) is a nearly simple uniserial

domain.
Each r ∈ R can be written as a fraction (

∑
αifi) · u−1, where fi ∈ P and

u ∈ FP\FP+. By ordering the fi with respect to ≤l we see that rR equals fiR for
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some i. Further, f ∈ gR for f, g ∈ P if and only if f(ǫ) ≥ g(ǫ), hence the principal
right ideals are linearly ordered according to the values of their generators at ǫ. For
instance, f ∈ P is invertible in R if and only if f(ǫ) = ǫ.

Similarly each r ∈ R can be written as a left fraction u−1
∑
δlvl for some u ∈

FP\FP+ and vl ∈ P , hence the left ideal Rr equals Rvl, where vl is the least
element in the ≤r ordering. Further, f ∈ Rg for f, g ∈ P if and only if f ≥r g, i.e.
the principal left ideals of R are linearly ordered by the intercept values of their
generators.

That R is nearly simple follows exactly as in [BBT84, pg52-53].
For our purposes, the most important property of the nearly simple uniserial

ring R is that all right ideals of R are of the form aR or aJ(R) and all left ideals
of R are of the form Ra or J(R)a. This is because right ideals in R correspond
to cuts in the chain of principal right ideals of R and the chain of principal right
ideals of R is isomorphic to the reals greater than ǫ as an order via the map fR for
f ∈ P maps to f(ǫ). A similar justification for left ideals holds with the value of
f(ǫ) replaced by the value of x such that f(x) = ǫ.

Proposition 4.4 implies that if 0 6= r, s ∈ R then N(rR, 0) ∼= N(sR, 0),
N(rJ(R), 0) ∼= N(J(R), 0), N(0, Rr) ∼= N(0, Rs) and N(0, J(R)r) ∼= N(0, J(R)).
Thus the following lemma follows from 4.4.

Lemma 4.6. (see [Pun01b]) Let R be the above nearly simple uniserial domain
and choose 0 6= r ∈ J(R). The Ziegler spectrum of R consists of the following 6
points, where we include for each point a corresponding consistent pair.

(1) The simple module R/J(R) corresponds to the pair 〈J(R), J(R)〉.
(2) The injective hull E(R/J(R)) corresponds to the pair 〈0, J(R)〉.
(3) The injective hull E(R/rR) corresponds to the pair 〈0, rR〉.
(4) The pure-injective hull PE(RR) corresponds to the pair 〈J(R), 0〉.
(5) The pure-injective hull PE(J(R)) corresponds to the pair 〈Rr, 0〉.
(6) The division ring of fractions Q(R) corresponds to the pair 〈0, 0〉.

Moreover, E(R/J(R)) and E(R/rR) are topologically indistinguishable from one
another, and PE(RR) and PE(J(R)) are topologically indistinguishable from one
another.

The topology in now described by 4.5.

4.2. Invariant rank one uniserial domains. The case of invariant rank one
uniserial domains will turn out to be exactly as for commutative rank one uniserial
domains i.e. valuation domains, in fact from what we show it will follow that if R
is an invariant rank one uniserial domain then there exists a valuation domain S
with ZgR homeomorphic to ZgS .

Lemma 4.7. Let R be an invariant uniserial domain. Then all pairs of proper
ideals of R are consistent.

Proof. Let I, J ⊳ R. Suppose that r ∈ I, s ∈ J, r∗ /∈ I and s∗ /∈ J . Since I and
J are ideals, there exists λ, µ ∈ R such that s = s∗λ and r = µr∗. Suppose for a
contradiction that s∗r∗ ∈ RsrR = srR. Then r∗ ∈ λrR since R is a domain. Again
using that R is a domain, r∗ ∈ λrR = Rλr implies 1 ∈ Rλµ and hence µ and λ are
units. But this implies r∗ ∈ I and s∗ ∈ J . So we have a contradiction and hence
s∗r∗ /∈ RsrR = srR. So by 1.10, 〈I, J〉 is consistent. �

17



Let R be a uniserial domain with group of units U(R). Then R is Ore. Let Q
be the division ring of fractions of R. Note that for all q ∈ Q×, either q ∈ R or
q−1 ∈ R and in fact, any subring of a division ring with this property is a uniserial
domain. From now on assume R is invariant. This implies that U(R) is a normal
subgroup of Q×. As in the (commutative) valuation domain case, we will call the
group ΓR := Q×/U(R) the value group of R and let v : R → ΓR ∪{∞} be the map
which send 0 6= r ∈ R to rU(R) and 0 to ∞. Note that this group has a total order
given by b ≤ a if ab−1 ∈ R, equivalently if b−1a ∈ R.

Ideals in R correspond to upsets in ΓR ∪ {∞} via the bijection

I ⊳R 7→ v(I)

Now R is rank one if and only if ΓR is archimedean, i.e. for all 0 < a, b ∈ ΓR there
exists n ∈ N such that b < an. By a theorem of Hölder, see for instance [KM96,
2.2.1], all archimedean totally order groups are subgroups of R. So in particular
ΓR is abelian.

In [Gre13] the Ziegler spectrum of a valuation domain was described in terms of
its value group. We now recall this description and note that it also works for rank
one invariant uniserial domains.

If E is a strictly positive upset in Γ ∪ {∞} and γ ∈ Γ≥0 then let

E + γ := {e+ γ | e ∈ E}.

Note that E + γ is a strictly positive upset and moreover, if I is an ideal in R such
that v(I) = E and g ∈ R is such that v(g) = γ then v(Ig) = v(gI) = E + γ.

We define an equivalence relation ≈ on the set of pairs of strictly positive upsets
of Γ≥0 ∪ {∞}.

If 〈E,F 〉, 〈G,H〉 are pairs of strictly positive upsets then 〈E,F 〉 ≈ 〈G,H〉 if one
of the following is true

(1) there exists γ ∈ Γ≥0 such that E = G+ γ and F + γ = H
(2) there exists γ ∈ Γ≥0 such that E + γ = G and F = H + γ.

Note that by 1.11, pairs of ideals 〈I, J〉 and 〈K,L〉 are such that N(I, J) ∼=
N(K,L) if and only if 〈v(I), v(J)〉 ≈ 〈v(K), v(L)〉.

Write (E,F ) for the ≈-equivalence class of 〈E,F 〉 and write ZR for the set of
≈-equivalence classes.

For α, β ∈ Γ≥0, γ, δ ∈ Γ>0∪{∞}, let Wα,β,γ,δ be the set of ≈-equivalence classes
of pairs of strictly positive upsets (E,F ) such that there exists a pair 〈G,H〉 in the
same ≈-equivalence class as 〈E,F 〉 with α /∈ G, β /∈ H,α+ γ ∈ G and β + δ ∈ H .

According to [Rey99, 2.1], the sets

(xa = 0 ∧ b|x/xc = 0 + d|x)

where a, b, c, d ∈ R are a basis for ZgR.
One can show, just as in the commutative valuation domain case [Pun99, 2.4],

that such a set is non-empty if and only if c 6= 0, a = cr for some r ∈ J(R), b 6= 0 and
d = sb for some s ∈ J(R). Moreover N(I, J) ∈ (xcr = 0 ∧ b|x/xc = 0 + sb|x) if and
only if there exists some consistent pair of ideal (K,L) such that N(K,L) ∼= N(I, J)
and c /∈ K, b /∈ L, cr ∈ K and sb ∈ L.

Thus N(I, J) ∈ (xcr = 0 ∧ b|x/xc = 0 + sb|x) if and only if (v(I), v(J)) ∈
Wv(c),v(b),v(r),v(s).

So exactly as in [Gre13, 3.2] the set ZR equipped with a topology by taking the
sets Wα,β,γ,δ as a basis of open sets is homeomorphic to ZgR.
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Thus if R is a rank one invariant uniserial domain then, by [FS01, 3.8], there
exists a valuation domain S with value group ΓR and thus ZgR is homeomorphic
to ZgS .

We now give an explicit description of ZgR in terms of ΓR. All archimedean
totally ordered abelian groups are either isomorphic to Z or are a dense subgroup
of R.

In the following two computations we write Γ instead of ΓR to simplify notation.

Γ ∼= Z

In this case ZgR is homeomorphic to the Ziegler spectrum of a discrete valuation
domain. The Ziegler spectra of discrete valuation domains are very well known, see
for instance [Pre09, section 5.2.1].

Note that all upsets in Γ>0∪{∞} are either of the form Γ≥n := {m ∈ Z |m ≥ n}
or {∞}.

For each n ∈ N, there is a point, which we will label n, corresponding to the pair
〈Γ≥1,Γ≥n〉, this corresponds to the module R/J(R)n. The remaining points are ∞
corresponding to the equivalence class of the pair 〈{∞}, {∞}〉,∞+ corresponding to
the equivalence class of the pair 〈{∞},Γ≥1〉 and ∞− corresponding the equivalence
class of the pair 〈Γ≥1, {∞}〉. This is a complete list of ≈-equivalence classes.

Either by direct computation or by comparing with the description of the topol-
ogy for a discrete valuation domain given in [Pre09], we have the following descrip-
tion of the topology.

A subset C ⊆ ZgR is closed if and only if the following two properties hold

(1) If ∞+ ∈ C or ∞− ∈ C then ∞ ∈ C.
(2) If n ∈ C for infinitely many n ∈ N then ∞,∞+,∞− ∈ C.

Γ is a dense subgroup of R

Strictly positive upsets in Γ ∪ {∞} all have one of the following forms

(i) I>a := {b ∈ Γ≥0 | b > a} where a ∈ R≥0

(ii) I≥a := {b ∈ Γ≥0 | b ≥ a} where a ∈ Γ>0

(iii) {∞}

One can check that the following is a lists of representatives of ≈-equivalence
classes (note that this list contains many more that one representative for each
class).

(i) 〈{∞}, I>a〉, 〈{∞}, I≥b〉 for a ∈ R≥0 and b ∈ Γ>0

(ii) 〈I>a, {∞}〉, 〈I≥b, {∞}〉 for a ∈ R≥0 and b ∈ Γ>0

(iii) 〈∞,∞〉
(iv) 〈I>a, I>b〉 for a, b ∈ R≥0

(v) 〈I≥a, I≥b〉 for a, b ∈ Γ>0

(vi) 〈I>a, I≥b〉 for a ∈ R≥0 and b ∈ Γ>0

(vii) 〈I≥a, I>b〉 for b ∈ R≥0 and a ∈ Γ>0

We will now consider the space ZR after identifying topologically indistinguish-
able points.

Let α, β ∈ Γ≥0 and γ, δ ∈ Γ>0 ∪ {∞}. One can show that each of the points
listed under (i) are in Wα,β,γ,δ if and only if γ = ∞. Label this point as ∞+.
Symmetrically, each of the points listed under (ii) are in Wα,β,γ,δ if and only if
δ = ∞. Label this point as ∞−. The point ({∞}, {∞}) is in Wα,β,γ,δ if and only
if γ = δ = ∞. Label this point ∞.
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We first state some facts about dense subgroups of R which will allow us to
describe the topology on ZR.

Let α, β ∈ Γ≥0, γ, δ ∈ Γ>0 ∪ {∞} and ǫ1, ǫ2 ∈ Γ.

(1) There exists µ ∈ Γ such that

α ≤ ǫ1 + µ < α+ γ and β ≤ ǫ2 − µ < β + δ

if and only if

α+ β ≤ ǫ1 + ǫ2 < (α+ γ) + (β + δ).

(2) There exists µ ∈ Γ such that

α < ǫ1 + µ ≤ α+ γ and β < ǫ− µ ≤ β + δ

if and only if

α+ β < ǫ1 + ǫ2 ≤ (α+ γ) + (β + δ).

(3) There exists µ ∈ Γ such that

α ≤ ǫ1 + µ < α+ γ and β < ǫ2 − µ ≤ β + δ

if and only if

α+ β < ǫ1 + ǫ2 < (α+ γ) + (β + δ).

This shows that for α, β ∈ Γ≥0, γ, δ ∈ Γ>0 ∪ {∞} and ǫ1, ǫ2 ∈ Γ

(1) (I>ǫ1 , I>ǫ2) ∈ Wα,β,γ,δ if and only if

α+ β ≤ ǫ1 + ǫ2 < (α+ γ) + (β + δ).

We label this point (ǫ1 + ǫ2)
+.

(2) (I≥ǫ1 , I≥ǫ2) ∈ Wα,β,γ,δ if and only if

α+ β < ǫ1 + ǫ2 ≤ (α+ γ) + (β + δ).

We label this point (ǫ1 + ǫ2)
−.

(3) (I>ǫ1 , I≥ǫ2) ∈ Wα,β,γ,δ (respectively (I≥ǫ1 , I>ǫ2) ∈ Wα,β,γ,δ) if and only if

α+ β < ǫ1 + ǫ2 < (α+ γ) + (β + δ).

We label both these points (ǫ1 + ǫ2).

We now consider pairs involving I>ǫ where ǫ /∈ Γ.
Let α, β ∈ Γ≥0, γ, δ ∈ Γ>0 ∪ {∞}, q ∈ Γ and ǫ1, ǫ2 ∈ R\Γ.

(1) There exists µ ∈ Γ such that

α ≤ ǫ1 + µ < α+ γ and β ≤ ǫ2 − µ < β + δ

if and only if

α+ β < ǫ1 + ǫ2 < (α+ γ) + (β + δ)

(2) There exists µ ∈ Γ such that

α ≤ ǫ1 + µ < α+ γ and β ≤ q − µ < β + δ

if and only if

α+ β < ǫ1 + q < α+ γ + β + δ
20



(3) There exists µ ∈ Γ such that

α ≤ ǫ1 + µ < α+ γ and β < q − µ ≤ β + δ

if and only if

α+ β < ǫ1 + q < (α+ γ) + (β + δ)

This shows that for α, β ∈ Γ≥0, γ, δ ∈ Γ>0 ∪ {∞}, q ∈ Γ and ǫ1, ǫ2 ∈ R\Γ

(1) (I>ǫ1 , I>ǫ2) ∈ Wα,β,γ,δ if and only if

α+ β < ǫ1 + ǫ2 < (α+ γ) + (β + δ).

We label this point (ǫ1 + ǫ2).
(2) (I>ǫ1 , I>q) ∈ Wα,β,γ,δ if and only if (I>q , I>ǫ1) ∈ Wα,β,γ,δ

α+ β < ǫ1 + q < α+ γ + β + δ.

We label both these points (ǫ1 + q).
(3) (I>ǫ1 , I≥q) ∈ Wα,β,γ,δ if and only if (I≥q , I>ǫ1) ∈ Wα,β,γ,δ if and only if

α+ β < ǫ1 + q < (α+ γ) + (β + δ)

We label both these points (ǫ1 + q).

We have thus now described the topology on ZR. To summarise, if R is an
invariant uniserial domain with value group Γ which is a dense subgroup of R then
ZgR/T0 is homeomorphic to a topological space with set of points

{r | r ∈ R>0} ∪ {r+ | r ∈ Γ≥0} ∪ {r− | r ∈ Γ>0} ∪ {∞,∞+,∞−}

and basis of open sets Wα,β,γ,δ where α, β ∈ Γ≥0 and γ, δ ∈ Γ>0 ∪ {∞} such that

(1) ∞ ∈ Wα,β,γ,δ if and only if γ = δ = ∞,
(2) ∞+ ∈ Wα,β,γ,δ if and only if γ = ∞,
(3) ∞− ∈ Wα,β,γ,δ if and only if δ = ∞,
(4) r ∈ Wα,β,γ,δ if and only if α+ β < r < α+ γ + β + δ,
(5) r+ ∈ Wα,β,γ,δ if and only if α+ β ≤ r < α+ γ + β + δ and
(6) r− ∈ Wα,β,γ,δ if and only if α+ β < r ≤ α+ γ + β + δ.

The following picture shows a typical open set in ZR with ∞−,∞,∞+ removed.
The oscillating lines show specialisation between points i.e. clr− = {r, r−}, clr+ =
{r, r+} and r is a closed point.

r−

Γ>0 ( ]

r+

Γ≥0[ )

r

R>0( )
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4.3. Exceptional rank one uniserial domains. In what remains of this paper
we will prove the following three theorems which describe the Ziegler spectra of
exceptional rank one uniserial domains after factoring out by T0.

Theorem 4.8. Let R be an exceptional rank one uniserial domain of type C0. Up
to T0 the points of ZgR are

(1) N(0, 0), N(J(R), J(R)), N(J(R), 0), N(0, J(R)) and
(2) for each n ∈ N, Xn := N(J(R), Qn) ≡ N(Qn, J(R)).

A subset C of ZgR/T0 is closed if and only if the following conditions are satisfied:

(a) If N(J(R), 0) ∈ C or N(0, J(R)) ∈ C then N(0, 0) ∈ C.
(b) If C contains infinitely many Xn then N(J(R), 0), N(0, J(R)) and N(0, 0)

are all in C.

Theorem 4.9. Let R be an exceptional rank one uniserial domain of type C1. Up
to T0 the points of ZgR are

(1) N(0, 0), N(J(R), J(R)), N(J(R), 0), N(0, J(R)),
(2) for each n ∈ N, Xn := N(znJ(R), J(R)) ≡ N(J(R), J(R)zn),
(3) for each n ∈ N, Zn := N(znR, J(R)) ≡ N(J(R), Rzn) and
(4) for each n ∈ N, Yn+1 := N(zR,Rzn) and Y1 = N(bR,Ra) where ab = z.

A subset C of ZgR/T0 is closed if and only if the following conditions are satisfied:

(a) If Xn ∈ C then Zn ∈ C.
(b) If Yn ∈ C then Zn ∈ C.
(c) If N(J(R), 0) ∈ C or N(0, J(R)) ∈ C then N(0, 0) ∈ C.
(d) If C contains infinitely many Xn, Yn or Zn then N(J(R), 0), N(0, J(R))

and N(0, 0) are all in C.

Theorem 4.10. Let R be an exceptional rank one uniserial domain of type Ck for
k > 1. Up to T0 the points of ZgR are

(1) (0, 0), N(J(R), J(R)), N(J(R), 0) and N(0, J(R)),
(2) for each n ∈ N, Xn := N(J(R), Qn) ≡ N(Qn, J(R)),
(3) for each n ∈ N, Yn+1 := N(zR,Rzn) and Y1 = N(bR,Ra) where ab = z

and
(4) for each n ∈ N, Zn := N(J(R), Rzn) ≡ N(znR, J(R)).

A subset C of ZgR/T0 is closed if and only if the following conditions are satisfied:

(a) If Yn ∈ C then Zn ∈ C.
(b) If Xkn ∈ C then Zn ∈ C.
(c) If N(J(R), 0) ∈ C or N(0, J(R)) ∈ C then N(0, 0) ∈ C.
(d) If C contains infinitely many Xn, Yn or Zn then N(J(R), 0), N(0, J(R))

and N(0, 0) are all in C.

In the above theorems, all but the final condition describing closed sets describe
the specialisation relation.

We start by proving some general results. The following lemma describes all
critical and generic modules.

Lemma 4.11. Let R be a rank one uniserial domain. If K is a two-sided ideal
then 〈J(R),K〉 and 〈K, J(R)〉 are consistent. Moreover, if K is a non-zero two-
sided ideal then the critical type of N(K, J(R)) is 〈J(R),K〉 and the generic type of
N(J(R),K) is 〈K, J(R)〉. The critical type of N(0, J(R)) is 〈0, 0〉 and the generic
type of N(J(R), 0) is 〈0, 0〉.
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Proof. Suppose rs ∈ K and s /∈ J(R). Then s is a unit. Since K is two-sided,
r = rss−1 ∈ K. So, by 3.6, 〈J(R),K〉 is consistent. That 〈K, J(R)〉 is consistent
follows in the same way, this time using 3.7.

Suppose that K is non-zero. Since 〈K, J(R)〉 is a generic type, DivN(K, J(R)) =
J(R) and annRN(K, J(R)) = K. Since annRN(K, J(R)) is non-zero and J(R) is
the only non-zero completely prime two-sided ideal, AssN(K, J(R)) = J(R). Thus
the critical type of N(K, J(R)) is 〈J(R),K〉. Symmetrically, the generic type of
N(J(R),K) is 〈K, J(R)〉.

Since 〈0, J(R)〉 is a generic type, DivN(0, J(R)) = J(R) and annRN(0, J(R)) = 0.
If 〈I, J〉 realised in N(0, J(R)) then aI = 0 for some non-zero a ∈ R. Thus I = 0.
Thus AssN(0, J(R)) = 0. So the critical type of N(0, J(R)) is 〈0, 0〉. Symmetrically,
the generic type of N(J(R), 0) is 〈0, 0〉. �

Remark 4.12. The above lemma implies that if R is a rank one uniserial do-
main and K is a non-zero two-sided ideal then N(K, J(R)) and N(J(R),K) are
elementary equivalent.

We now consider the points which are not topologically indistinguishable from
critical or generic modules.

Definition 4.13. Let R be a uniserial ring. Let P,Q be two-sided non-zero com-
pletely prime ideals and K a two-sided ideal such that 〈P,K〉 and 〈K,Q〉 are con-
sistent. If there exists a point N such that Ncrit = N(P,K) and Ngen = N(K,Q)
but N is not in the closure of Ncrit or Ngen then we call this point (K,Q)⊥(P,K).

Note that this point is unique and isolated in its closure even before factoring
out by T0 by 3.11. From the proof of 3.11 it may also be assumed that there exist
a, b ∈ R such that (K,Q)⊥(P,K) ∈ (xb = 0/a|x) but neither N(K,Q) nor N(P,K)
are in (xb = 0/a|x).

We now investigate when (K,Q)⊥(P,K) exists.

Lemma 4.14. Let R be a uniserial domain. Then (0, J(R))⊥(J(R), 0) does not
exist.

Proof. If (0, J(R))⊥(J(R), 0) exists then there exist a, b ∈ R such that
(0, J(R))⊥(J(R), 0) ∈ (xb = 0/a|x) and N(J(R), 0), N(0, J(R)) /∈ (xb = 0/a|x).
Since the annihilator of (J(R), 0)⊥(0, J(R)) is 0 this implies that ab = 0. Thus
either a = 0 or b = 0. If b = 0 then N(0, J(R)) ∈ (xb = 0/a|x) = (x = x/a|x). If
a = 0 then N(J(R), 0) ∈ (xb = 0/a|x) = (xb = 0/x = 0). Thus (0, J(R))⊥(J(R), 0)
does not exist. �

Lemma 4.15. Let R be a uniserial domain and K a two-sided ideal. If
(K, J(R))⊥(J(R),K) exists then K is finitely generated as a right ideal.

Proof. If N := (K, J(R))⊥(J(R),K) then by definition there exists a, b ∈ R such
that N ∈ (xb = 0/a|x) and N(K, J(R)), N(J(R),K) /∈ (xb = 0/a|x).

If a ∈ K then a|x is equivalent to x = 0 in N(K, J(R)) and N(J(R),K). Thus
N(J(R),K) ∈ (xb = 0/a|x). If b ∈ K then xb = 0 is equivalent to x = x in
N(K, J(R)) and N(J(R),K). Thus N(K, J(R)) ∈ (xb = 0/a|x). Therefore a, b /∈
K.

Since N has annihilator K and N ∈ (xb = 0/a|x), ab ∈ K.
Suppose that c ∈ K. Since a /∈ K, c = ab′ for some b′ ∈ J(R). Suppose for a

contradiction that b′ /∈ bR. Then b′r = b for some r ∈ J(R). Since b /∈ K, b′ /∈ K.
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Thus N(J(R),K) ∈ (x = x/xb′ = 0) ∩ (xr = 0/x = 0) = (xb = 0/xb′ = 0). Since
ab′ ∈ K, a|x implies xb′ = 0 in N(J(R),K). Thus N(J(R),K) ∈ (xb = 0/a|x).
Thus we have a contradiction and so, b′ ∈ bR. Therefore c = ab′ ∈ abR. Since
ab ∈ K, K = abR.

�

Note that over a rank one uniserial domain an ideal is finitely generated as a left
ideal if and only if it is finitely generated as a right ideal by 4.1.

Lemma 4.16. Let R be a rank one uniserial domain with J(R)2 = J(R). Let
w ∈ R be such that wR = Rw and ab = w.

(1) 〈bR,Ra〉 is consistent.
(2) The annihilator of N(bR,Ra) is wR.
(3) The point (wR, J(R))⊥(J(R), Rw) exists and is N(bR,Ra) where ab = w.

Proof. (1) Suppose α /∈ Ra, β /∈ bR and αβ ∈ RabR = wR. Since α /∈ Ra and
β /∈ bR, a = rα and b = βs for some r, s ∈ J(R). Since αβ ∈ RabR = wR, αβ = wλ
for some λ ∈ R. Thus w = ab = rαβs = rwλs. Since wR = Rw, this implies
w = rµw for some µ ∈ R. This gives a contradiction, since r ∈ J(R). Thus, if
ab = w then, by 1.10, 〈bR,Ra〉 is consistent.

(2) Clearly w ∈ annRN(bR,Ra) because N(bR,Ra) opens the pair xb = 0/a|x and
so for all m ∈ N(bR,Ra), a|m implies mb = 0.

If r /∈ Ra then a = cr for some c ∈ J(R). Let d = rb. Then w = ab = crb = cd.
Thus 〈dR,Rc〉 is a consistent pair and by 1.11, N(bR,Ra) and N(dR,Rc) are
isomorphic. Thus annRN(bR,Ra) ⊆ rbR for all r /∈ Ra. Since annRN(bR,Ra)
is two-sided, by 4.1, annRN(bR,Ra) = rbR if and only if annRN(bR,Ra) = Rrb.
If annRN(bR,Ra) ( rbR then rb /∈ annRN(bR,Ra) and hence annRN(bR,Ra) (
Rrb. Thus annRN(bR,Ra) ⊆ Rrb for all r /∈ Ra.

Suppose λ ∈ annRN(bR,Ra). Then λ = λ′b for some λ′ ∈ R. Suppose for a
contradiction that λ /∈ Rw. Then λ′ /∈ Ra. So a = cλ′ for some c ∈ J(R). Since
J(R)2 = J(R), there exists c1, c2 ∈ J(R) such that c1c2 = c. Thus c2λ

′ /∈ Ra. But
since λ ∈ annRN(bR,Ra), λ ∈ Rc2λ

′b = Rc2λ. Since R is a domain, this implies
1 ∈ Rc2 and hence c2 /∈ J(R). Thus we have a contradiction and so λ ∈ wR = Rw.

(3) Since AssN(Ra, bR) = DivN(Ra, bR) = J(R), the annihilator of
N(bR,Ra) is wR and N(bR,Ra) ∈ (xb = 0/a|x) it is enough to show that
N(wR, J(R)), N(J(R), Rw) /∈ (xb = 0/a|x). Since N(wR, J(R)) and N(J(R), Rw)
are elementary equivalent, it is enough to show N(wR, J(R)) /∈ (xb = 0/a|x). Note
that 1 + wR ∈ R/wR realises (wR, J(R)).

Suppose r ∈ R and rb ∈ wR = Rw. Then rb = sab for some s ∈ R. So
r = sa. Thus the right module R/wR does not open the pair xb = 0/a|x. Therefore
the pure-injective hull of R/wR does not open the pair xb = 0/a|x. So, since
N(bR,Ra) is a direct summand of the pure-injective hull of R/wR, N(bR,Ra) /∈
(xb = 0/a|x). �

Thus we now know that any point which is topologically distinguishable from
its generic and critical point is of the form N(bR,Ra) where abR = Rab, that the
critical type of such a point is 〈J(R), Rab〉 and that the generic type of such a point
is 〈abR, J(R)〉. Note that we know from section 3 that these points are isolated in
their closure and hence are T0-points.
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Lemma 4.17. Let R be an exceptional rank one uniserial domain. All points in
ZgR are topologically indistinguishable from an indecomposable pure-injective of one
of the following forms:

(1) N(0, 0), N(0, J(R)), N(J(R), 0), N(J(R), J(R))
(2) N(J(R),K) ≡ N(K, J(R)) where K is a two-sided non-zero ideal
(3) N(bR,Ra) where abR = Rab

We now describe as much of the topology of ZgR as possible without specialising
to Cn for a particular n ∈ N.

Lemma 4.18. Let R be an exceptional rank one uniserial domain with J(R)2 =
J(R). Let w ∈ R be such that wR = Rw and ab = w. The point N(bR,Ra) is
isolated in ZgR.

Proof. Since R is exceptional, there exists a minimal ideal I such that wR ( I.
Take λ ∈ I\wR. Then N(bR,Ra) ∈ (x = x/xλ = 0) and N ∈ (x = x/xλ = 0)
if and only if annRN ⊆ wR. Moreover N(bR,Ra) ∈ (xb = 0/a|x) and N ∈
(xb = 0/a|x) implies w = ab ∈ annRN . Thus if N ∈ (x = x/xλ = 0)∩ (xb = 0/a|x)
then annRN = wR. This means that N is topologically indistinguishable from
N(bR,Ra) or N(J(R), Rw) ≡ N(wR, J(R)). We have already shown in the
proof of 4.16 that N(J(R), Rw) ≡ N(wR, J(R)) /∈ (xb = 0/a|x). Thus N ∈
(x = x/xλ = 0) ∩ (xb = 0/a|x) implies N is topologically indistinguishable from
N(bR,Ra). Since N(bR,Ra) is isolated in its closure, N = N(bR,Ra). �

Lemma 4.19. Let R be a rank one exceptional uniserial domain. The point N(0, 0)
is closed and the point N(J(R), J(R)) closed and isolated. In particular, these points
are T0-points.

Proof. The type 〈J(R), J(R)〉 is realised in R/J(R) and the type 〈0, 0〉 is realised
in F the division ring of fractions of R. Both R/J(R) and F are division rings and
thus their Ziegler spectra have exactly one point R/J(R) and F respectively. The
canonical map from R to R/J(R) is an epimorphism and the canonical embedding
of R into F is an epimorphism. Thus, [Pre09, 5.5.3], ZgR/J(R) and ZgF embed into

ZgR as closed subsets. So R/J(R) and F are closed points of ZgR.
We now show that N(J(R), J(R)) is isolated. Take c ∈ J(R)\Q where Q is the

exceptional prime. Since J(R)2 = J(R), there exist a, b ∈ J(R) such that ab = c.
Thus (J(R), J(R)) ∈ (xb = 0/a|x). If N ∈ (xb = 0/a|x) then c = ab ∈ annRN . So
annRN = J(R). Thus N = N(J(R), J(R)). �

Lemma 4.20. Let R be an exceptional rank one uniserial domain. If K is a
non-zero non-finitely generated ideal then N(K, J(R)) ≡ N(J(R),K) is isolated in
ZgR/T0.

Proof. Take λ ∈ I1\K where I1 is the smallest two-sided ideal strictly containing
K. Then N(K, J(R)) ∈ (x = x/xλ = 0) since λ /∈ annRN(J(R),K) = K. Take
a, µ ∈ R such that aµ ∈ K\I2 where I2 is the largest two-sided ideal strictly
contained in K, µ ∈ K and a ∈ J(R) (we can do this since K is not finitely
generated and hence J(R)K = K). Then N(J(R),K) ∈ (xµ = 0/a|x).

If N ∈ (x = x/xλ = 0) then λ /∈ annRN . So I1 ⊇ λR ) annRN . If N ∈
(xµ = 0/a|x) then aµ ∈ annRN . So annRN ) I2. Thus, if N ∈ (x = x/xλ = 0) ∩
(xµ = 0/a|x) then annRN = K.
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Since K is not finitely generated, the only point, up to topological indistin-
guishability, with annihilator K is N(K, J(R)). So we have shown that N(K, J(R))
is isolated in ZgR/T0. �

Lemma 4.21. Let R be a rank one uniserial domain. The closure, inside ZgR/T0
of

(1) N(J(R), 0) is {N(0, 0), N(J(R), 0)}
(2) N(0, J(R)) is {N(0, 0), N(0, J(R))}

Proof. (1) Since R is a domain, DivN(J(R), 0) = 0. So if N is in the closure of
N(J(R), 0) then DivN = 0. Thus annRN = 0. If AssN = 0 then N = N(0, 0). If
AssN = J(R) then N = N(J(R), 0). (2) follows by symmetry. �

Lemma 4.22. Let R be a rank one uniserial domain. Let (Nn)n∈N be a sequence of
points in ZgR/T0 such that

⋂∞

i=1 annRNi = {0} and for all i ∈ N, AssNi = J(R) and
DivNi = J(R). The points N(0, 0), N(J(R), 0) and N(0, J(R)) are in the closure of
{Ni | i ∈ N}.

Proof. We need to show that if N(0, J(R)) ∈ U an open set then there exists i ∈ N

such that Ni ∈ U . It is enough to check this property for open sets in U in the
subbasis described in 3.12.

Let a, b, c, d, e ∈ R. If N(0, J(R)) ∈ (x = x/c|x) then c ∈ J(R). So Ni ∈
(x = x/c|x) for all i ∈ N since DivNi = J(R). If N(0, J(R)) ∈ (xd = 0/x = 0) then
d = 0. So Ni ∈ (xd = 0/x = 0) for all i ∈ N. If N(0, J(R)) ∈ (xb = 0/a|x) then
b = 0 and a ∈ J(R). Thus Ni ∈ (xb = 0/a|x) for all i ∈ N since DivNi = J(R).
Finally, N(0, J(R)) ∈ (x = x/xe = 0) if and only if e 6= 0. Thus there exists n ∈ N

such that e /∈ annRNn since
⋂∞

i=1 annRNi = {0}. Hence Nn ∈ (x = x/xe = 0).
Therefore, the closure of a set of points Ni as in the statement contains N(J(R), 0).
Symmetrically, one can show that the closure also contains N(J(R), 0). By 4.21,
the closure also contains N(0, 0). �

4.4. Type C0. Throughout this subsection, let R be an exceptional rank one unis-
erial domain of type C0.

Using 4.17 and the fact thatR has no two-sided ideals which are finitely generated
as a right ideal, we know that the points in ZgR up to topological indistinguishability
are N(0, 0), N(J(R), J(R)), N(0, J(R)), N(J(R), 0) and Xn := N(J(R), Qn) ≡
N(Qn, J(R)) for n ∈ N.

Lemma 4.23. The point Xn is closed and isolated in ZgR/T0.

Proof. That Xn is isolated is a direct consequence of 4.20.
If N is in the closure of Xn then annRN ⊇ Qn by 3.13. Thus (J(R), 0), (0, J(R))

and (0, 0) are not in the closure of Xn. Since each Xm is isolated, Xm is not in the
closure of Xn for all n 6= m. Since (J(R), J(R)) is isolated, 4.19, (J(R), J(R)) is not
in the closure of Xn. Thus the only point in the closure of Xn is Xn itself. �

proof of theorem 4.8. Suppose C is a closed subset of ZgR/T0. By 4.21, if
N(J(R), 0) ∈ C or N(0, J(R)) ∈ C then N(0, 0) ∈ C. So (a) of 4.8 holds. If Xn ∈ C
for infinitely many n ∈ N then since annRXn = Qn, AssXn = DivXn = J(R) and⋂∞

i=1Q
n = 0, 4.22 implies N(J(R), 0), N(0, J(R)), N(0, 0) ∈ C. Thus (b) of 4.8 also

holds.
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Now suppose that C ⊆ ZgR/T0 satisfies (a) and (b). First note that, by 4.21,
4.19 and 4.23, C is closed under specialisation. We intend to show that C is equal
to its closure.

Suppose N(J(R), 0) /∈ C. Since (b) holds, {Xn | Xn ∈ C} is finite. So C is finite.
Since C is closed under specialisation, C = clC. The same argument shows that if
N(0, J(R)) /∈ C or N(0, 0) /∈ C then C = clC.

Now suppose that N(J(R), 0), N(0, J(R)), N(0, 0) ∈ C. Since N(J(R), J(R)) is
isolated, N(J(R), J(R)) ∈ C if and only ifN(J(R), J(R)) ∈ clC. SinceXn is isolated
for each n ∈ N, Xn ∈ C if and only if Xn ∈ clC. Thus C = clC.

�

4.5. Type Ck for k > 1. Using 4.17, we know that the points in ZgR up to
topological indistinguishability are N(0, 0), N(J(R), J(R)), N(0, J(R)), N(J(R), 0),
Xn := N(J(R), Qn) ≡ N(Qn, J(R)), Zn := N(znR, J(R)) ≡ N(J(R), Rzn) and
Yn := N(bR,Ra) where ab = zn for n ∈ N. By 4.16, (J(R), Rzn)⊥(znR, J(R)) is
Yn.

Lemma 4.24. The points Xn and Yn are isolated in ZgR/T0 for all n ∈ N.

Proof. The point Xn is isolated by 4.20 and the point Yn is isolated by 4.18.
�

Lemma 4.25. The set {Xkn, Yn, Zn} is open for all n, k ∈ N.

Proof. Note that both Yn and Zn have annihilator znR = Rzn and Xkn has annihi-
lator Qkn = znJ(R). Take λ ∈ Qkn−1\znR. Then N ∈ (x = x/xλ = 0) if and only
if λ /∈ annRN if and only if Qkn−1 ) annRN . Thus Xkn, Yn, Zn ∈ (x = x/xλ = 0).

Let a, b ∈ J(R) be such that ab = zn. Take c, µ ∈ J(R) such that cznµ ∈
znJ(R)\Qkn+1. We can do this because znJ(R) = J(R)zn and J(R)2 = J(R).
Since N(J(R), Rzn) = N(bJ(R), Ra), Zn ∈ (xbµ = 0/ca|x). It is clear that Yn ∈
(xbµ = 0/ca|x). Since Qkn = J(R)zn, N(J(R), Qkn) = N(bJ(R), J(R)a) and so
Xkn ∈ (xbµ = 0/ca|x).

Moreover, if N ∈ (xbµ = 0/ca|x) then cznµ ∈ annRN . So annRN ) Qkn+1.
Thus if N ∈ (x = x/xλ = 0) ∩ (xbµ = 0/ca|x) then Qkn−1 ) annRN ) Qkn+1.

Thus annRN = znR or annRN = znJ(R) = Qkn. Thus (x = x/xλ = 0) ∩
(xbµ = 0/ca|x) = {Xkn, Yn, Zn}.

�

Lemma 4.26. The closure of Xkn is {Xkn, Zn}.

Proof. In order to check that Zn is in the closure of Xkn it is enough to check for
(Ui)i∈I an open neighbourhood basis of Zn, Xkn ∈ Ui for all i ∈ I.

Since all pp-1-formulae are equivalent to a formula of the form
∑n
i=1 xai = 0∧bi|x

for some ai, bi ∈ R and n ∈ N, Applying Prest’s duality [Pre88, chapter 8], this
means all pp-1-formulae are equivalent to a formula of the form

∧n
i=1 xci = 0+di|x.

Since the pp-definable subgroups of any N ∈ ZgR are totally ordered by inclusion,
[Zie84, 4.9] implies that the open sets (xa = 0 ∧ b|x/xc = 0 + d|x), where a ∈ znR,
b /∈ J(R), c /∈ znR and d ∈ J(R), are a basis of open neighbourhoods for Zn.

Suppose a ∈ znR, b /∈ J(R), c /∈ znR and d ∈ J(R), then

(xa = 0 ∧ b|x/xc = 0 + d|x) = (xa = 0/xc = 0 + d|x) = (xa = 0/xc = 0)∩(xa = 0/d|x) .
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Since a ∈ znR and c /∈ znR there exists r ∈ J(R) such that cr = a and N ∈
(xa = 0/xc = 0) if and only if r ∈ AssN and c /∈ annRN . Since AssXkn = AssZn
and annRXkn ( annRZn, Xkn ∈ (xa = 0/xc = 0).

We now show that Xkn ∈ (xa = 0/d|x). If a ∈ znJ(R) then we are done since
d ∈ J(R). Otherwise a = znµ for some µ /∈ J(R) and hence xa = 0 is equivalent to
xzn = 0. So we need to show that Zkn ∈ (xzn = 0/d|x) for all d ∈ J(R).

Take λ ∈ J(R)\(Q∪Rd) and letm realise 〈znJ(R), J(R)〉 inXkn. Thenmλz
n = 0

since λ ∈ J(R) and hence λzn ∈ znJ(R) = J(R)zn. Since λ /∈ Rd there exists
δ ∈ J(R) such that d = δλ. If d|mλ then m is in the pp-definable subgroup defined
by xλ = 0 + δ|x. Since the pp-definable subgroups of Xkn are totally ordered,
this would mean that mλ = 0 or δ|m. This is false because λ /∈ znJ(R) ⊆ Q and
δ /∈ J(R). Thus mλ opens xzn = 0/d|x. So Xkn ∈ (xzn = 0/d|x).

Thus we have shown that Zn is in the closure of Xkn.
We now show that only Xkn and Zn are in the closure of Xkn. Since for each

m ∈ N, Ym is isolated, Ym is not in the closure of Xkn. Since for all kn 6= m ∈ N,
Xm is isolated, Xm is not in the closure of Xkn. Since N(J(R), J(R)) is isolated,
N(J(R), J(R)) is not in the closure of Xkn.

Since for all m ∈ N, {Xkm, Ym, Zm} is open, Zm is not in the closure of Xkn

unless m = kn.
Finally note that N(0, 0) is not in the closure of Xkn since for all λ 6= 0, N(0, 0) ∈

(x = x/xλ = 0). Thus N(J(R), 0) and N(0, J(R)) are not in the closure of Xkn.
�

Lemma 4.27. The closure of Yn is {Yn, Zn}.

Proof. Since Yn is (J(R), Rzn)⊥(znR, J(R)), Zn is in the closure of Yn. Since
for each m, Xm is isolated, Xm is not in the closure of Yn. Since for each m,
{Xkm, Ym, Zm} is open Zm and Ym are not in the closure of Yn unless m = n.
Finally note that N(0, 0) is not in the closure of Yn since for all λ 6= 0, N(0, 0) ∈
(x = x/xλ = 0). Thus N(J(R), 0) and N(0, J(R)) are not in the closure of Yn. �

Proof of theorem 4.10. Suppose that C is closed. Thus C is closed under speciali-
sation and hence (a), (b) and (c) hold by 4.26, 4.27 and 4.21. Since any infinite set
of points of the form Xn, Yn or Zn has common annihilator zero, 4.22 implies (d)
holds.

Suppose (a),(b), (c), (d) hold for C ⊆ ZgR/T0. Properties (a), (b) and (c) imply
that C is closed under specialisation. We intend to show that C is equal to its
closure. If N(J(R), 0) /∈ C, N(0, J(R)) /∈ C or N(0, 0) /∈ C then C is finite by (d).
Thus C is equal to its closure since C is closed under specialisation. Now suppose
that N(0, J(R)), N(J(R), 0), N(0, 0) ∈ C. If N is isolated then N ∈ C if and only
if N ∈ clC. Thus we need only concern ourselves with non-isolated points. So,
suppose that Zn ∈ clC. Since {Yn, Xkn, Zn} is open, C contains either Zn, Yn or
Xkn. Thus (a) and (b) imply Zn ∈ C. Thus C is equal to its closure and hence
closed.

�

4.6. Type C1. The only difference between the C1 case and the Ck case for k > 1
is that the points are different. For this reason, most proofs will not be given.

Using 4.17, we know that the points in ZgR up to topological indistinguishabil-
ity are N(0, 0), N(J(R), J(R)), N(0, J(R)), N(J(R), 0), Xn := N(J(R), J(R)zn) ≡
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N(znJ(R), J(R)), Zn := N(znR, J(R)) ≡ N(J(R), Rzn) and Yn := N(bR,Ra)
where ab = zn. By 4.16, Yn is (J(R), Rzn)⊥(znR, J(R)).

Lemma 4.28. The points Xn and Yn are isolated in ZgR/T0.

Proof. That Xn is isolated follows from 4.20. That Yn is isolated is exactly 4.18.
�

Lemma 4.29. The set {Xn, Yn, Zn} is open for all n ∈ N.

Proof. The proof here is exactly as in 4.25. �

Lemma 4.30. The closure of Xn is {Xn, Zn} and the closure of Yn is {Yn, Zn}.
Thus Zn is a closed point.

Proof. This is exactly as in 4.26 and 4.27. �

The proof of 4.9 is now exactly as in 4.10.
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