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This paper considers how the finite dimensions of a photonic crystal placed inside a resonator or
waveguide affect the law of electron beam instability. The dispersion equations describing e-beam
instability in the finite photonic crystal placed inside the resonator or waveguide (a bounded photonic
crystal) are obtained. Application of photonic crystals for development of THz sources at electron beam
current densities available at modern accelerators is discussed.
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I. INTRODUCTION

THz sources are in demand for a variety of applications:
information and communications technology, biology and
medicine, nondestructive investigations and homeland
security, food and agricultural products quality control,
global environmental monitoring, space research and ultra-
fast computing. High-power tunable THz sources are very
important devices to bring promising prospects to wide use;
high efficiency and compactness are also highly desired
(see [1,2] and references therein).
Sources of THz radiation are studied by numerous authors

throughexpansion toTHz rangeof approaches andprinciples,
which generally serve for microwave sources; namely, trav-
eling wave tubes, backward wave oscillators, generators
utilizing diffraction or Smith-Purcell radiation, etc. [3–6].
A slow-wave structure (SWS) is generally used in such
devices to make the electromagnetic wave phase velocity
less than the speed of light so that beam electrons can
interact with the wave and convert their energy to radiation.
A diffraction grating, a helical line, a corrugatedwaveguide, a
photonic crystal, a multipin structure or a spatially periodic
structure of any type, they all couldwork as SWSs and enable
frequency tuning by a change of their geometry [7–11].
The general feature for all the above listed radiation

sources is the instability of an electron beam in a spatially
periodic media, which results in beam self-modulation and
radiation of electromagnetic waves. The increment δ0 ∼
Imkz (kz is the longitudinal wave number), which describes
the electron beam instability responsible for radiation
process in such devices, conventionally is determined by
the unperturbed density ρb0 of electrons in the beam as

follows: δ0 ∼
ffiffiffiffiffiffiffi
ρb03

p
[12–14]. The threshold current density

jthr, which is required for coherent electromagnetic oscil-
lations to grow, in this case depends on the beam-wave
interaction length L as jthr ∼ L−3.
The shift to THz range for conventional microwave

devices faces several difficulties limiting the output power
due to a drastic decrease in dimensions of the interaction
area. The SWS period tends to submillimeter range and
requirements to electron beam quality and guiding preci-
sion become more strict. The amplitude of the harmonic,
which is in synchronism with the beam, decreases with the
distance from the SWS surface on the scale

Δ ¼ λβγ

2π
; ð1Þ

where λ is the wavelength, β ¼ v
c, γ is the Lorentz factor,

and v and c are the speed of electron beam and light,
respectively. Thus, only electrons moving close to the
structure can efficiently interact with the wave; for exam-
ple, Δ ≈ 0.1 mm for 100 keV electron beam and
λ ¼ 1 mm. Small dimensions constrain applicable electron
beam currents and, therefore, available output power.
Therefore, approaches enabling increase of efficiency
and transverse dimensions of interaction area (electron-
beam cross section) are of high priority for THz source
development. Such approaches were for the first time ever
proposed for x-ray range by the concept of volume free
electron laser (VFEL) [9,15–17], which enables increase of
both the efficiency and the transverse coherence area, and
simultaneous reduction of threshold current density and
operation length. Successive expansion of the VFEL
concept to microwave [5–8,18], terahertz [19,20] and
visible light [21] ranges includes both theoretical and
experimental studies; diversely designed SWS are used;
namely, diffraction gratings, photonic crystals, etc.
Another law of electron beam instability was discovered

in [9,15–17]. It was found there that for an electron beam

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 044702 (2019)

2469-9888=19=22(4)=044702(14) 044702-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.22.044702&domain=pdf&date_stamp=2019-04-30
https://doi.org/10.1103/PhysRevAccelBeams.22.044702
https://doi.org/10.1103/PhysRevAccelBeams.22.044702
https://doi.org/10.1103/PhysRevAccelBeams.22.044702
https://doi.org/10.1103/PhysRevAccelBeams.22.044702
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


moving in a crystal for the case, when Bragg diffraction
could occur, the electron beam instability increment δ0
could turn out to be determined by δ0 ∼

ffiffiffiffiffiffiffi
ρb04

p
rather than

conventional δ0 ∼
ffiffiffiffiffiffiffi
ρb03

p
[12–14]. The law of electron

beam instability inherent for the volume free electron laser
[9,15–17] is revealed when distributed feedback is formed
by Bragg diffraction of the beam-induced electromagnetic
wave by a spatially periodic SWS. This law gives for the
threshold current density the very different dependence on
interaction length L as follows: jthr ∼ L−3−2s, where s is the
number of additional waves arisen due to diffraction (when
one additional wave arises then jthr ∼ L−5).
For a certain slow-wave structure this law reveals only for

the narrow range of parameters (electron beam energy and
radiation frequency), for which the group velocity of the
excited wave is close to zero, i.e., synchronism of beam and
wave is achieved in the vicinity of π-point on the SWS
dispersion curve kðωÞ ¼ 0 (k is the wave number, ω is the
radiation frequency). For example, when in addition to the
electromagnetic wave, which is excited by electron beam via
its interactionwith SWS, onemorewave,which propagates in
the direction determined by the Bragg’s law, is present, one
could expect that the threshold current density jthr is defined
by law jthr ∼ L−5 rather than jthr ∼ L−3 for proper combina-
tion of electron beam energy and radiation frequency. In
particular, the law jthr ∼ L−5 can be observed in the conven-
tional backward wave oscillator with corrugated waveguide
in the case when the excited wave and the diffracted one
propagate in opposite directions along the system axis.
First lasing of VFEL, which uses the above described

instability law, was presented in [7]. Frequency tuning in
this generator is analyzed in [8]. The theoretical study of
the instability of electron beams moving in natural and
artificial (photonic) crystals was carried out for the ideal
case of an infinite medium (see the review [9] and
[5,7,15,18,22]). It is known that the discrete structure of
the modes in waveguides and resonators is crucial for
effective generation in the microwave range [23–25]. This
paper considers how the finite dimensions of a photonic
crystal placed inside a resonator or waveguide affect the
law of electron beam instability.
The dispersion equation describing e-beam instability in

the finite photonic crystal placed inside the resonator or
waveguide (a bounded photonic crystal) is obtained. The
instability law is shown to be valid and caused by mixing of
the electromagnetic field modes in the finite volume due to
the periodic disturbance produced by the photonic crystal.

II. EQUATIONS DESCRIBING MOTION OF A
RELATIVISTIC ELECTRON BEAM IN A

BOUNDED PHOTONIC CRYSTAL

To describe generation of induced radiation (i.e., electron
beam instability) in either a photonic or a natural crystal
one should start from Maxwell equations:

rotH⃗ðr⃗; tÞ ¼ 1

c
∂D⃗ðr⃗; tÞ

∂t þ 4π

c
j⃗ðr⃗; tÞ;

rotE⃗ðr⃗; tÞ ¼ −
1

c
∂H⃗ðr⃗; tÞ

∂t ;

divD⃗ðr⃗; tÞ ¼ 4πρðr⃗; tÞ; ∂ρðr⃗; tÞ
∂t þ divj⃗ðr⃗; tÞ ¼ 0; ð2Þ

where E⃗ðr⃗; tÞ and H⃗ðr⃗; tÞ are the strength of the electric and
the magnetic field, respectively; j⃗ðr⃗; tÞ and ρðr⃗; tÞ are the
current and charge densities; Diðr⃗; tÞ ¼

R
εilðr⃗; t; t0Þ

Elðr⃗; t0Þdt0, where indices i, l ¼ 1, 2, 3 correspond to x,
y, z; in the case of properties of the photonic crystal not
depending on time, its dielectric permittivity tensor reads
as εilðr⃗; t − t0Þ ¼ 1

2π

Rþ∞
−∞ εilðr⃗;ωÞe−iωðt−t0Þdω.

The current and charge densities are defined as

j⃗ðr⃗; tÞ ¼ e
X
α

v⃗αδðr⃗ − r⃗αðtÞÞ;

ρðr⃗; tÞ ¼ e
X
α

δðr⃗ − r⃗αðtÞÞ ¼ eρbðr⃗; tÞ; ð3Þ

where e is the electron charge, and ρbðr⃗; tÞ is the beam
density (the number of electrons per 1 cm3). The velocity
v⃗α ¼ v⃗αðtÞ of the electron with number α can be obtained
by the relativistic equation of charge motion in an electro-
magnetic field (see Sec. 17 in [26]):

dp⃗α

dt
¼ m

d
dt

ðγαv⃗αÞ ¼ e

�
E⃗ðr⃗α; tÞ þ

1

c
½v⃗α × H⃗ðr⃗α; tÞ�

�
;

ð4Þ

where p⃗α¼ p⃗αðtÞ is the particle momentum, γα¼ð1−v2α
c2Þ

−1
2

is the Lorentz factor, and E⃗ðr⃗α; tÞ and H⃗ðr⃗α; tÞ are the
electric and magnetic field strength at point r⃗α ¼ r⃗αðtÞ,
where the electron with number α is located.
Following the exercise concluding Sec. 17 in [26], one

can transform (4) to the equation for v⃗α as follows:

dv⃗α
dt

¼ e
mγα

�
E⃗ðr⃗α; tÞ þ

1

c
½v⃗α × H⃗ðr⃗α; tÞ�

−
v⃗α
c2

½v⃗αE⃗ðr⃗α; tÞ�
�
: ð5Þ

From Eq. (2) one can obtain

−ΔE⃗ðr⃗; tÞ þ ∇⃗½∇⃗ E⃗ðr⃗; tÞ� þ 1

c2
∂2D⃗ðr⃗; tÞ

∂t2 ¼ −
4π

c2
∂j⃗ðr⃗; tÞ

∂t :

ð6Þ

The description of radiation generation and instability of
electron beam moving in the photonic crystal becomes
much simpler in a practically important case, when all the
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elements χik of tensor χ̂ are much smaller as compared to
the unity jχikj ≪ 1. In this case Eq. (6) can be rewritten as
follows:

ΔE⃗ðr⃗; tÞ − 1

c2
∂2

∂t2
Z

ε̂ðr⃗; t − t0ÞE⃗ðr⃗; t0Þdt0

¼ 4π

�
1

c2
∂j⃗ðr⃗; tÞ

∂t þ ∇⃗ρðr⃗; tÞ
�
: ð7Þ

For detailed justification of its validity see the Appendix.
In the general case the dielectric permittivity tensor can

be presented in the form ε̂ðr⃗Þ ¼ 1þ χ̂ðr⃗Þ, where χ̂ðr⃗Þ is the
susceptibility of the photonic crystal

χ̂ðr⃗Þ ¼
X
i

χ̂cellðr⃗ − r⃗iÞ; ð8Þ

where χ̂cellðr⃗ − r⃗iÞ is the susceptibility of the crystal
unit cell. The susceptibility of an infinite perfect crystal
χ̂ðr⃗Þ can be expanded into a Fourier series as follows:
χ̂ðr⃗Þ ¼Pτ⃗ χ̂ τ⃗e

iτ⃗ r⃗, where τ⃗ is the reciprocal lattice vector of
the crystal.

Let us consider in detail a practically important case
of a bounded photonic crystal; to be more specific, let us
study a photonic crystal placed inside a waveguide of
rectangular cross section with smooth walls. The walls of
the waveguide are assumed to be perfectly conductive.
The eigenfunctions and eigenvalues of a rectangular
waveguide are well studied [27,28]. Suppose the z axis
to be directed along the waveguide axis, a and b are the
waveguide dimensions along x and y axes, respectively.
Let us make a Fourier transform of (6) over time and
longitudinal coordinate z. In this case Diðr⃗;ωÞ ¼
εilðr⃗;ωÞElðr⃗;ωÞ. Expanding the obtained equation for
the field E⃗ðr⃗⊥; kz;ωÞ over a full set of vector eigenfunc-
tions Y⃗λ

mnðr⃗⊥; kzÞ of a rectangular waveguide (where
m; n ¼ 1; 2; 3…: and λ describes the type of the wave
[29]), one can obtain for field E⃗ the equality

E⃗ðr⃗⊥; kz;ωÞ ¼
X
mnλ

Cλ
mnðkz;ωÞY⃗λ

mnðr⃗⊥; kzÞ: ð9Þ

As a result, the following system of equations can be
written:

�
ðk2z þ ϰ2mnλÞ −

ω2

c2

�
Cλ
mnðkz;ωÞ −

ω2

c2
1

2π

X
m0n0λ0

Z
Y⃗λ�
mnðr⃗⊥; kzÞχ̂ðr⃗ÞY⃗λ0

m0n0 ðr⃗⊥; k0zÞe−iðkz−k0zÞzd2r⊥Cλ0
m0n0 ðk0z;ωÞdk0zdz

¼ 4πiω
c2

Z
Y⃗λ�
mnðr⃗⊥; kzÞ

�
j⃗ðr⃗⊥; z;ωÞ þ

c2

ω2
∇⃗½∇⃗ j⃗ðr⃗⊥; z;ωÞ�

�
e−ikzzd2r⊥dz; ð10Þ

where ϰ2mnλ ¼ k2xmλ þ k2ynλ.
The beam current and density, which appear on the right-

hand side of (10), are the complicated functions of E⃗ðr⃗;ωÞ.
To study the system instability, it is sufficient to consider it
in the approximation linear over perturbation, i.e., one can
expand the expressions for j⃗ðr⃗;ωÞ and ρðr⃗;ωÞ over E⃗ðr⃗;ωÞ
amplitude and confine oneself with the linear approxima-
tion [12–14,30,31].
As a result, a closed system of equations comes out. For

further consideration, one should find the expressions for
corrections to beam current density δj⃗ðr⃗;ωÞ and beam
charge density δρðr⃗;ωÞ, which arise due to beam pertur-
bation by the field. Considering the Fourier transforms of
current and charge densities j⃗ðk⃗;ωÞ and ρðk⃗;ωÞ, one can
obtain from (3) that

δj⃗ðk⃗;ωÞ ¼ e
XN
α¼1

e−ik⃗r⃗α0
�
δv⃗αðω − k⃗u⃗αÞ

þ u⃗α
k⃗δv⃗αðω − k⃗u⃗αÞ

ω − k⃗u⃗α

�
; ð11Þ

where r⃗α0 is the initial coordinate of the electron, and u⃗α is
the unperturbed velocity of the electron.
For simplicity, let us consider a cold beam, for which

u⃗α ≈ u⃗, where u⃗ is themeanvelocity of the beam. The general
case of a hot beamcan be obtained by averaging δj⃗ðk⃗;ωÞ over
distribution of particle the velocities u⃗α in the beam.
According to (5), velocity δv⃗α is determined by field

E⃗ðr⃗α;ωÞ. The Fourier transform of E⃗ðr⃗α;ωÞ has a form

E⃗ðr⃗α;ωÞ ¼
1

ð2πÞ3
Z

E⃗ðk⃗0;ωÞeik⃗0 r⃗αd3k0:

As a result, δj⃗ðk⃗;ωÞ includes the following sum over the

beam particles
P

αe
−iðk⃗−k⃗0Þr⃗α . Suppose that the electrons in

an unperturbed beam are uniformly distributed over the
area occupied by the beam. Therefore

X
α

e−iðk⃗−k⃗
0Þr⃗α ¼ ð2πÞ3ρb0δðk⃗ − k⃗0Þ:

As a result, the following expression for δj⃗ðk⃗;ωÞ can be
obtained [32,33]:
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δj⃗ðk⃗;ωÞ ¼ i
u⃗e2ρb0ðk2 − ω2

c2Þ
ðω − k⃗ u⃗Þ2mγω

u⃗ E⃗ðk⃗;ωÞ: ð12Þ

One can obtain the expression for ρbðk⃗;ωÞ using the continuity equation. Expression (12), the inverse Fourier transform of
E⃗ðk⃗;ωÞ, and the expansion (9) enable writing the system of Eq. (10) as follows:

�
ðk2z þ ϰ2mnλÞ −

ω2

c2

�
Cλ
mnðkz;ωÞ −

ω2

c2
1

2π

X
m0n0λ0

Z
Y⃗λ�
mnðr⃗⊥; kzÞχ̂ðr⃗ÞY⃗λ0

m0n0 ðr⃗⊥; k0zÞe−iðkz−k0zÞzd2r⊥Cλ0
m0n0 ðk0z;ωÞdk0zdz

¼ −
ω2
Lðk2mnc2 − ω2Þ

γc4ðω − k⃗mnu⃗Þ2
�

1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
Cλ
mnðkz;ωÞ; ð13Þ

where Y⃗λ
mnðk⃗⊥; kzÞ ¼

R
e−ik⃗⊥ r⃗⊥ Y⃗λ

mnðr⃗⊥; kzÞd2r⊥.
The system of Eq. (13) in the approximation linear over perturbation describes the electromagnetic field modes, which

are induced by an electron beam in the finite volume of a rectangular waveguide due to the periodic disturbance produced
by a photonic crystal.

III. RADIATIVE INSTABILITY OF A RELATIVISTIC ELECTRON BEAM MOVING
IN A BOUNDED PHOTONIC CRYSTAL

The above obtained system of Eq. (13) enables to derive the dispersion equation for a bounded photonic crystal and to
analyze conditions, when electron beam instability presents. Let us consider the sums in the left-hand side of Eq. (13):

X
m0n0λ0

Z
Y⃗λ�
mnðr⃗⊥; kzÞχ̂ðr⃗ÞY⃗λ0

m0n0 ðr⃗⊥; k0zÞe−iðkz−k0zÞzd2r⊥Cλ0
m0n0 ðk0z;ωÞdk0zdz

¼
X
m0n0λ0

Z
Cλ0
m0n0 ðk0z;ωÞ

Z
Y⃗λ�
mnðr⃗⊥; kzÞχ̂ðr⃗ÞY⃗λ0

m0n0 ðr⃗⊥; k0zÞe−iðkz−k0zÞzd2r⊥dzdk0z ð14Þ

and analyze integrals

Z
Y⃗λ�
mnðr⃗⊥; kzÞχ̂ðr⃗ÞY⃗λ0

m0n0 ðr⃗⊥; k0zÞe−iðkz−k0zÞzd2r⊥dz ð15Þ

to evaluate what terms mostly contribute to the considered
sums. Using (8) and representing eigenfunctions
Y⃗λ
mnðr⃗⊥; kzÞ of a rectangular waveguide [27–29] by combi-

nations of sines and cosines of the form sin πm
a x, cos πma x,

sin πn
b y, cos πnb y (i.e., in fact, the combinations ei

πm
a x; ei

πn
b y)

integrals (15) can be transformed to the expressions of the
form as follows:

Ix ¼
Z

e−i
πm
a x
X
i

χ̂cellðx − xi; y − yi; z − ziÞeiπm
0

a xdx; ð16Þ

Iy ¼
Z

e−i
πn
b y
X
i

χ̂cellðx − xi; y − yi; z − ziÞeiπn
0

b ydy: ð17Þ

Substitution of variables x − xi ¼ η1 in (16) and y − yi ¼
η2 in (17) produces the sums of the form

Sx ¼
XNx

f1¼1

e−i
π
aðm−m0Þdxf1 ; Sy ¼

XNy

f2¼1

e−i
π
bðn−n0Þdyf2 ;

where dx and dy are the periods of the photonic crystal
along the x and y axes, Nx ¼ a

dx
and Ny ¼ b

dy
are the number

of cells along the x and y axes, respectively; coordinates of
different cells xi ¼ dxf1, yi ¼ dyf2 are determined by
integers f1 and f2. To estimate, what values Sx can take
(the same reasoning is valid for Sy), the above presented
expression can be rewritten as follows:

Sx ¼
XNx

f1¼1

e−i
π
aðm−m0Þdxf1 ¼ ei

π
2aðm−m0ÞðNx−1Þdx sin

πðm−m0ÞdxNx
2a

sin πðm−m0Þdx
2a

:

ð18Þ

Using (18) for m −m0 ¼ 0 one can obtain Sx ¼ Nx. When
m −m0 ¼ 1, a simple reasoning enables to get what Sx
is equal to: factor dxNx ¼ a and, hence, the numerator is
equal to sin π

2
¼ 1, while in the denominator sin πdx

2a ≈ π
2Nx

.

Therefore, the ratio Sxðm−m0¼1Þ
Sxðm−m0¼0Þ ¼ 2

π ≈ 0.6. With growing
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difference ðm −m0Þ, the contribution to the sum of the
next terms diminishes provided the following equality is
fulfilled:

πðm −m0Þdx
2a

¼ πP; ð19Þ

where P ¼ �1;�2…; in these cases the sum Sx ¼ Nx.
Fulfillment of conditions declared by equalities like (19)

is equivalent to fulfillment of conditions kxm − k0xm0 ¼ τx
(i.e., k0xm0 ¼kxm−τx) and kyn−k0yn0 ¼τy (i.e., k0yn0 ¼kyn−τy),

where τx ¼ 2π
dx
F and τy ¼ 2π

dy
F0 are x and y components

of the reciprocal lattice vector of the photonic crystal,
respectively, F;F0 ¼ 0;�1;�2…. Therefore, the major
contribution to the sums in the left-hand side of
Eq. (13) comes from the amplitudes Cλ0

m0n0 ðk0z;ωÞ≡
Cλ0 ðk⃗⊥mn − τ⃗⊥; kz − τz;ωÞ ¼ Cλ0 ðk⃗mn − τ⃗;ωÞ.
Hereafter, when describing electron beam instability, we

consider only modes which satisfy the equalities similar to
(19). The contribution of other modes is supposed to be
suppressed. Thus, the system of Eq. (13) reads as follows:

�
k⃗2mn −

ω2

c2

�
Cλðk⃗mn;ωÞ −

ω2

c2
X
λ0τ

χλλ
0

mnðτ⃗ÞCλ0 ðk⃗mn − τ⃗;ωÞ ¼ −
ω2
Lðk2mnc2 − ω2Þ

γc4ðω − k⃗mnu⃗Þ2
�

1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
Cλðk⃗mn;ωÞ;

ð20Þ

i.e.,

�
k⃗2mn −

ω2

c2

�
1þ χλλmnð0Þ −

ω2
Lðk2mnc2 − ω2Þ

ω2γc2ðω − k⃗mnu⃗Þ2
�

1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
���

Cλðk⃗mn;ωÞ

−
ω2

c2
X
λ0τ

χλλ
0

mnðτ⃗ÞCλ0 ðk⃗ − τ⃗;ωÞ ¼ 0; ð21Þ

where χλλ
0

mnðτÞ ¼ 1
dz

R
Y⃗λ�
mnðr⃗⊥; kzÞχ̂ðr⃗⊥; τzÞY⃗ λ0

m0n0 ðr⃗⊥; kz −
τzÞd2r⊥, χ̂ðr⃗⊥;τzÞ¼

P
xi;yi

R
χ̂cellðx−xi;y−yi;ζÞe−iτzζdζ,

m0 and n0 are determined by conditions like (19), and

ωL is the Langmuir frequency, ω2
L ¼ 4πe2ρb0

m .
Since this system of equations is homogeneous, for the

existence of a nontrivial solution the system determinant
must vanish. This condition determines the dispersion
equation.
Note that expression k⃗mn − k⃗ ¼ τ⃗ is very similar to the

Bragg condition and even converts to it, when the trans-
verse dimensions of a waveguide a and b tend to infinity.
Actually, when a; b → ∞ the spectrum of eigenvalues
becomes continuous and the set of wave vectors k⃗mn

converts to wave vector k⃗0 of the wave propagating in
the direction determined by Bragg condition k⃗0 − k⃗ ¼ τ⃗,
which in more familiar notation reads as

2dg sin θB ¼ mλB; ð22Þ

where dg is the diffraction grating period, θB is the Bragg
angle, which determines the direction of diffracted wave
propagation, λB is the wavelength of the diffracted wave,
and m is an integer number. Smooth rotation of diffraction
grating with respect to electron velocity at angle φ converts
dg in (22) to dg cosφ, thus making λB and θB in (22) slowly
changing in a wide range.

The system of Eq. (21) is similar to that describing
instability of a beam passing through an infinite crystal
[32,33]. However, the coefficients appearing in these two
systems are differently defined: for an infinite crystal, the
wave vectors have continuous spectrum of eigenvalues
rather than the discrete spectrum relevant for a bounded
photonic crystal. These equations enable one to define
dependence kðωÞ for the waves propagating in the crystal.
Matching the incident wave packet with the set of waves
propagating inside the photonic crystal by the boundary
conditions, one can obtain the explicit solutions of the
considered equations: the result obtained is formally
analogous to that given in [34].
According to (21), the expression within the square

brackets acts as dielectric permittivity ε of the crystal in the
case when diffraction can be neglected:

ε ¼ n2

¼ 1þ χλλmnð0Þ −
ω2
Lðk2mnc2 − ω2Þ

ω2γc2ðω − k⃗mnu⃗Þ2

×

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
; ð23Þ

n is the refractive index i.e., photonic crystal acts as a
medium that can be described by a certain refractive index
n or the dielectric permittivity ε. The refractive index of
the photonic crystal in the absence of the beam n0 is
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determined by n20 ¼ ε0 ¼ 1þ χλλmnð0Þ. Two terms contrib-
ute to dielectric permittivity (23): scattering of waves by the
unit cell of the crystal and scattering of waves by beam
electrons. The latter is given by the term proportional to ω2

L

and increases when ω → k⃗ u⃗.
According to the above analysis the infinite number of

modes can be excited by an electron beam moving in a
photonic crystal in an arbitrary direction. To distinguish a
certain mode one should analyze spectral-angular distri-
bution of radiated photons and select those with certain
escape direction and frequency. Depending on location of
radiation detector with respect to beam velocity or depend-
ing on radiation frequency one can observe photons
produced due to the Cherenkov effect or those produced
via the effects associated with diffraction. In the case when
the detector is tuned to observe photons produced via
Cherenkov radiation mechanism only Cherenkov radiation
can be considered, while diffracted photons can be
neglected. Among the variety one can observe those modes,
for which wave vectors k⃗mn do not comply Bragg’s
condition i.e., k⃗mn ≠ k⃗mn − τ⃗ for all reciprocal lattice
vectors τ⃗. When such inequality is valid, the electron beam
excites all the modes, but the amplitude of waves arisen due
to diffraction appears to be much smaller than the ampli-
tude of the wavewith wave vector k⃗mn. In this case crystal is
similar to homogenous matter with dielectric permittivity
ε0; when ε0 > 1 Cherenkov radiation is possible. It is
important to note that, though the amplitudes of diffracted
waves are small, they, being considered, give the so-called
diffraction radiation. Influence of diffraction on beam
radiative instability will be analyzed in detail in
Sec. III B hereafter. In Sec. III A the radiative instability
caused by Cherenkov radiation from the electron beam in a
bounded photonic crystal, when waves excited by the
beam do not comply Bragg’s diffraction conditions, is
considered.

A. Electron beam instability in a bounded photonic
crystal when waves excited by the beam do not comply

Bragg’s diffraction conditions

Let us first consider waves for which Bragg’s diffraction
conditions are not fulfilled. In this case the sum over τ
in (21) can be dropped, and the conditions for the wave
existence are given by putting equal to zero the expression,
which is the coefficient at Cλðk⃗mn;ωÞ. This requirement can
be written in the form

ðω − kzuÞ2
�
k2mn −

ω2

c2
n20

�

¼ −
ω2
Lðk2mnc2 − ω2Þ

γc4

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
;

therefore

�
k2z −

�
ω2

c2
n20 − ϰ2mn

��
ðω − kzuÞ2

¼ −
ω2
Lðk2mnc2 − ω2Þ

γc4

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
;

ð24Þ

where velocity u⃗jjoz. Equation (24) can be rewritten in the
form

ðkz − k1zÞðkz þ k1zÞðkz − k2zÞ2

¼ −
ω2
Lðk2mnc2 − ω2Þ

γc4

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
;

ð25Þ

where k1z and k2z are the solutions to the homogeneous
equation associated to (24), which issues from (24) by
zeroing its right side as follows:

 
kz−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
n20−ϰ2mn

s ! 
kzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
n20−ϰ2mn

s !
ðω−kzuÞ2¼0;

ð26Þ

i.e.,

kz −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
n20 − ϰ2mn

s
¼ 0; kz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
n20 − ϰ2mn

s
¼ 0;

ω − kzu ¼ 0: ð27Þ

The roots of Eq. (26) read as follows:

k1z ¼ �ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 −

ϰ2mnc2

ω2

s
; k2z ¼

ω

u
: ð28Þ

Since k2z ¼ ω
u > 0 in view of the Cherenkov condition

given by the third equation in (27), we are concerned
with propagation in the photonic crystal of the wave with
k1z > 0 [i.e., only sign “þ” rests in (28)]. In this case in the
equation for kz, one can take ðkz − k1zÞðkz þ k1zÞ ≈
2k1zðkz − k1zÞ and rewrite Eq. (24) as follows:

ðkz − k1zÞðkz − k2zÞ2

¼ −
ω2
Lω

2ðn20 − 1Þ
2k1zu2γc4

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
;

ð29Þ

i.e.,

ðkz − k1zÞðkz − k2zÞ2 ¼ −A; ð30Þ
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A ¼ ω2
Lω

2ðn20 − 1Þ
2k1zu2γc4

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
; ð31Þ

where A is real and A > 0 (as to enable the Cherenkov
effect, it is necessary to have n20 > 1).
Thus, kz satisfies cubic Eq. (30). Roots k1z and k2z

coincide (k1z ¼ k2z), when the particle velocity satisfies the
condition as follows:

u ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 −

ϰ2mnc2

ω2

q : ð32Þ

For k1z ¼ k2z substitution ξ ¼ kz − k1z in (30) gives the
equation

ξ3 ¼ −A; ð33Þ
which has three solutions

ξð1Þ ¼ −
ffiffiffiffi
A3

p
; ξð2;3Þ ¼ 1

2
ð1� i

ffiffiffi
3

p
Þ
ffiffiffiffi
A3

p
: ð34Þ

The state corresponding to solution ξð3Þ ¼ 1
2
ð1− i

ffiffiffi
3

p Þ ffiffiffiffi
A3

p
grows with z growing which indicates the presence of
instability in a beam [12–14,30,35–37]. In this case the
beam instability increment

δð3Þ0 ∼ Imkz ¼ Imξð3Þ ∼
ffiffiffiffiffiffi
ω2
L

3

q
∼

ffiffiffiffiffiffiffi
ρb03

p ð35Þ

and the threshold current density (a minimum beam current
density required for oscillations to start spontaneously) is

determined by the well-known law jthr ∼ 1
L3 [see Eq. (11.7)

in [13] or Eq. (8.63) in [14]].

B. Electron beam radiative instability in a bounded
photonic crystal for modes with approximately

equal k⃗ and k⃗ + τ⃗

Influence of diffraction on beam radiative instability is
to be considered hereafter in detail. Let us, thus, consider
such a mode excited by the beam, where wave vector k⃗mn

complies Bragg’s diffraction conditions i.e., k⃗mn ≃ k⃗mn þ τ⃗.
In this case amplitude Cmnðk⃗þ τ⃗Þ can be comparable with
amplitude Cmnðk⃗Þ.
Analysis of diffraction of wave λ, whose electric vector

is parallel to the plane ðy; zÞ (a TM-wave) gives

�
k2mn −

ω2

c2
ε

�
Cλðk⃗mn;ωÞ −

ω2

c2
χλλmnð−τ⃗ÞCλðk⃗mn þ τ⃗;ωÞ ¼ 0;

�
ðk⃗mn þ τ⃗Þ − ω2

c2
ε0

�
Cλðk⃗mn þ τ⃗;ωÞ

−
ω2

c2
χλλmnðτ⃗ÞCλðk⃗mn;ωÞ ¼ 0: ð36Þ

Since the term containing ðω − ðk⃗þ τ⃗Þu⃗Þ−1 is small
when ðω − k⃗ u⃗Þ vanishes, in the second equation it is
dropped.
The dispersion equation defining the relation between kz

and ω is obtained by equating to zero the determinant of the
system (36) and has a form

��
k2mn −

ω2

c2
ε0

��
ðk⃗mn þ τ⃗Þ2 − ω2

c2
ε0

�
−
ω4

c4
χτχ−τ

�
ðω − kzuÞ2

¼ −
ω2
L

γc4

�
1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�
ðk2mnc2 − ω2Þ

�
ðk⃗mn þ τ⃗Þ2 − ω2

c2
ε0

�
: ð37Þ

Similar to Sec. III A let us write solutions to the homogeneous equation associated to (37), which issues from (37) by
zeroing its right side:�

k2z −
�
ω2

c2
ε0 − ϰ2mn

���
ðkz þ τÞ2 −

�
ω2

c2
ε0 − ðϰ⃗mn þ τ⃗⊥Þ2

��
−
ω4

c4
χτχ−τ ¼ 0�

kz −
ω

u

�
2

¼ 0: ð38Þ

The roots for the system of equations (38) are sought in the vicinity of condition k2mn ≈ ðk⃗mn þ τ⃗Þ2, by substitution
ξ ¼ kz − kz0, which gives the expressions as follows:

kz ¼ kz0 þ ξ; k2z ¼ k2z0 þ 2kz0ξþ ξ2; k2z0 ¼
ω2

c2
ε0 − ϰ2mn; kz0 ¼ �ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 −

ϰ2mnc2

ω2

s
;

ðkz þ τzÞ2 ¼ ½ðkz0 þ τzÞ þ ξ�2 ¼ ðkz0 þ τzÞ2 þ 2ðkz0 þ τzÞξþ ξ2: ð39Þ
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Hence, the transformation of expressions is as follows:

ðkz0 þ τzÞ2 þ ðϰ⃗mn þ τ⃗⊥Þ2 þ 2ðkz0 þ τzÞ þ 2ðkz0 þ τzÞξ
þ ξ2 ¼ ðk⃗mn þ τ⃗Þ2 þ 2ðkz0 þ τzÞξþ ξ2 ¼ k20mn

þ 2k⃗0mnτ⃗ þ τ2 þ 2ðkz0 þ τzÞξþ ξ2 ð40Þ

enables one to render the first equation in (38) as follows:

2kz0ξð2ðkz0 þ τzÞξþ ð2k⃗0mnτ⃗ þ τ2ÞÞ − ω4

c4
χτχ−τ ¼ 0;

which is equivalent to

4kz0ðkz0 þ τzÞξ2 þ 2kz0ð2k⃗0mnτ⃗ þ τ2Þξ − ω4

c4
χτχ−τ ¼ 0:

Thus, the second-order equation,

ξ2 þ ð2k⃗0mnτ⃗ þ τ2Þ
ðkz0 þ τzÞ

ξ −
ω4

c4
χτχ−τ

4kz0ðkz0 þ τzÞ
¼ 0; ð41Þ

enables one to get the following solutions for ξ:

ξ1;2 ¼ −
ð2k⃗0τ⃗ þ τ2Þ
4ðkz0 þ τzÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2k⃗0τ⃗ þ τ2

4ðkz0 þ τzÞ
�2

þ ω4

c4
χτχ−τ

4kz0ðkz0 þ τzÞ

s
: ð42Þ

When ðkz0 þ τzÞ ¼ −jkz0 þ τzj, the second term in (42)
could become equal to zero. At the same time, the second
equation in (38) must hold:

ω − kzu ¼ ω − kz0u − ξu ¼ 0:

Consequently,

ξ3 ¼
ω − kz0u

u
¼ ω

u
− kz0 ¼

ω

u
−
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 −

ϰ2mnc2

ω2

s

¼ ω

u

 
1 − β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 −

ϰ2mnc2

ω2

s !
: ð43Þ

If ε0 < 1, then ξ3 ¼ ω
u − kz0 > 0, Let solutions ξ1 and ξ2

coincide (ξ1 ¼ ξ2). This is possible at the point, where

2k⃗0τ⃗ þ τ2

4ðkz0 þ τzÞ
¼ �ω2

c2

ffiffiffiffiffiffiffiffiffiffiffi
χτχ−τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kz0jkz0 þ τzj

p ;

here kz0 þ τz < 0, and the following equality is fulfilled:

ω

u
− kz0 ¼ ∓ω2

c2

ffiffiffiffiffiffiffiffiffiffiffi
χτχ−τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kz0jkz0 þ τzj

p ;

i.e.,

ω

u
¼ kz0 ∓ ω2

c2

ffiffiffiffiffiffiffiffiffiffiffi
χτχ−τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kz0jkz0 þ τzj

p ; ð44Þ

where kz0 ¼ ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 −

ϰ2mnc2

ω2

q
.

When ε0 < 1, the following ratio is valid ω
u > kz0 (since

u < c), and for solution ω
u ¼ kz0 − ω2

c2

ffiffiffiffiffiffiffiffi
χτχ−τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kz0jkz0þτzj

p (44) the

Cherenkov condition is not fulfilled.

Now let us consider the solution ω
u¼kz0þω2

c2

ffiffiffiffiffiffiffiffi
χτχ−τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kz0jkz0þτzj

p .

At τz < 0 the difference kz0 þ τz can be reduced to make
the sum on the right side equal to ω

u, thus providing equality
of all four dispersion equation roots.
Note that for backward diffraction, which is con-

ventional for frequently used one-dimensional generators
with a corrugated metal waveguide (traveling-wave tube,
backward-wave oscillator), such coincidence of roots is
impossible. Indeed, suppose the solutions ξ1 and ξ2 coin-
cide in case of backward Bragg diffraction (jτzj ≈ 2kz0,
τz < 0). Then by substituting the expressions for

kz0 ¼
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 −

ϰ2mnc2

ω2

s
and ε0 ¼ n20 ¼ 1þ χλλmnð0Þ

and retaining the first-order infinitesimal terms, the
relation

ω

u
≈ kz0 þ

ω2

c2
jχτj
2kz0

can be reduced to the form

ω

u
≈
ω

c

�
1 −

jχλλmnð0Þj
2

−
ϰ2mnc2

2ω2
þ ω

c
jχτj
2

�
<

ω

u
;

i.e., the equality does not hold and the fourfold degen-
eracy is impossible. Only the case of threefold degener-
ation considered in Sec. III A is possible. However, if
ε0 > 1 and is appreciably large, then in a one-dimen-
sional case, the fourfold degeneracy of roots is also
possible in a finite photonic crystal.
Thus, the left side of Eq. (37) has four solutions (ξ1, ξ2,

and a double degenerated ξ3). Hence, Eq. (37) can be
written as follows:

ðξ − ξ1Þðξ − ξ2Þðξ − ξ3Þ2 ¼ −B; ð45Þ

where ξ1;2 and ξ3 are defined by (42) and (43), respectively,
B is real, B > 0,
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B ¼ ω2
L

4kz0ðkz0 þ τzÞu2γc4
�

1

2π

				
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2
�

× ðk2mnc2 − ω2Þ
�
ðk⃗mn þ τ⃗Þ2 − ω2

c2
ε0

�
: ð46Þ

If suppose ξ1 ¼ ξ2 ¼ ξ3, then Eq. (45) converts to

ðξ − ξ1Þ4 ¼ −B; i:e:; ξ − ξ1 ¼
ffiffiffiffiffiffiffi
−B4

p
; ð47Þ

thus we define four solutions as follows:

ξð1Þ1 ¼ 1ffiffiffi
2

p ð1þ {Þ
ffiffiffiffi
B4

p
; ξð2Þ1 ¼ 1ffiffiffi

2
p ð−1þ {Þ

ffiffiffiffi
B4

p
;

ξð3Þ1 ¼ −
1ffiffiffi
2

p ð1þ {Þ
ffiffiffiffi
B4

p
; ξð4Þ1 ¼ −

1ffiffiffi
2

p ð−1þ {Þ
ffiffiffiffi
B4

p
:

ð48Þ
The above results can be illustrated as follows. In general

case frequency ωðk⃗Þ of a photon moving in a spatially
periodic media (crystal) is a periodic function of reciprocal
lattice vector τ, i.e., ωðk⃗Þ ¼ ωðk⃗þ τÞ. Such dependence is
conventionally illustrated by a dispersion curve (see, for
example, [38] Chapter 8), which is schematically shown
in Fig. 1. A dispersion relation usually describes the
frequency-dependent propagation characteristics of a
one-dimensional periodic system (e.g. corrugated wave-
guide) used for radiation excitation in the traveling wave
tube or backward wave oscillator [12–14,35–38]. In the
case under consideration the similar approach is valid for
two- or three-dimensional photonic crystals placed inside a
waveguide of rectangular cross section, when electron
beam moves along the waveguide axis and diffraction
occurs for the reciprocal lattice vector, which is antiparallel
to beam velocity τ⃗ ¼ ðτx ¼ 0; τy ¼ 0; τzÞ↑↓ u⃗. The fre-
quency of radiation produced by the electron beam is
determined by interception of dispersion curve ωðkzÞ with
the beam line ðω − kzuÞ ¼ 0 (see Fig. 1) which means
synchronism of wave and beam electrons. Interceptions can
occur at different values of vgr ¼ dω

dk: at vgr > 0 wave

travels forward along beam velocity [such a situation is
typical for traveling wave tubes (left plot in Fig. 1)]; wave
with vgr < 0 moves backward enabling generation of
backward wave oscillators [12–14,35–39] (center plot in
Fig. 1). Degeneration of roots of the dispersion equation
puts the synchronism point to the π point of the dispersion
curve (right plot in Fig. 1). In this point amplitudes of direct
and diffracted waves are comparable to each other.

Solutions ξð3Þ1 and ξð4Þ1 have negative imaginary parts and
cause exponential growth of field amplitude, thus they are
responsible for beam instability. Increment of beam insta-
bility in case of four roots degeneracy reads as follows:

δð4Þ0 ∼ Imkz ¼ Imξð3;4Þ1 ∼
ffiffiffiffiffiffi
ωL

4
p

∼
ffiffiffiffiffiffiffi
ρb04

p
: ð49Þ

To compare increments δð3Þ0 and δð4Þ0 let us consider the case
when solutions ξ1 ≠ ξ2 and ξ1 − ξ2 ≫ χτ and study (45) for
ξ → ξ1, thus reducing the order of the equation:

ðξ − ξ1Þðξ − ξ3Þ2 ¼ −
B

ξ1 − ξ2
: ð50Þ

The obtained equation is conformable to (30). Hence, the

ratio
δð4Þ
0

δð3Þ
0

can be expressed as

δð4Þ0

δð3Þ0

¼
ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ1 − ξ2

3
p 1ffiffiffiffiffi

12B
p : ð51Þ

For the sake of evaluations (46) can be replaced by the
approximate expression for B as follows:

B ≈
ω2
L

ω2γ
k40χ

4
0;

hence, evaluation for δð4Þ0 and δð3Þ0 reads

FIG. 1. Schematic drawing of dispersion curve ωðkzÞ. Point marked 1 corresponds to vgr ¼ 0 (π-point), it matches kzD ¼ π, where D
is the period of periodic structure. Points marked 2 correspond to beam-wave synchronism points. The left plot is for traveling wave tube
(TWT), center plot corresponds to backward wave oscillator (BWO) case; the right plot describes interaction in the π point.
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δð4Þ0 ≈
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k40χ

4
0

ω2
L

ω2γ

4

s
¼ 1ffiffiffi

2
p k0χ0ffiffiffi

γ4
p

ffiffiffiffiffiffi
ωL

ω

r
;

δð3Þ0 ≈
ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k30χ

3
0

ω2
L

ω2γ

3

s
¼

ffiffiffi
3

pffiffiffi
2

p δð4Þ0 γ−
1
12

ffiffiffiffiffiffi
ωL

ω
6

r

and ratio
δð4Þ
0

δð3Þ
0

can be evaluated by

δð4Þ0

δð3Þ0

¼
ffiffiffi
2

3

r
γ

1
12

ffiffiffiffiffiffi
ω

ωL

6

r
: ð52Þ

For terahertz range even for a beam with current
density j ∼ 108 A=cm2 (ωL ∼ 108 Hz) expression (52)

gives
δð4Þ
0

δð3Þ
0

≫ 1.

The typical length, at which instability develops, is
inverse to the increment value, therefore, along with (52)
the following relations are also valid:

Lð3Þ

Lð4Þ ¼
δð4Þ0

δð3Þ0

¼
ffiffiffi
2

3

r
γ

1
12

ffiffiffiffiffiffi
ω

ωL

6

r
:

Lð4Þ ¼ 1

δð4Þ0

¼
ffiffiffi
2

p ffiffiffi
γ4

p
k0χ0

ffiffiffiffiffiffi
ω

ωL

r
;

Lð3Þ ¼ 1

δð3Þ0

¼ 2ffiffiffi
3

p
ffiffiffi
γ3

p
k0χ0

ffiffiffiffiffiffi
ω2

ω2
L

3

s
; ð53Þ

thus providing the following evaluation for the lengths’ ratio,
at which instability develops, L

ð3Þ
Lð4Þ ≫ 1. Therefore, generation

in the vicinity of the π point (or, equally, in the case when
amplitudes of direct and diffracted waves approximate to
each other) gives a advantage of shorter length, at which
instability develops [15].
Let us analyze what values Lð3Þ and Lð4Þ can possess at

typical parameters of modern accelerators and radiation
frequency 1 terahertz (λ ¼ 3 × 10−2 cm). Suppose electron
beam energy is 8 MeV, bunch transverse size 250 μm×
250 μm, and bunch charge 25 pC [40]. Let us also consider
a photonic crystal formed by parallel metallic wires, which
are parallel to the waveguide boundary ðy; zÞ. According to
[5,41] for such a photonic crystal with wires of 10−3 cm
diameter spaced 6 × 10−2 cm the susceptibility value is
χ0 ≈ 3 × 10−1. For selected parameters, according to (54),
length Lð4Þ ≈ 70 cm, while Lð3Þ is more than 10 times larger
(Lð3Þ ≈ 900 cm). Increase of electron beam current density
could make length Lð4Þ even smaller. The same could be
provided by increased susceptibility value, but for χ0 > 1
detailed numerical analysis is necessary [42].
The threshold generation conditions, i.e., the values of

the electron current and other parameters of the beam, at
which radiation begins to exceed the losses, can be

obtained by solving the boundary-value problem similar
to how it was made in [16]. For instance, the expression for
the generation threshold under the conditions of two-wave
diffraction in the case of cold beam reads

1

4γ

4πe2

ω2m
jthr
u

				 1u
Z

u⃗Y⃗λ
mnðk⃗⊥; kzÞd2k⊥

				2fðyÞ
¼ 16

�
γ0c
u⃗ n⃗

�
3 β1
k5χ2τL5

; ð54Þ

where n⃗ is the unit normal vector to the crystal surface
(directed toward the interior); L is the crystal thickness; χ0
and χτ are the Fourier expansion coefficients of the crystal
dielectric susceptibility; β1 ¼ γ1=γ0 is the diffraction asym-

metry factor; β1 ¼ γ1
γ0
¼ n⃗ðk⃗þτ⃗Þ

n⃗ k⃗
, γ0 and γ1 are the cosines of

the angles between the normal vector n⃗ and the wave
vectors of the transmitted k⃗ and diffracted k⃗þ τ⃗ waves,
respectively; the subscript ⊥ denotes the projection of the
vector on the plane perpendicular to u⃗; fðyÞ is the spectral
function depending on detuning from the synchronism
conditions defined in [16]:

fðyÞ ¼ sin y
ð2yþ πnÞ sin y − yðyþ πnÞ cos y

y3ðyþ πnÞ3 ;

where y ¼ kReðξ2ÞL
2

and ξ2 is the root of the dispersion
equation in the absence of the electron beam. Expression
(54) provides for jthr the dependance on the crystal length L
as follows: jthr ∼

β1
L5, which is different from that cited in

Sec. III A and [13,14].
The analysis [9,16,17] shows that with increasing the

number of diffracted waves, the law established in
[15,43,44] is still valid: the instability increment appears

to be proportional to ρ
1

sþ3

b0 , where s is the number of waves
emerging through diffraction. As a result, the abrupt
decrease in the threshold generation current also remains
in this case (the threshold generation current jthr ∼

1
ðkLÞ3ðkχτLÞ2s, where L is the length of the interaction area).

IV. CONCLUSION

Combining the photonic crystal-based structures with
vacuum electronic devices opens the way for creation of a
family of radiation sources: volume FELs, photonic
BWOs, etc.
The dispersion equations describing electron beam

instability in a bounded photonic crystal are obtained for
two cases: the conventionally considered case, when
diffraction is suppressed, and the case of direct and
diffracted waves having almost equal amplitudes. The
instability law is shown to be responsible for increase of
increment of instability and decrease of length, at which
instability develops, for the case when amplitude of
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diffracted wave is comparable with that of the direct one
that happens in the vicinity of the π point of dispersion
curve. Such an instability law enables application of
photonic crystals for development of THz sources at
electron beam current densities available at modern
accelerators.
Some beneficial options are additionally available;

namely, use for radiation generation of multiple either
pencil-like or sheet electron beams instead of single annular
or sheet one and, thus, establishing the beam-wave inter-
action within the whole crystal cross section and increasing
the efficiency of the radiation source.

APPENDIX: DETAILED CONVERSION FROM
MAXWELL EQUATIONS TO DISPERSION

EQUATION

Let us thoroughly consider how Eq. (7) can be obtained
from (6). From Maxwell Eq. (2) it follows that

divD⃗ðr⃗; tÞ¼divE⃗ðr⃗;tÞþ
X
ik

∂
∂xi ½χikðr⃗ÞEkðr⃗Þ�¼4πρðr⃗;tÞ;

ðA1Þ

i.e.,

divE⃗ðr⃗; tÞ ¼ 4πρðr⃗; tÞ −
X
i;k

∂
∂xi ðχikEkÞ; ðA2Þ

therefore

∇⃗ð∇⃗E⃗ðr⃗; tÞÞ ¼ 4π∇⃗ρðr⃗; tÞ − ∇⃗
�X

i;k

∂
∂xi ðχikðr⃗ÞEkðr⃗ÞÞ

�
:

ðA3Þ

As a result Eq. (6) can be rewritten as follows:

ΔE⃗ðr⃗; tÞ þ ∇⃗
�X

ik

∂
∂xi ðχikðr⃗ÞEkðr⃗ÞÞ

�

−
1

c2
∂2

∂t2
Z

ε̂ðr⃗; t − t0ÞE⃗ðr⃗; t0Þdt

¼ 4π

c2
∂j⃗ðr⃗; tÞ

∂t þ 4π∇⃗ρðr⃗; tÞ: ðA4Þ

The system of Eqs. (5)–(7) enables studying radiation
produced by an electron beam in a photonic crystal and
getting the instability increments. Beam current and density
presenting in Eqs. (2)–(6) are complicated functions of
E⃗ðr⃗; tÞ. The initial stage of radiation process (“exponen-
tially growing-wave stage of interaction” [35], Sec. 4.2),
accompanied by arising the radiative instability, is com-
monly referred to as the small-signal regime (linear

regime), when beam current and density perturbations
are the linear functions of E⃗ [12–14,30,35–39].
Therefore, beam current and density have the form

j⃗ ¼ j⃗0 þ δj⃗ and ρ ¼ ρ0 þ δρ, where δj⃗ ¼ δj⃗ðr⃗; tÞ and
δρ ¼ δρðr⃗; tÞ are linear functions of E⃗. Thus, the following
equation is valid:

ΔE⃗ðr⃗; tÞ þ ∇⃗
� ∂
∂xi ðχikðr⃗ÞEkðr⃗ÞÞ

�
− 4π

�
1

c2
∂δj⃗
∂t þ ∇⃗δρ

�

−
1

c2
∂2

∂t2
Z

ε̂ðr⃗; t − t0ÞE⃗ðr⃗; t0Þdt0 ¼ 4π

c2
∂j⃗0
∂t þ 4π∇⃗ρ0;

ðA5Þ

summation over repeated indices is implied, j⃗0 ¼ j⃗0ðr⃗; tÞ
and ρ0 ¼ ρ0ðr⃗; tÞ are the beam current and density unper-
turbed by field.
Recall that in the case under consideration the suscep-

tibility tensor of a photonic crystal is a periodic function of
coordinate r⃗ and reads sa follows: χ̂ðr⃗Þ ¼Piχ̂cellðr⃗ − r⃗iÞ ¼P

τ⃗ χ̂ τ⃗e
iτ⃗ r⃗.

Let us now consider a practically important case, when
all the elements χik of tensor χ̂ are much smaller as
compared to the unity jχikj ≪ 1. Such a condition is always
valid in the x-ray range. In many practically important cases
it is also applicable for microwave, terahertz and optical
ranges. For example, made of periodically strained wires
photonic crystals, which are used for generation in micro-
wave range, typically have effective susceptibilities
χik ≲ 10−1–10−2 [5,6,17–19].
For further consideration let us make Fourier transform

of Eq. (A5), thus getting

ΔE⃗ðr⃗;ωÞ þ ∇⃗
�∂
xi
χikðr⃗ÞEkðr⃗;ωÞ

�

þ 4π

�
iω
c2

δjðr⃗;ωÞ − ∇⃗δρðr⃗;ωÞ
�
þ ω2

c2
E⃗ðr⃗;ωÞ

þ ω2

c2
χ̂ðr⃗ÞE⃗ðr⃗;ωÞ ¼ −

4πiω
c2

j0ðr⃗;ωÞ þ 4π∇⃗ρ0ðr⃗;ωÞ;
ðA6Þ

where beam current and density are presented in approxi-
mation linear over field E⃗ as j⃗ ¼ j⃗0 þ δj⃗ and ρ ¼ ρ0 þ δρ,
beam current and density perturbations are the linear
functions of E⃗. This Eq. (A6) is equivalent to the linear
system of Maxwell equations including external sources.
The general solution of this system, which describes the
process of radiation and radiative instability, is given by the
sum of two solutions, namely, the fundamental solution
to the associated homogeneous differential equation
[Eq. (A6) with zero right side] and a particular solution
to a nonhomogeneous differential equation, which
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describes the process of radiation. The particular solution to
a nonhomogeneous differential equation can be presented
by the transverse Green function [29]. This function is to be
derived from solutions to the associated homogeneous
differential equation. Consider first the associated to
(A6) homogeneous differential equation, which reads as
follows:

ΔE⃗ðr⃗;ωÞ þ ω2

c2
E⃗ðr⃗;ωÞ þ ∇⃗

� ∂
∂xi ðχikðr⃗ÞEkðr⃗;ωÞÞ

�

þ ω2

c2
χ̂ðr⃗ÞE⃗ðr⃗;ωÞ þ 4π

�
iω
c2

δj⃗ðr⃗;ωÞ − ∇⃗δρðr⃗;ωÞ
�

¼ 0:

ðA7Þ

Fourier transform over coordinates E⃗ðr⃗;ωÞ ¼
1

ð2πÞ3
R
E⃗ðk⃗;ωÞeik⃗ r⃗d3k applied to (A7) gives

− k2E⃗ðk⃗;ωÞ þ ω2

c2
E⃗ðk⃗;ωÞ

−
X
τ

k⃗ ðkiχτikEkðk⃗ − τ⃗ÞgÞ þ ω2

c2
X
τ

χ̂τE⃗ðk⃗ − τ⃗Þ

þ 4π

�
iω
c2

δj⃗ðk⃗;ωÞ − ik⃗δρðk⃗;ωÞ
�

¼ 0: ðA8Þ

The equation similar to (A8) can be written for the
component E⃗ðk⃗ − τ⃗Þ:

− ðk⃗ − τ⃗Þ2E⃗ðk⃗ − τ⃗;ωÞ þ ω2

c2
E⃗ðk⃗ − τ⃗;ωÞ

−
X
τ0
ðk⃗ − τ⃗Þ½ðk⃗ − τ⃗Þiχτ0ikEkðk⃗ − τ⃗ − τ⃗0Þ�

þ ω2

c2
X
τ0
χ̂τ0E⃗ðk⃗ − τ⃗ − τ⃗0Þ þ 4π

�
iω
c2

δj⃗ðk⃗ − τ⃗;ωÞ

− iðk⃗ − τ⃗Þδρðk⃗ − τ⃗;ωÞ
�

¼ 0: ðA9Þ

The system has a solution, if its determinant is zero. This
condition produces the dispersion equation, which estab-
lishes the relation between wave vector k⃗ and frequency ω,
thus enabling to find either k⃗ as a function of ω [k⃗ ¼ k⃗ðωÞ]
or ω as a function of k⃗ [ω ¼ ωðk⃗Þ].
Vector E⃗ possesses two polarizations: transverse polari-

zation, for which E⃗⊥ðk⃗Þ, E⃗⊥ðk⃗ − τ⃗Þ are orthogonal to
wave vectors k⃗ and (k⃗ − τ⃗), and a longitudinal one, for
which E⃗kðk⃗Þ, E⃗kðk⃗ − τ⃗Þ are directed along wave vectors k⃗

and (k⃗ − τ⃗). The dynamical theory of diffraction [45],
which describes the interaction of waves with a regular
lattice, demonstrates that for a crystal with components

of susceptibility tensor jχikj ≪ 1, the following relation
is correct: Components of vector E⃗, which are orthogonal
to photon wave vector k⃗, and those orthogonal to wave
vector ðk⃗ − τ⃗Þ are much greater than the corresponding
longitudinal components (E⃗⊥ðk⃗Þ, E⃗⊥ðk⃗ − τ⃗Þ ≫ E⃗kðk⃗Þ,
E⃗kðk⃗ − τ⃗Þ) [46,47]. A similar treatment can be applied to
any problem considering wave interaction with a media
with spatially periodic susceptibility, whose components
are smaller than unity. Due to this relation the third term in
Eqs. (A8) and (A9) can be neglected [46,47].
When deriving (A7), which describes propagation of

electromagnetic waves in the photonic crystal possessing
jχikj ≪ 1, the same reason allows to set aside the above-
mentioned term. All the solutions to the inhomogeneous
equation are expressed via solutions to the associated
homogeneous Eqs. (A8) and (A9).
To avoid ambiguity it is important to mention that

radiative instability arises in conditions of coupling trans-
verse electromagnetic waves and the longitudinal wave
caused by longitudinal plasma oscillations of electron
beam, which is significant for deriving expressions δj⃗
and δρ in equations above (see in details [12–14,35–39]).
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