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Abstract. A one-dimensional TVD correction scheme is described, which can be successfully 
applied not only in 1D calculations, but also in 2D - 3D modeling [1-2]. The advantage of the 
proposed scheme is the lack of solving matrix equations. The implementation of the scheme in 
conjunction with the large particle method was tested on the problems of arbitrary 
discontinuity breakup and strong point explosion. The modeling of acetylene combustion in a 
shock tube and its transition to detonation was performed depending on the conditions set on 
the surface of the tube, and the parameters of the problem. 

1.  Introduction 
The scheme of the large particle method [3] consists of several stages corresponding to the scheme of 
splitting into processes. We use the TVD scheme as the most last stage of this method to correct the 
solution obtained after the execution of the previous stages. Hence the name of the method includes – 
«TVD correction». The large particle method modified in this way allows to increase the accuracy of 
the approximation to the second order, as well as to get rid of the need for the use of artificial 
viscosity. 

Verification of the joint operation of the large particle scheme and the TVD correction was 
performed on the problem of decay of an arbitrary discontinuity and the problem of a strong point 
explosion. Although these test problems are one-dimensional in nature, they were simulated using a 
two-dimensional axisymmetric formulation, which allowed validating the applicability of one-
dimensional TVD scheme in 2D modeling. 

Numerical simulation in a shock tube was performed for stoichiometric mixture of enriched air and 
acetylene represented by four elements: air – 2.5O2 + 5.2N2; acetylene – C2H2; nitrogen – N2; 
combustion products – H2O+2CO2. The proposed physical-chemical model uses tabular descriptions 
of the equilibrium thermodynamic state for each component of the gas mixture separately, but they do 
not have to be in a state of chemical equilibrium with respect to each other and can participate in 
mutual chemical conversion.  

2.  Mathematical model 
The numerical method is based on the solution of a system of Euler equations written in the form of 
the mass, momentum, and energy conservation laws. The two-dimensional Euler equations can be 
represented as a system of conservation laws recorded in cylindrical coordinates ( , )z r   as follows: 

http://creativecommons.org/licenses/by/3.0
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U F U G U S U  (1) 

where U  is the column vector of the conserved quantities, F  and G  are the column vectors of flows 
along the coordinates z  and r , respectively, and S  is the source vector. The number of components 
in the vectors is determined by the number of equations in system (1); this number, in turn, depends on 
the used physical model. When describing the processes of chemical conversion in combustible 
mixtures, the equations of conservation of the corresponding chemical components have to be added. 
Then the number of equations in (1) must be equal to 4N  , where N  is the number of components 
of the mixture. The vector quantities from the system (1) can be written as: 
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where   is the density of the substance; u  and v  are the components of the velocity vector, 
respectively, in z  and r  coordinates; E  is the total specific energy; p  is the pressure;  1,..., NY Y Y  
– the mass fraction vector of the chemical components;  1( , , ) ,..., NW T Y W W  – the vector of the 
chemical reaction rate; q  – thermal conductivity flow. To close the system of equations (1)–(2), one 
should specify the equation of state or the system of equations by which the pressure in the form 

( , , )p p T Y   and its derivatives can be calculated: 
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The pressure derivatives determined in (3) are needed for calculating the TVD dissipation, in 
particular, of the local speed of sound: 
 2 ( / )c k p      (4) 
The temperature used to calculate the partial pressure and the energy of the mixture components is 
determined based on the energy conservation equation for the mixture in a given calculation cell: 

 ( , )
N

i i i
i

Y T Y    (5) 

The numerical simulation used the functions ( , )i i T    and ( , )i ip p T   obtained in the form 
of tables, calculated with a given grid upon the parameters of temperature and density. A uniform 
temperature scale ranging from 200 K up to 6000 K with increments of 50 K and a density scale 
ranging from 10-8 up to 102.5 kg/m3 with a uniform logarithmic step of 0.25 were used. For a realistic 
description of the thermodynamic properties of the substance, equilibrium tables calculated by NASA 
CEA for specific components of the burning mixture considered in the simulation were used. 

The combustion rate of acetylene in the air, determined in accordance with the Arrhenius law: 
 O21 2 1 2( , , , ) ( )exp( / )aW T Y Y Y B T E T YY    (6) 
Were 1Y  – mass fraction of the enriched air; 2Y  – mass fraction of acetylene; 2OY  – fixed fraction of 
oxygen in the air (variable 1Y ); ( )B T = 2.3.1011m3mol/kg2s; aE  – activation energy expressed in units 
of temperature is a fitting parameter. 

3.  TVD correction 
Initially, the scheme of Total Variation Diminishing (TVD) was developed for the conservation 
equations for the one-dimensional plane case [4]. However, as shown in [5], it can be successfully 
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applied in both cylindrical and spherical geometry for one-dimensional gas dynamics problems. In the 
future, the TVD scheme has been widely used for the numerical solution of two-dimensional and 
three-dimensional gas dynamics problems [1-2]. Herewith, the same one-dimensional version of the 
scheme, applied alternately to different coordinate directions, was used. The possibility of using the 
TVD method in conjunction with the large particle method was described in [6] too. 

Nonphysical oscillations are suppressed by adding the TVD correction after completion all of the 
large particle method stages. That is, after the values 1n

ij
 , 1n

iju  , 1n
ijv  , 1n

ijE  , and 1n
ijY  have been obtained 

on the ( 1n  )-th time layer, they are supplemented with the correction that plays the part of numerical 
dissipation. Corrections to each of the mentioned quantities have the form of the divergence of 
correcting fluxes calculated on the basis of the TVD scheme. Note that in solving of two-dimensional 
equations of hydrodynamics use is made of one-dimensional TVD schemes applied alternately along 
the respective coordinate lines. Since all of the operations for calculating these fluxes are performed 
on gas-dynamical quantities determined for the moment 1nt  , the index showing their relation to the 
time layer can be omitted in their designation. The change of gas-dynamic quantities included in the 
column vector ijU from the definition (2) due to the considered dissipation can be presented in the 
following form: 

        1/2, 1/2, , 1/2 , 1/2ij i j i j i j i j
ij

t
V    

       U f f f f     (7) 

Here 1/2,i jf and , 1/ 2i jf are the vector columns of correcting fluxes calculated from the formulas of the 
TVD scheme that yield a correction to the fluxes 1/2,i jF and , 1/2i jG of the components in the vector 
column ijU , respectively. Since the value of flux f is determined by a one-dimensional TVD scheme 
for an arbitrary fixed coordinate direction on the computational grid, we need to consider in detail only 
one direction, for example, cells with variable index ( )i z at a fixed value of index ( )j r . Then, the 
fluxes 1/2if (omit the index j ) are commonly calculated by expanding the variations 

1/2 1i i i  U U U at the edge of the cells by eigenvectors of Jacobi matrix 1/2( )i F U and applying 
the scalar TVD scheme for each component of the series. The matrix 1/2( ) j G U is used for another 
direction. This approach is a version of the solution of the linearized Riemann problem [7]. 

However, with respect to the gas dynamics conservation equations, this decomposition problem can 
be solved in a different way, without the use of Jacobi matrices treatment. The way proposed in this 
work consists in the application of known expressions for Riemann invariants: 

 pJ u
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 
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respectively, for the characteristics with the eigenvalues equal to u c , where c  is the local velocity 
of sound. Variations of the quantities from (8) are the total differentials only for the isentropic flow. In 
the case of an arbitrary flow, the entropy variation differs from zero 0s   and propagates along the 
characteristic with the eigenvalue equaled to u , i.e., it moves with the mass of the matter. Thus, any 
perturbation of gas-dynamic quantities can be decomposed to independent parts of the mentioned three 
types that propagate along the corresponding characteristics. 

We determine the variations of the quantities necessary for the described decomposition: 
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Next, we omit the spatial indices for the values defined at the cell boundaries. Then the decomposition 
vector   and the vector of its corresponding eigenvalues a  will have the form: 
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  ; ; ; ;a u c u c u u u    (11) 
For each characteristic solution 1/2

l
i , where 1,2,..., 4l N  , corrective flows 1/2

l
i are calculated 

using formulas for the scalar counter-flow TVD scheme [4]: 
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  1/2 1/2min mod ,l l l
i i ig      (15) 

The minmod(x,y) function is the smallest argument in absolute value if all arguments have the same 
sign, or zero if the arguments have different signs. 

Then, substituting the vector  into the expression (10) instead of the vector , we can find the 
changes of flows for the values included in (10) in the form of variations. It should be borne in mind 
that   has the dimension of speed. Therefore, to avoid confusion, replace the symbol  with the 
symbol , and obtain a system of equations: 

 2

1 1; ; ; ;p p v su u Y
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 (16) 

By solving this system of equations with respect to , , ,u p v s    and Y one can find the correcting 
flows f  for the corresponding flows from the vector ( )F U  with the help of formulas: 
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where 2
1 2 4( ) / 2 k k

k
p c         ; 1 2( ) / 2u c    ; 3v c  ; 2

4s c  ; 

2( ) /p k s c      ; 4k kY    . These expressions are derived explicitly from system (16). 

4.  Simulation results 
Calculations were made for a long pipe with a diameter of about 0.04 m and a length of 1 m to 6 m, 
sealed on one side. Initially, the pipe was filled with the rest stoichiometric acetylene-air mixture 
enriched with oxygen at a temperature of about 300 K, with a reduced density of 0.18 kg/m3 and a 
pressure of 0.142 Pa. Initiation of combustion was carried out by modeling Joule heat release from the 
electric spark of the spark plug. The energy of the spark plug stood out in a gas mixture with a 
constant power of 0.04 J per 1.5ms in a small volume at the axis adjacent to the closed end of the pipe. 

Numerical simulation was performed by the modified large particle method with TVD correction in 
2D axisymmetric coordinate system. The symmetric spatial difference scheme of the 2nd order 
without artificial viscosity was used. A homogeneous calculation grid with a cell size in both 
directions (axial and radial) equal to 9.77·10-4 m was applied.  
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Simulation results for some variants were considered: variants differed in settings the conditions on 
the side walls – the slip or adhesion model, and differed in the value of activation energy (6) – low (53 
kcal) or high (63.7 kcal). 

 
   a    b 

Figure 1. Combustion front dynamics at the axis for the adhesion and low activation energy: 
a – front location; b – front temperature. 

 
   a    b 

Figure 2. Combustion front dynamics at the axis for the adhesion and high activation energy: 
a – front location; b – front temperature. 

 
In the variant with the slip and low activation energy, the slow combustion of the mixture almost 

immediately after ignition passes into the detonation mode with a stable flat combustion front. Such an 
option, but with high activation energy gives a stable plane combustion wave, never passing into 
detonation. In the case of an adhesion and a low activation energy pattern of propagation of the 
combustion slightly different from the similar option with the slip. However, the detonation front is 
less stable here, judging by the small temperature oscillation on the wave front in axis (figure 1). In the 
high-energy version of the activation detonation occurs much later and the temperature oscillation at 
the wave front have a much higher amplitude (figure 2).This suggests that the surface of the 
detonation wave front is not flat and stationary. That can be seen in figure 3 where color maps of 
pressure distribution are represented for some moments in the range of the oscillation period. Here is 
shown a fragment of the pipe located in the vicinity of the detonation front at three (a, b, c) sequential 
time points divided with time interval equaled to 0.01ms. The detonation wave moves from up to 
down in the figure. 

Conclusion 
The use of TVD correction in conjunction with the large particle method improves the accuracy and 
stability of the latter. TVD correction extends capabilities of large particle method relatively to 
legitimately including second-order processes such as thermal conductivity and molecular viscosity in 
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the model. The simulation results showed the importance of taking into account the friction on the 
pipe walls. However, without taking into account viscous stresses, the effect of these boundary 
conditions disappears when the mesh cells decrease.  
 

   
       a – t0        b – t0+0.01ms       c – t0+0.02ms 

Figure 3. Color maps of pressure distribution at three sequential time points. 
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