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We propose a new mechanism of exchange interaction between the solitons related with the presence of
localized fermions. Since the Atiyah-Patodi-Singer index theorem implies that such modes always exist for
any topological soliton, their appearance may significantly alter the usual pattern of interaction. We
elaborate this possibility considering, as a particular example, the chiral magnetic skyrmions coupled to
spin-isospin fermions. It is shown that there are sequences of fermionic modes localized on the skyrmions.
We investigate the additional effect of exchange interaction between the soltions with localized fermionic
modes and demonstrate the existence of a stable system of magnetic skyrmions bounded by the strong
attractive interaction mediated by the chargeless fermions.
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I. INTRODUCTION

Since the discovery of the solitons in the early 1960s,
these particlelike configurations have been intensively
studied in various frameworks in a wide variety of physical
systems. Solitons are relevant to numerous areas of physics;
they naturally arise in condensed matter physics, classical
and quantum field theories, cosmology, biology, nuclear
physics, and other disciplines. In many cases existence of
the solitons is related with topological properties of the
system; such solutions are absolutely stable against
perturbations; see, e.g., [1,2].
The Skyrme model [3] is a prototype example of a theory

that supports topological solitons, the skyrmions. It was first
proposed around the 1960s to describe the nucleons. Later, it
was shown by Witten [4] that the Skyrme model can be
considered as a low energy effective theory of pionmean field.
An interesting new development in the application of

the Skyrme model is related with its simplified 2þ 1-
dimensional analogue, the so-called baby-Skyrme model
[5–7]. This model finds various physical realizations; for
example, planar skyrmions occur in the description of the
quantum Hall effect [8,9]; such a model also arises in the
description of ferromagnetic structureswithDzyaloshinskii-
Moriya (DM) interaction [10,11], or in chiral nematic and

anisotropic fluids [12,13]. Very recently, there has been
rapidly increasing interest both in the theoretical and
experimental study of magnetic skyrmions, because of their
possible use in future magnetic storage devices; see [14].
A peculiar property of topological solitons is the link

between the topological charge of the configuration and the
number of quasizero fermionic modes localized on the
soliton. The Atiyah-Patodi-Singer index theorem [15]
yields a remarkable relation between these quantities.1 In
particular, we can expect the existence of the fermionic
modes confined by a magnetic skyrmion. These modes may
represent the surface states of a three-dimensional topo-
logical insulator that become localized on the skyrmions
[17,18]. More generally, the presence of localized fermions
may affect the usual pattern of interaction between the
solitons providing an additional exchange interaction.
Notably, such a mechanism of fermion exchange interac-
tion is not restricted to the particular case of the planar
skyrmions; it is a general feature of any system of
topological solitons with localized quasizero fermionic
modes. On the other hand, analysis of the magnetic
skyrmions with localized fermions is of particular interest
because it was argued that this effect may lead to a new
mechanism of nonconventional superconductivity in two-
dimensional systems [19–21].
Properties of magnetic skyrmions in the model with the

DM interaction term strongly depends on the explicit
structure of the energy functional with magnetocrystallinePublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1A simple formulation of the index theorem for the topological
insulators is given in [16].
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anisotropy; it may provide both repulsive and attractive
interactions [22,23]. However, the Bloch-type skyrmions
always repel each other; there is no multisoliton solution in
such a system [24]. Thus, this model provides a nice
framework for studying the effects caused by an additional
exchange interaction mediated by the localized fermions.
Note that in consideration of the fermion-skyrmion

system one must properly take into account the symmetries
of the DM interaction term. A detailed analysis of the
problem is yet missing. It remains a challenge to find a
complete set of solutions of the corresponding full system
of dynamical equations, especially for multisoliton con-
figurations, which do not possess rotational invariance.
A main objective of this paper is to examine this system

consistently, taking into account the backreaction of the
fermions. In our numerical simulations we find the spec-
trum of the corresponding Hamiltonian and show that,
indeed, there are various spin-isospin fermionic modes
localized on a chiral magnetic skyrmion. Here we show, for
the first time to our knowledge, that these modes give rise to
additional attractive interaction between the solitons, which
form bounded states.

II. THE MODEL

The Hamiltonian of a chiral magnetic planar system with
a violation of the inversion symmetry and a strong spin-
orbit coupling of the compound is

Hs ¼
J
2
ð∇ϕÞ2 þDϕ · ð∇ × ϕÞ −B · ϕ: ð1Þ

These three terms correspond to the Heisenberg interaction,
the DM interaction energy, and the symmetry breaking
Zeeman energy of the interaction with an external magnetic
field B ¼ Bẑ, respectively. Here J is the magnetic stiffness
constant and D is the strength of the DM interaction. The
magnetization vector ϕ is constrained to the surface of the
unit sphere: ϕ · ϕ ¼ 1. Since on the boundary the magneti-
zation vector is directed along the external magnetic
field, ϕ∞ ¼ ð0; 0; 1Þ, the field ϕ is the map S2 to S2.
The corresponding topological invariant is Q ¼ − 1

4π

R
ϕ·

ð∂xϕ × ∂yϕÞdxdy; see, e.g., [1,2].
Note that the DM interaction breaks the spatial and

internal O(2) symmetries of the model to the diagonal
subgroup; the spatial rotations of the configuration yield its
internal rotations and visa versa. Therefore the fermion
field Ψ coupled to the magnetic skyrmion must be a spin-
isospin spinor; the corresponding Lagrangian is

Hf ¼ Ψ†γ̂3ð−iγ̂k∂k þ eγ̂kAk þmþ gτ · ϕÞΨ: ð2Þ
The isospin matrices are defined as τ ¼ I ⊗ σ, whereas the
spin matrices are γ̂μ ¼ γμ ⊗ I where γ1 ¼ −iσ1,γ2 ¼ −iσ2
and γ3 ¼ σ3, I is two-dimensional identity matrix,
=∂ ¼ γ̂μ∂μ, and σ are the usual Pauli matrices. The last
term in (2) represents the Hund coupling; the constant g

parametrizes the strength of the fermion-skyrmion inter-
action, m is the fermion mass, and e is the electromagnetic
coupling. The vector potential of the external magnetic
field is Aμ ¼ B

2
ð0;−y; xÞ. The total Hamiltonian of the

coupled system H ¼ Hs þHf depends on six parameters,
J, D, B, g, m, and e. An appropriate rescaling of the
coordinates, fields, and coupling constants allows us to
reduce the number of independent parameters to three: g,
m, and e. However, for the sake of clarity, we also keep the
magnetic field B as a parameter although in our numerical
simulations we have set it to 0.1.
Hereafter we consider stationary configurations,

ϕ ¼ ϕðxkÞ, Ψ ¼ ψðxkÞe−iεt. The corresponding equation
for the fermionic eigenfunctions is

γ̂3ð−iγ̂k∂k þ eγ̂kAk þmþ gτ · ϕÞψ ¼ εψ ; ð3Þ
thus, the eigenvalues ε correspond to the energy of the
fermions. Further, the equation for the field ϕ is

Δϕ − 2∇ × ϕþ B − gψ†γ̂3τψ ¼ 0: ð4Þ
Note that we neither impose the usual assumption that ϕ is
a fixed static background field, nor make an approximation
of its profile.
The complete system of coupled equations (3) and (4)

must be solved numerically. This task can be simplified
if we take into account the symmetry properties of
this system. Note that it enjoys the following discrete
symmetries:

x → −x; ϕy → −ϕy; ψ → γ̂3ψ�; ε → −ε;

y → −y; ϕx → −ϕx; ψ → τ3ψ
�; ε → −ε:

ð5Þ
In the limiting case of massless uncharged fermions with
m ¼ e ¼ 0 the system (3) and (4) is enhanced by additional
symmetry of the fermion field ψ → −iσ2 ⊗ σ2ψ

�, ε → −ε.
First, we consider the O(2) invariant configuration,

which is parametrized by the ansatz,

ϕ¼ ðsinfðrÞ cos ðnφþ δÞ; sinfðrÞ sin ðnφþ δÞ; cosfðrÞÞ:
ð6Þ

Here fðrÞ is somemonotonically decreasing radial function,
φ is the azimuthal angle, n ∈ Z, and the phase δ corresponds
to the internal orientation of the soliton. Notably, the energy
of the magnetic skyrmion depends on δ; it is minimal for
δ ¼ π=2; further, rotationally invariant configuration (6)
exists only for n ¼ 1 (helical Bloch skyrmions [14,24]).
Since the field must approach the vacuum on the spatial
asymptotic, it satisfies the boundary condition cos fðrÞ → 1
as r → ∞, i.e., fð∞Þ → 0.
The fermionic Hamiltonian (2) can be written explicitly

in the matrix form as
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Hf ¼

0
BBBBB@

g cos f þm −ige−inφ sin f −e−iφð∂r −
i∂φ
r þ eBr

2
Þ 0

igeinφ sin f −g cos f þm 0 −e−iφð∂r −
i∂φ
r þ eBr

2
Þ

eiφð∂r þ i∂φ
r − eBr

2
Þ 0 −g cos f −m ige−inφ sin f

0 eiφð∂r þ i∂φ
r − eBr

2
Þ −igeinφ sin f g cos f −m

1
CCCCCA
: ð7Þ

The rotationally invariant fermionic Hamiltonian (2) com-
mutes with the total angular momentum operator

K3 ¼ −i
∂
∂φþ γ̂3

2
þ τ3

2
: ð8Þ

The corresponding half-integer eigenvalues κ ¼ 1þ l can
be used to classify different field configurations. The
ground state corresponds to κ ¼ 0 and thus l ¼ −1.
Rotationally invariant spin-isospin eigenfunctions of the

fermionic Hamiltonian (2) with the eigenvalues ε are

ψ ¼ N

0
BBB@

u1eilφ

iu2eiðlþnÞφ

v1eiðlþ1Þφ

iv2eiðlþnþ1Þφ

1
CCCA; ð9Þ

where the components ui and vi are functions of the radial
coordinate only, l ∈ Z is the angular momentum of the
fermion, and N is a normalization factor that is defined
from the usual condition

Z
d2xψ†ψ ¼ 2πN 2

Z
∞

0

rdrðv21 þ v22 þ u21 þ u22Þ ¼ 1:

Notably, there are localized modes among fermionic
eigenfunctions (9). Indeed, substitution of the ansatz (6)
into Eq. (4) yields

f00 þ f0

r
− sin f

�
Bþ cos f − 2r sin f

r2

�

þ g sin fðu21 þ v22 − u22 − v21Þ
þ 2g cos fðv1v2 − u1u2Þ ¼ 0:

Linearizing this equation in the asymptotic region, where
both f and the fermionic field profile functions approach 0,
we can see that

f00 þ f0

r
− f

�
Bþ 1

r2

�
¼ 0; ð10Þ

which is the usual modified Bessel equation, whose
solution can be written in terms of the McDonald function,
f ∼ K1ðrÞ. Thus, as r → ∞, we obtain

f ∼
e−

ffiffiffi
B

p
rffiffiffi

r
p ;

and the configuration is exponentially localized.
Considering fermions, we notice that in the limit of

vanishing Hund coupling the system is reduced to the usual
Dirac fermions in the uniform magnetic field. The energy
spectrum of the charged fermions is given by the Landau
levels

ε2k ¼ M2 þ Bðjejð2kþ 1Þ � eÞ; ð11Þ

where k ∈ Z. The levels are twofold degenerate (except
k ¼ 0); we can expect that this degeneration is lifted for a
nonvanishing fermion-skyrmion coupling. The charged
modes then become exponentially localized on the sky-
rmion; this effect gives rise to the electric charge of the
configuration. Evidently, there is a long-range Coulomb
electric interaction between two widely separated chiral
skyrmions with fermionic modes localized on each of them.
For the chargeless modes (e ¼ 0) the situation is differ-

ent; this case is similar to that of the usual fermion-
skyrmion system considered in [25]. Indeed, the asymptotic
expansion of Eqs. (3) with parametrization (9) at r → ∞
yields

u001 þ
u01
r
− u1

�
ðgþmÞ2 − ε2 þ l2

r2

�
¼ 0;

u002 þ
u02
r
− u2

�
ðg −mÞ2 − ε2 þ ðlþ 1Þ2

r2

�
¼ 0;

v001 þ
v01
r
− v1

�
ðgþmÞ2 − ε2 þ ðlþ 1Þ2

r2

�
¼ 0;

v002 þ
v02
r
− v2

�
ðg −mÞ2 − ε2 þ ðlþ 2Þ2

r2

�
¼ 0: ð12Þ

Thus, the components of the fermionic field decay as
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u1 ∼ Klð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþmÞ2 − ε2

q
rÞ;

u2 ∼ Klþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg −mÞ2 − ε2

q
rÞ;

v1 ∼ Klþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþmÞ2 − ε2

q
rÞ;

v2 ∼ Klþ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg −mÞ2 − ε2

q
rÞ; ð13Þ

and the exponentially localized modes exist as jεj < g −m.

III. NUMERICAL RESULTS

Equations (4) and (3), together with constraint imposed
by the normalization condition, yield a system of integro-
differential equations, which can be solved numerically.
Generally, the system is not rotationally invariant and we
impose an additional O(3) constraint on the scalar field ϕ.
We make use of the fourth order Newton-Raphson method
implemented in the CESDSOL package; relative numerical
errors are no higher than 10−5.
First, we consider a rotationally invariant system of

fermions coupled to the single skyrmion. The results for the
fermionic energy spectrum are presented in Fig. 1. For the
uncharged modes the general pattern is similar to what we
found in our previous study of the fermions interacting with
baby skyrmions [25]. In agreement with the index theorem,
for a given value of l, there is one zero-crossing mode that
runs from negative to positive as the Hund coupling g is
increasing. Apart from this mode there are localized states
of two different types, which are linked to the negative and
positive continuum. We refer to them as the modes of types
A and B, respectively.
The spectral flow of the charged fermions is different;

see Fig. 1, right plot. In the limiting case g ¼ 0 the fermions
are decoupled from the skyrmion; they occupy the Landau

levels (11). For each value of l ≠ 0 there are two modes on
each level; the zero mode corresponds to k ¼ 0, l ¼ −1.
As the Hund coupling g increases, the states start to deform;
the energy of the lowest mode becomes negative, and it has
a minimum at some value of g. As the coupling increases
further, the energy of the lowest mode is increasing; it
crosses 0 at some critical value of the Hund coupling. This
mode remains localized on the skyrmion for all values of
the coupling, while other charged modes with k ≠ 0 are
linked to the positive or negative energy continuum,
approaching it at some set of critical values of the
fermion-skyrmion coupling g. Further, as g increases, the
fermion-skyrmion interaction becomes stronger than the
interaction between the fermions and magnetic fieldB; thus
there is a one-to-one correspondence between the corre-
sponding localized modes and the uncharged modes of the
types Ak and Bk.
Localization of the fermionic modes may strongly affect

the usual pattern of interaction between the magnetic
skyrmions. Notably, even chargeless fermionic modes
may balance the repulsive interaction between the chiral
skyrmions.
In order to evaluate the potential of the fermion exchange

interaction between the solitons, we can make use of the
product ansatz [1] adopted for planar skyrmions. The field
of a skyrmion ϕ can be reexpressed via SUð2Þ valued
Hermitian matrix fields U ¼ ϕ · τ; thus the field of two
well-separated skyrmions can be reasonably approximated
by U1ðxÞU2ðxÞ.
Calculating the fermion spectrum on such a background,

we can find the potential of interaction between the
skyrmions, mediated by a single chargeless fermionic
mode A0; see Fig. 2. The energy of interaction of two
skyrmions in such a system can be evaluated as
Eint ¼ E − 2M − ε∞, where E is the total energy of the

FIG. 1. Energy ε of the chargeless (e ¼ 0, left plot) and charged (e ¼ −1, right plot) localized massless fermions as a function of the
coupling constant g. The solid, dashed, and dotted lines correspond to l ¼ −1, 0, 1, respectively.
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biskyrmion-fermion configuration, M is the mass of a
single skyrmion, and ε∞ is the energy of the fermion
localized on widely separated skyrmions. Clearly, the
interaction potential possesses a minimum at zero separa-
tion for a nonvanishing coupling g. Thus, we may expect
that the bounded multiskyrmion configurations may exist
in the presence of localized fermionic modes. Note that the
position of the minimum of the evaluated interaction
potential is related with restrictions, imposed by the
product ansatz. The situation changes as the backreaction
of the fermions is taken into account.
Full numerical solution of the system of coupled

equations (3) and (4) without restrictions of symmetry
shows that biskyrmion-fermion configurations exist for

relatively large values of the coupling g; moreover, several
branches of solutions and different configurations may
exist for the same value of g. All solutions we found satisfy
the symmetry restrictions (5).
In Fig. 3 we display the fermion energy (in units of g)

and interaction energy Eint as functions of the coupling
strength g. First, we observe that the bounded system of two
charge one skyrmions with a localized A0 mode appears as

a local minimum as g increases above gð1Þcr ¼ 2.17; see the
left plots in Fig. 4. The bounded solutions do not exist as

g < gð1Þcr . As the Hund coupling increases, the overlap
becomes stronger and the solitons approach each other.
The energy of the fermionic mode is increasing; it crosses
zero and the energy of interaction becomes negative,
although both skyrmions remain separated, as shown in
plots 2, Fig. 4. This branch of solutions terminates at some

upper critical value of the coupling gð2Þcr ≈ 5.22; here it
bifurcates with the second branch, which extends back-
wards as the coupling g is decreasing. Along this branch the
maximum of the fermionic density distribution is located at
the center of the elongated soliton configuration; see plots 4
in Fig. 4. The energy of the fermionic mode is decreasing as
g decreases; in accordance with the index theorem it crosses
0 for a second time and tends towards the negative
continuum as the solitons approach closer to each other.

At some lower critical value gð3Þcr ≈ 0.75 this branch
bifurcates with another one, along which solitons merge
forming an almost rotationally invariant configuration of
topological degree 2; see plots 5, Fig. 4.
Along the corresponding third branch the coupling

becomes stronger. No indication is found for termination
of this branch; it exists for arbitrary large values of the
coupling.

FIG. 2. Interaction potential of two skyrmions in the presence
of the localized fermionic mode A0 at g ¼ 5 and g ¼ 0.

FIG. 3. Normalized energy ε=g (left plot) of the chargeless massless fermionic mode and the interaction energy Eint (right plot) of the
biskyrmion with the localized mode as a function of the coupling g. The numbers on the curves correspond to the plots in Fig. 4.
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Furthermore, we found other multisoliton configurations
bounded by the fermionic modes. In Fig. 5, as particular
examples, we display the solutions we found in sectors of
degrees Q ¼ 3, 4; there is an interesting pattern of trans-
formations of the configurations as the Hund coupling varies.
Our investigation has shown that the localization of the

spin-isospin fermionic modes on the magnetic chiral sky-
rmions with DM interaction strongly affects the usual
picture of repulsive interaction between the Bloch sky-
rmions. The new mechanism enabling bound multisoliton
solutions to occur is the fermionic exchange interaction
mediated by the localized spin-isospin fermions. Since the
index theorem secures existence of similar modes for any
topological soliton, we expect similar bounded multisoliton
solutions may exist in many different systems, for example,
in the conventional baby-Skyrme model coupled with

fermions, as well as in various higher dimensional models,
like the Abelian Higgs model or Yang-Mills theory. We
hope to address these problems in our future work.
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