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Abstract

For a twisted (vortex) Dirac particle in nonuniform electric and magnetic fields, the relativis-

tic Foldy-Wouthuysen Hamiltonian is derived including high order terms describing new effects.

The result obtained shows for the first time that a twisted spin-1/2 particle possesses a tensor

magnetic polarizability and a measurable (spectroscopic) electric quadrupole moment. We have

calculated the former parameter and have evaluated the latter one for a twisted electron. The

tensor magnetic polarizability of the twisted electron can be measured in a magnetic storage ring

because a beam with an initial orbital tensor polarization acquires a horizontal orbital vector po-

larization. The electric quadrupole moment is rather large and strongly influences the dynamics

of the intrinsic orbital angular momentum. Three different methods of its measurements, freezing

the intrinsic orbital angular momentum and two resonance methods, are proposed. The existence

of the quadrupole moment of twisted electrons can lead to practical applications.
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The discovery of twisted (vortex) electron beams [1] whose existence was predicted in Ref.

[2] has shown that particles can carry an intrinsic orbital angular momentum (OAM). Since

twisted electrons possess large magnetic moments, this discovery opens new possibilities in

the electron microscopy and investigations of magnetic phenomena (see Refs. [3–10] and

references therein). Twisted electron beams with large intrinsic OAMs (up to 1000~) have

been recently obtained [11]. Basic properties of free twisted beams have been considered in

Refs. [12, 13]. The dynamics of the intrinsic OAM in external magnetic and electric fields

has been studied in Refs. [2, 14–18]. The general relativistic description of the classical

and quantum dynamics of the intrinsic OAM in arbitrary electric and magnetic fields has

been discussed in Refs. [19] and [20], respectively. In Ref. [20], the relativistic quantum

dynamics of twisted (vortex) electrons has been constructed in the Schrödinger form on

the basis of the relativistic Foldy-Wouthuysen (FW) transformation [21–23]. In the present

work, an application of the approach used in Ref. [20] allows us to obtain new fundamental

properties of twisted electron beams. We demonstrate for the first time that a twisted spin-

1/2 particle can possess a large measurable (spectroscopic) electric quadrupole moment

(EQM) and a tensor magnetic polarizability (TMP). We calculate these new fundamental

parameters (caused by the intrinsic OAM) for a twisted electron and develop methods for

their measurements.

While a twisted electron is a single pointlike particle described by the standard Dirac

equation, its wave function has a nontrivial spatial structure (see the reviews [3, 4]). A

particle with an intrinsic OAM is characterized by nontrivial solutions of the Dirac and

Schrödinger equations. Such solutions are coherent superpositions of partial plane waves

with different momenta [3, 4, 24].

The relativistic FW transformation (see Refs. [21–23] and references therein) being the

relativistic generalization of the original method [25] can be applied to obtain the Schrödinger

form of the relativistic quantum mechanics. The exact relativistic Hamiltonian in the FW

representation (the FW Hamiltonian) for a twisted or a untwisted Dirac particle (g = 2) in

a static (in general, nonuniform) magnetic field has been first obtained in Ref. [26] and is

given by (~ = 1, c = 1) [21, 26–28]

HFW = β
√
m2 + π2 − eΣ ·B, (1)

where π = p− eA is the kinetic momentum, B is the magnetic induction, and β and Σ are

2



the Dirac matrices. This Hamiltonian acts on the bispinor ΨFW =


 φ

0


.

A twisted electron is a charged centroid [2, 3]. Needed derivations are similar to those in

Ref. [20]. However, second-order terms in B should be calculated. We can suppose that the

de Broglie wavelength, ~/p, is much smaller than the characteristic size of the nonuniformity

region of the external field. Summing over partial waves with different momentum directions

brings the operator π2 to the form [20]

π2 = π′2 + ppp2 − e

2
[L ·B(R) +B(R) ·L] +

e2

4

[
B(R)× rrr

]2
,

where R and π′ are the center-of-charge radius vector and the kinetic momentum of the

centroid as a whole, rrr = r − R and ppp = −i~∂/(∂rrr) are internal canonical variables, and

L ≡ rrr× ppp is the intrinsic OAM [20]. The straightforward extraction of the square root [29]

brings Eq. (1) into the form

HFW = βǫ− β
e

4

(
1

ǫ
Λ ·B(R) +B(R) ·Λ1

ǫ

)

+β
e2

16

({
1

ǫ
,
[
B(R)× rrr

]2
}
−

{
1

ǫ3
,
[
B(R)

]2
})

−β e
2

16

( 1

ǫ3
[
L ·B(R) +B(R) ·L

](
Σ ·B(R)

)

+
(
Σ ·B(R)

)[
L ·B(R) +B(R) ·L

] 1
ǫ3

)

−β e
2

64

{
1

ǫ3
,
[
L ·B(R) +B(R) ·L

]2
}
,

ǫ =

√
m2 + π′2 + ppp2. Λ = L+Σ. (2)

In Eq. (2), all terms proportional to 1/ǫ3 were not previously taken into account. The

curly brackets {. . . , . . . } denote anticommutators. The additional terms appearing in the

second order expansion of the square root in Eq. (1) in a power series in 1/ǫ are quadratic

or bilinear in B. Usually, ǫ2 ∼ m2 = 4.41 × 109 e·T, L ∼ 100, B ∼ 1 T, and these

terms are approximately 7 orders less than the main OAM-dependent term. Therefore,

our previous results and conclusions [20] are correct, while the additional OAM-dependent

terms define new physical effects. The second to last term in the FW Hamiltonian (2)

characterizes the spin – intrinsic OAM coupling in the magnetic field and describes the

additional spin precession caused by the intrinsic OAM. Reversing L changes the sign of

the OAM-dependent correction to the spin precession frequency. The existence of the spin
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– intrinsic OAM coupling has been previously established in Refs. [3, 4, 14, 15]. The last

term describing the tensor interaction of the intrinsic OAM with the magnetic field is similar

to the corresponding spin tensor interaction. The operator of the latter interaction has the

form W = −βT (S ·B)2, where βT is the TMP defined in the particle rest frame and S is

the spin matrix [S2 = s(s+ 1)]. Thus, the TMP caused by the intrinsic OAM is given by

W = −ββT (L ·B)2, βT =
e2~2

8m3
= 5.25× 104 fm3. (3)

The TMP of the twisted electron is much larger than TMPs of particles and nuclei condi-

tioned by the spin interactions. In particular, for pointlike W± bosons β
(W )
T ∼ 10−11 fm3

[30, 31]. For the deuteron, the theoretical estimation is βT = 0.195 fm3 [32]. In addition,

the tensor interaction of the twisted electron is proportional to L2 ∼ 104 − 106.

The operator L commutes with ppp2. The noncommutation of this operator with
[
B(R)×

rrr
]2

does not lead to any important effects because the expectation values of the nonzero

commutators
[
Li, (B(R)× rrr)2

]
(i = x, y when B(R) = Bez) are equal to zero.

Thus, the evolution of the intrinsic OAM does not reduce to its precession. The same

assertion has been made in Refs. [3, 4, 15, 17]. However, Eq. (2) shows the existence of

a new interaction caused by the TMP of the twisted Dirac particle. The corresponding

relativistic classical equation has the same form as Eq. (1) (except for the spin term).

Moreover, a consideration of a twisted centroid leads to the classical equation similar to Eq.

(2). The tensor electric and magnetic polarizabilities caused by the spin interactions are

common properties of nuclei with the spin s ≥ 1. Besides this, the exact FW Hamiltonians

for pointlike spin-1/2 and spin-1 particles (with g = 2) in a uniform magnetic field (see

Eq. (1) and Refs. [30, 31]) are almost identical (the only difference is the form of the

spin matrices). The existence of the TMP for the pointlike spin-1 particles additionally

substantiates its existence for the twisted Dirac ones. We also mention that the three-

component spin operator s = ~Σ/2 and the OAM operator L are defined in the particle

rest frame and in the lab frame, respectively.

While the TMP of the twisted electron is large as compared with that of the deuteron, its

measurement is a difficult experimental task. The TMP leads to very small shifts of energy

levels and cannot be determined using the magnetic-resonance method. While (B‖ cosωt)
2 =

B2
‖(1 + cos 2ωt)/2, an oscillating horizontal (‖) magnetic field B‖ which frequency is half

that of transitions between the Landau levels cannot stimulate any resonance. This occurs
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because the operator (B‖ ·L)2 (unlike the operator B‖ ·L) does not mix neighboring energy

levels. The same situation takes place for the tensor polarizabilities caused by the spin. In

particular, the operators (E‖ ·S)2, (B‖ ·S)2 mix only the levels sz = ±1 for spin-1 particles

[33–36].

The best possibilities to measure the TMP of the twisted electron are provided by the

effects found in Ref. [37] and investigated in detail in Refs. [34, 38]. If the TMP is caused by

the spin interactions, it produces a spin rotation with two frequencies instead of one, beating

with a frequency proportional to βT , and transitions between vector and tensor polarizations

[37, 38]. Following Ref. [34], we propose to use a tensor-polarized twisted electron beam in

a magnetic storage ring. In this case, the TMP is the only reason of the appearance of a

horizontal orbital vector polarization of the beam. This polarization grows almost linearly

in time [29, 34]. The horizontal component of the intrinsic OAM rotates with the Larmor

frequency. The experiment can be performed in an electron storage ring or in a Penning

trap. It needs a high beam coherency. To reach such a coherency, some methods developed

for the electric-dipole-moment experiment [39] can be applied.

We also consider OAM-dependent interactions proportional to field derivatives. Contrary

to the pointlike electron, the twisted electron (centroid) has a highly anisotropic spatial

structure. Such an object possesses the EQM, while this property has not been previously

mentioned. The Laguerre-Gaussian wave function describing a wave beam [3, 4] does not

allow a rigorous determination of the electron density shape in the centroid rest frame (pz →
0). It is natural to assume that this is a strongly oblate (pancake shaped) spheroid. Twisted

electron states in a uniform magnetic field [3, 14] always have such a shape. In this case,

the intrinsic EQM of the centroid is given by (e = −|e|)

Q0 = −e < r2 >= −e
∫
̺(r)r3dr∫
̺(r)rdr

, (4)

where ̺(r) = |ΨFW |2 is the electron density and r is the radial coordinate of the cylindrical

coordinate system introduced relative to the center of charge of the centroid. In the non-

relativistic approximation, the square of the FW wave function reduces to the square of the

corresponding Schrödinger wave function.

The interaction of an extended charged particle with a static electric field is defined by

the operator

W = −1

2

[
d ·E(R) +E(R) · d

]
− 1

12

{
Qij ,

∂Ei(R)

∂Xj

}
, (5)
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where d and Qij are the operators of the electric dipole moment (see Ref. [20]) and the

EQM, respectively. In the centroid rest frame, the EQM interacts only with an electric field.

The EQM operator of the twisted electron averaged on states with the specific total angular

momentum j = L + s is defined in the centroid rest frame and is given by

Qij =
3Qs

2j(2j − 1)

[
{ji, jj} −

2

3
δijj(j + 1)

]
, (6)

where Qs is the spectroscopic EQM. Its connection with the intrinsic EQM has the form

[40, 41]

Qs =
3K2 − j(j + 1)

(j + 1)(2j + 3)
Q0, (7)

where K is the projection of the total angular momentum onto the symmetry axis of the

particle. In the case at hand, j ≫ 1 and Qs ≈ Q0.

For the Landau problem, eigenfunctions of the nonrelativistic and relativistic Hamilto-

nians coincide [20]. For twisted and untwisted electrons, the mean square of the radial

cylindrical coordinate of the pointlike electron is given by [14]

< r2 >=
w2

m

2
(2n+ |lz|+ 1) , wm = 2

√
~

|eB| . (8)

Here wm is the beam waist [3, 14] and l is the sum of the intrinsic and extrinsic OAMs.

When B = 1 T, wm = 5.1× 10−8 m.

The diameter of the vortex beam depending on the OAM has been determined in Refs.

[8, 42]. It is about 10 nm when the topological charge is m = 50 (Lz = m~) and is

proportional to m [42].

The spin also contributes to the EQM of the twisted electron. An orbital motion of

the magnetic moment of a spinning particle leads to the appearance of an electric current

quadrupole moment (ECQM) [43]:

Q
(curr)
ij = − 1

2ǫ
[3Liµj + 3Ljµi − 2δij(L · µ)] , µ =

es

ǫ
. (9)

Its appearance results in a small correction to the spin precession frequency. The sign of

this correction is defined by the sign of Lz. The ECQMs are comparatively small (Q(curr) ∼
eL/m2). The correction to the spin precession frequency is of the following order:

∆Ω ∼ L

∣∣∣∣
∂Ei

∂Xj

∣∣∣∣
max

× 10−10 s−1,
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where the maximum gradient of the electric field is given in units of V/m2. The ECQMs

cause a spin – intrinsic OAM coupling.

Let us analyze the potential for measuring the EQM of twisted electrons in storage rings

when L≫ 1 and spin effects are neglected. It is convenient to determine the dynamics of Lz.

Relativistic effects in interactions of EQMs of spinning particles with electric and magnetic

fields have been described in Refs. [44–46]. Since polarization effects conditioned by the

spin and intrinsic OAM are similar [29], we can use the results [44–46] with substituting

L for S and taking into account that L >> 1 and V · E = 0 (V is the centroid velocity

operator). The quadrupole interaction in the lab frame reads (β̃ = V /c = β̃eφ)

W = − Qs

4L2

[
(L · ∇)− γ

γ + 1
(L · β̃)(β̃ · ∇)

]
(L · E),

E = E(R) +
1

2

[
β̃ ×B(R)−B(R)× β̃

]
, (10)

where E = E(R) is the quasielectric field. All fields are defined in the lab frame. The

noncommutativity of operators is neglected. The intrinsic OAM presented in Eq. (10)

should not be confused with the extrinsic OAM. The operator W should be added to the

Hamiltonian (2). The use of a nonuniform magnetic field for focusing may be preferable.

The interaction operator W contains the terms proportional to ∂Ez/∂Z and ∂Er/∂R (R

is the radial coordinate of the cylindrical coordinate system). The former term commuting

with Lz can be disregarded. The effect of the latter term is defined by

W = − Qs

4L2
L2
r

∂Er
∂R

. (11)

The last term in Eq. (6) does not contribute to the interaction operator (11) because

∂Ei/∂Xi ≡ div E = 0.

To determine the effect of W on the dynamics of the intrinsic OAM, we can use the fact

that the components of the spin and the OAM satisfy equivalent commutation relations.

Therefore, the OAM polarization tensor {Li, Lj} rotates in external fields with the same

angular velocity as the OAM (the spin polarization tensor possesses the equivalent property

[47]). The dynamics of the intrinsic OAM is defined by the large term [20]

dL

dt
=

1

2
(Ω× L− L×Ω) ,

Ω = −β e
4

{
1

ǫ
,B(R)

}
+
e

4

[
1

ǫ2
π′ ×E(R)−E(R)× π′ 1

ǫ2

]
(12)
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and by corrections to this term caused by the EQM. Other corrections are defined by Eqs.

(2) and (3). In Eq. (12), Ω is the operator of the angular velocity of Larmor precession

in external fields. The Larmor precession caused by the vertical magnetic field and by the

radial electric one (if the latter field is also used) does not change Lz.

In Eqs. (2), (11), and (12), a noncommutativity of the operators of coordinate and

intrinsic OAM can be ignored because the operators ppp and L are defined only by the internal

coordinates.

The change of Lz caused by the quadrupole interaction (11) is observable only when the

Larmor precession is eliminated. This can be done by freezing the intrinsic OAM [19] in

a specific combination of vertical magnetic and radial electric fields equalizing the angular

velocities of the beam rotation and the intrinsic-OAM one (ω = Ω). An angle between the

intrinsic OAM and the momentum remains unchanged. A similar method of freezing the

spin [48] may be applied in electric-dipole-moment experiments. Freezing the intrinsic OAM

takes place when [19]

B0 =

(
2

β̃2
− 1

)
β̃ ×E, ω = − eB0

mcγ(γ2 + 1)
. (13)

If magnetic focusing is used, the magnetic field B is nonuniform and B0 is an average

magnetic field. The forces caused by the electric and magnetic fields are oppositely directed.

Electrons move counterclockwise. The ring radius is defined by

R0 =
V

ω
= (γ2 + 1)

√
γ2 − 1

mc2

|e|B0
. (14)

The nonuniformity of B leads to a nonuniform electric field in the centroid rest frame and

to a turn of the intrinsic OAM in the vertical plane. In this case,

∂Bz

∂R
= −nB0

R0
, 0 < n < 1, (15)

where n is the field index. In Eq. (11), Er = β̃Bz and ∂Er/∂R = −β̃nB0/R0.

The commutator of the total FW Hamiltonian (including W ) with the OAM operator

results in the following addition to the equation of motion:

dLz

dt
=
Qsβ̃nB0

4L2R0
{Lr, Lφ}. (16)

Therefore, a beam with an initial horizontal orbital polarization acquires a vertical orbital

polarization (cf. the similar spin effect [33–38, 49]). The beam can be tensor-polarized
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(when two beams with opposite orbital polarizations are joined) or vector-polarized. Let ψ

be the angle defining the orbital polarization relative to the er and eφ axes. The azimuth

ψ = 0 characterizes the intrinsic OAM directed radially outward. The change of Lz is max-

imum when the direction of the initial horizontal orbital polarization satisfies the condition

| sin 2ψ| = 1 (cf. Refs. [29, 33, 35]).

The effect of the EQM on the OAM dynamics is very strong and can be easily observed.

When the beam energy is equal to 300 keV and R0 = 0.5 m, β̃ = 0.777, E = 2.46 MV/m,

B0 = 0.0148 T, f = ω/(2π) = 7.41 × 107 Hz. When L ∼ 100 and the OAM diameter

is determined based on the data presented in Ref. [42], the quantity Qs/(|e|R0) ∼ 10−16

m is not negligible as compared with the reduced Compton wavelength of the electron

λC = ~/(mc) = 3.86 × 10−13 m. The frequency of the cyclic evolution of the orbital

polarization (cf. Refs. [33–35, 37, 38, 49]) is 5 orders of magnitude less than the cyclotron

frequency f and can be properly measured. The corresponding terms in the FW Hamiltonian

also differ by 5 orders of magnitude. Therefore, the main intrinsic-OAM dynamics is correctly

described by the equations obtained in Refs. [19, 20], while the new EQM-dependent effect

is rather important.

There is a systematical error caused by the small vertical electric field and the correspond-

ing radial magnetic field < Br >= − < Ez > /β̃ leading to a vanishing average Lorentz

force (cf. Ref. [48]). This systematical error originates from field misalignments. However,

it seems to be small and can be eliminated in measurements at two values of the field index.

The EQM of the twisted electron can also be measured by the magnetic-resonance

method. In this case, a constant electric field is not needed. The resonance effect is

provided by a nonuniform field oscillating with the angular frequency Ω. The resonance

field vanishing in the center of the beam trajectory, Bz = B(R − R0) cos (Ωt+ ϕ) or

Er = E(R − R0) cos (Ωt + ϕ), is preferable. It is well known that such a field is equiva-

lent to two fields rotating with the angular velocities Ω [see Eq. (12)] and −Ω. The first of

these creates the resonance effect. In the frame rotating with the angular velocity Ω, the

intrinsic-OAM dynamics is similar to that when the intrinsic OAM is frozen [29].

The magnetic-resonance method provides the less sensitivity than the method of freezing

the intrinsic OAM because the resonance field usually covers a small part of the ring circum-

ference. Nevertheless, the effect of the EQM on the intrinsic-OAM dynamics can be properly

detected. Otherwise, the magnetic-resonance method allows one to apply a stronger mag-
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netic field, a smaller ring size, and, therefore, a lower number of twisted electrons. Another

advantage of this method is a simpler experimental setup.

The third method of measuring the EQM of the twisted electron is based on a stan-

dard stimulation of resonance transitions by an oscillating longitudinal magnetic field. This

method, unlike the previous one, is sensitive to the quadrupole splitting of Landau levels

defined by Eq. (11). The splitting is caused by the focusing magnetic field creating a

nonuniform electric field in the electron rest frame. Therefore, the quadrupole splitting is

proportional to the field index n. The stimulating magnetic field can be conditioned by a

usual rf cavity and is longitudinal because such a field does not affect the beam motion.

The considered method is similar not only to the magnetic-resonance method but also to

the nuclear-quadrupole-resonance one. The resonance frequencies defined by a quadrupole

structure of the energy levels depend on n.

The three methods considered need an increase in the currently available beam intensity.

However, similar experiments can be carried out with a single twisted electron in a Penning

trap.

Large EQMs of twisted electrons rather strongly interact with nonuniform electric fields.

We expect that the twisted electrons can be successfully used not only in investigations of

magnetic properties (see Refs. [3–7, 9, 10] and references therein) but also for nanoscale

measurements of nonuniform electric fields in matter.

In this Letter, we have calculated minor terms in the relativistic FW Hamiltonian de-

scribing a twisted Dirac particle in nonuniform electric and magnetic fields. The results

presented by Eqs. (2) – (6) have shown for the first time that the twisted electron (s = 1/2)

possesses a TMP and a spectroscopic EQM. We have calculated the former parameter and

have evaluated the latter one. It is still generally accepted that only particles and nuclei

with spin s ≥ 1 are characterized by these parameters. The TMP of the twisted electron

is several orders of magnitude bigger than that of the deuteron. It can be measured in a

magnetic storage ring because a beam with the initial orbital tensor polarization acquires a

horizontal orbital vector polarization. The EQM is rather large and strongly influences the

dynamics of the intrinsic OAM. We propose three different methods of its measurements,

freezing the intrinsic OAM and two resonance methods. We expect that the existence of the

EQM of twisted electrons can find practical applications because the EQM interaction with

nonuniform electric fields in matter depends on the intrinsic-OAM direction. All the con-
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sidered effects also take place for twisted positrons. Additional explanations are presented

in the Supplemental Material [29].
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Supplemental Material to “Electric quadrupole moment and the

tensor magnetic polarizability of twisted electrons and a potential

for their measurements”

In this Supplemental Material, we specify a derivation of Eq. (2) in our Letter and

present some additional explanations for internal-OAM dynamics of twisted electrons caused

by interactions bilinear in the internal OAM L.

When some operators A and B do not commute, their double commutators can be ne-

glected, and the operator B is comparatively small,

√
A+ B =

1

2

{√
A(1 + x)

}
=

1

2

{√
A,

√
1 + x

}
=

1

2

{√
A,

(
1 +

x

2
− x2

8

)}
,

where x =
1

2
{A−1,B}. With the equivalent assumptions, the extraction of the square root

allows us to pass from Eq. (1) to Eq. (2) in the Letter.

The explanations for internal-OAM dynamics of twisted electrons are based on previous

studies of spin dynamics of deuterons caused by interactions bilinear in the spin [33–38,

47, 49]. Since these studies have been performed for deuterons, some of them [33–35] have

used the fixed spin number s = 1. Nevertheless, it is well-known that the use of the

Pauli spin matrices describing spin-1/2 particles allow one to determine the spin rotation of

particles with any spins. Similarly, the application of results obtained in Refs. [33–35] gives

a right qualitative description of the spin dynamics of particles and nuclei with spins s > 1

and the intrinsic-OAM dynamics. Therefore, the results obtained in Refs. [33–38, 49] with

different quantum-mechanical and classical approaches are in the best compliance. Moreover,

a correction needed for a description of the intrinsic-OAM dynamics usually reduces to the

change S → L and an addition of the factor 2L− 1.

There is a deep similarity between polarization effects conditioned by the intrinsic OAM

L and the spin S caused by the equivalent commutation relations between the components

of these operators:

[Li, Lj] = ieijkLk, [Si, Sj ] = ieijkSk,

where the square brackets denote commutators. The polarization vectors and the polariza-

1



tion tensors for the OAM and the spin are also equivalent:

Pi =
< Li >

L
, Pij =

3 < LiLj + LjLi > −2L(L+ 1)δij
2L(2L− 1)

,

Pi =
< Si >

s
, Pij =

3 < SiSj + SjSi > −2s(s+ 1)δij
2s(2s− 1)

, (S1)

where Pij = Pji and Pρρ+Pφφ+Pzz = 1. In the considered case, i, j denote projections onto

the axes of the cylindrical coordinate system. This similarity allows one to apply formulas

defining the spin dynamics for a description of the intrinsic-OAM dynamics. Equation (S1)

shows that results obtained in spin physics are useful for the description of dynamics of the

intrinsic OAM.

The interaction Hamiltonian depending on the intrinsic OAM can be presented in the

form

H = Ω ·L+
1

2
αij(LiLj + LjLi), (S2)

where Ω is the angular velocity of the Larmor precession of the intrinsic OAM in the cylin-

drical coordinate system. The equation of the intrinsic-OAM motion has the form

dLk

dt
= (Ω× L)k +

1

2
αij

(
ekil{Ll, Lj}+ ekjl{Ll, Lj}

)
. (S3)

This equation shows that the minor second term in Eq. (S3) defines the change of

the orbital vector polarization depending on the orbital tensor polarization. This effect

allows one to obtain an orbital vector polarization of an initially tensor-polarized and vector-

unpolarized twisted beam (cf. the similar spin effects [33–35]). Such an initial polarization

can be reached by mixing two twisted beams with antiparallel intrinsic OAMs. The second

term in Eq. (S3) also influences the dynamics of the orbital vector polarization of an initially

vector-polarized twisted beam.

An additional equation for dPij/(dt) completes the system of equations defining the

intrinsic-OAM dynamics. Such a system of equation has been constructed in Refs.

[37, 38, 49] for a description of spin effects. When the effect of the second term in the

interaction Hamiltonian (S2) on the dynamics of the tensor polarization can be neglected,

the tensor polarization is constant in the frame rotating with the angular velocity Ω. As

a result, the first term in the interaction Hamiltonian conditions a rotation of the tensor

polarization with this angular velocity [47]. The neglect of the influence of the second term

on the dynamics of the tensor polarization allows one to consider only Eq. (S3). However,

a change of this dynamics caused by the second term in Eq. (S2) can also be important.

2



Components of the polarization vector and the polarization tensor of vector- and tensor-

polarized twisted beams are defined as well as in the spin physics. When the initial twisted

beam is vector-polarized and the direction of its orbital polarization is defined by the spher-

ical angles θ and ψ,

Pρ(0) = sin θ cosψ, Pφ(0) = sin θ sinψ, Pz(0) = cos θ, (S4)

Pρρ(0) =
1

2

(
3 sin2 θ cos2 ψ − 1

)
, Pφφ(0) =

1

2

(
3 sin2 θ sin2 ψ − 1

)
,

Pzz(0) =
1

2

(
3 cos2 θ cos2 ψ − 1

)
, Pρφ(0) =

3

4
sin2 θ sin (2ψ),

Pρz(0) =
3

4
sin (2θ) cosψ, Pφz(0) =

3

4
sin (2θ) sinψ.

(S5)

When the direction of an initial tensor polarization of a twisted beam obtained by mixing

two beams with antiparallel intrinsic OAMs is defined by the spherical angles θ and ψ,

P (0) = 0 (S6)

and the components of the polarization tensor are the same.

Equation (3) in our Letter is equivalent to the corresponding equation describing the

spin-dependent tensor magnetic polarizability. The presence of the matrix β in Eq. (3) is

not important because the lower Foldy-Wouthuysen spinor is zero. As a result, the effects of

the polarization vector rotation with two frequencies instead of one, beating with a frequency

proportional to βT , and transitions between vector and tensor polarizations [34, 35, 37, 38]

also take place for twisted beams with an orbital polarization. All formulas obtained in

these works remain applicable [50]. As follows from the results obtained in Refs. [34, 35],

the above-mentioned vector-unpolarized twisted beam with the orbital tensor polarization

defined by Eq. (S5) acquires the orbital vector polarization. When the uniform magnetic

field is parallel to the z axis,

H = Ω ·L− βTB
2L2

z,

dLρ

dt
= (Ω×L)ρ + βTB

2{Lφ, Lz},
dLφ

dt
= (Ω×L)φ − βTB

2{Lρ, Lz}. (S7)

Equations (S1) and (S5) show that the orbital tensor polarization should not be hori-

zontal. Its optimal vertical direction is defined by the angle θ = π/4. The intrinsic-OAM

dynamics is given by formulas obtained in Refs. [34, 35, 37, 38]. For a twisted particle with

3



L = 1 and the above-mentioned orbital tensor polarization, the general equation defining

this dynamics has the form (see Refs. [34, 35])

Pρ(t) = −1

2
sin (2θ) sin (Ωt + ψ) sin (bt),

Pφ(t) =
1

2
sin (2θ) cos (Ωt + ψ) sin (bt),

Pz(t) = 0, b = −βTB2. (S8)

The final vector polarization is horizontal and its absolute value increases. When L > 1, Eq.

(S8) is valid up to a constant factor. The electric quadrupole moment (EQM) of a particle

affects the intrinsic-OAM dynamics only when the magnetic field is nonuniform.

The effect of the EQM of twisted electrons on the dynamics of the intrinsic OAM also

needs some explanations. When the method of freezing the intrinsic OAM is used, the

angular velocity of the Larmor precession is vanished and the intrinsic-OAM motion is

defined by Eq. (16) in our Letter. A motion of the intrinsic OAM in the case of Ω = 0 is

very similar to a spin behavior when the frozen spin method is used. The general description

of this behavior is presented in Ref. [35]. We can use Eqs. (14), (15), and (19) from this

article. In our case, with the same denotations as above, the dynamics of the vertical

component of the orbital polarization is defined by

Pz(t) = cos (2At) cos θ + 1

2
sin2 θ sin (2At) sin (2ψ), (S9)

when the initial beam of twisted electrons is vector-polarized and

Pz(t) =
1

2
sin2 θ sin (2At) sin (2ψ), (S10)

when this beam is tensor-polarized. Here

A = −Qsβ̃nB0

8L2R0
. (S11)

The tensor magnetic polarizability does not influence Pz [35].

When the magnetic-resonance method of a measurement of the EQM is used, the intrinsic

OAM rotates with the angular velocity of the Larmor precession, Ω. The angular frequency

of the spin precession, Ω′, is defined by the well-known Thomas-Bargmann-Michel-Telegdi

equation. Precedent studies of the spin-tensor effects fulfilled by different methods [33, 37,

38] have shown that the spin behavior perturbed by time-independent spin-vector and spin-

tensor interactions is different. In the same static fields, the former and latter interactions

4



lead to spin oscillations with the angular frequencies Ω′ and 2Ω′, respectively (see, e.g., Eq.

(66) in Ref. [38] and Eq. (67) in Ref. [33]). To provide a resonance, the perturbing spin-

tensor interaction should oscillate with the angular frequency ω ≈ 2Ω′ [33, 37, 38]. The same

situation takes place for the intrinsic OAM. It can be similarly shown that the resonance

frequency of the perturbing tensor interaction (10) is ω = 2Ω. The perturbing nonuniform

quasielectric field is given by Er(R, t) = Er(R) cos (ωt+ ϕ). The quantity ϕ is an oscillation

phase at the moment of time t = 0 when the initial beam polarization is defined by Eqs.

(S4), (S5), and (S6). In the general case of an imperfect resonance, the dynamics of Pz is

defined by Eqs. (51) and (57) in Ref. [33] and is given by

Pz(t) =

(
1− 2A2

ω′2
sin2 ω

′t

2

)
cos θ +

A
ω′

sin2 θ sin
ω′t

2

[
2Ω− ω

ω′
sin

ω′t

2
cos (2ψ − ϕ)

+ cos
ω′t

2
sin (2ψ − ϕ)

] (S12)

and [50]

Pz(t) =
A
ω′

sin2 θ sin
ω′t

2

[2Ω− ω

ω′
sin

ω′t

2
cos (2ψ − ϕ) + cos

ω′t

2
sin (2ψ − ϕ)

]
(S13)

when the initial beam is vector-polarized and tensor-polarized, respectively. Here

ω′ =
√

(2Ω− ω)2 +A2.

The resonance part of the tensor interaction is defined by

Er(R, t) = G(R− R0) cos (ωt+ ϕ),

W = −QsG

4L2
cos (ωt+ ϕ)L2

r = 2A cos (ωt+ ϕ)L2
r ,

A = −QsG

8L2
. (S14)

The definitions of A in Eqs. (S11) and (S14) are different.

The third method of the measurement of the EQM is very similar to the nuclear

quadrupole resonance method. However, the nuclear quadrupole resonance takes place in

the rest frame of the moving electron.

5


	 References

