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We present the CRYSTALRAD simulation code, combining all the features of the CRYSTAL simulation code
for simulations of charged particles trajectories in a bent crystal and the RADCHARM++ code for calculation of
the radiation spectrum. The CRYSTALRAD code is based on Monte Carlo simulations of trajectories in the
planar and axial electric field either in a straight, bent, or periodically bent crystal taking into account multiple
and single Coulomb scattering on nuclei and electrons, nuclear scattering and ionization energy losses. The
trajectories simulated are used for calculation of radiation spectra by the Baier-Katkov method. We compare
our simulations with experimental data taken at MAMI (MAinzer MIkrotron) as well as give an example for a
possible future study with sub-GeV electrons interacting with Si bent crystals.
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I. INTRODUCTION

Since the 1950s, it has been known that the lattice
structure can strongly influence the electromagnetic proc-
esses in oriented crystals and that the alignment of a beam
of electrons/positrons with respect to the axis or planes of a
crystal leads to an increase of the probability of brems-
strahlung emission.
Coherent orientational effects in a crystal can be

exploited for various applications in accelerator physics
as well as for the development of novel x- and gamma-ray
crystal-based sources. In particular, coherent bremsstrah-
lung (CB) [1] is currently exploited in several laboratories
worldwide, in which electron beams of energy of the order
of GeVare available, such as MAMI (Mainz, Germany) [2],
JLAB (Newport News, USA) [3], ELSA (Germany), and
Max Lab (Lund, Sweden), to generate intense monochro-
matic and linearly polarized gamma beams for experiments
in photonuclear and hadronic physics researches. In addi-
tion, at certain orientation of a scintillation crystal it is
possible to accelerate the electromagnetic shower develop-
ment, which is very attractive for forward e.m. (electro-
magnetic) calorimeters technology [4–6]. Furthermore,
bent crystals have already shown themselves as cheap
and efficient tool for crystal-based manipulation, for

application in hadron beam collimation and extraction at
U70 at IHEP-Protvino, Tevatron at Fermilab and SPS and
LHC at CERN [7–12].
Coherent interaction of charged particles with crystals

occur when the particle trajectory is oriented with a small
angle with respect to a main crystal axis or plane. In such a
case, correlated collisions with atoms in the same row/plane
occur and therefore the charged particle interacts with
crystalline planes or atomic strings (axes) as a whole.
This modifies not only the motion of charged particles
inside crystals, but also the process of bremsstrahlung
radiation emission. First the increase of the bremsstrahlung
in oriented crystals was predicted to appear due to an effect
called coherent bremsstrahlung (CB). CB was then dis-
covered in Frascati in 1960 and consists of the enhance-
ment of bremsstrahlung when the momentum transferred
by electrons to the crystal matches a reciprocal lattice
vector, in analogy with the Bragg/Laue diffraction [1].
When the charged particle velocity is nearly parallel to
either a crystal axis or a plane, the particle trajectory would
be forced in an oscillatory motion within the planar/axial
potential well, i.e., the channeling phenomenon occurs,
leading to a specific e.m. radiation emission called chan-
neling radiation (CR) [13]. Channeling may occur if the
incidence angle of the charged particle with respect to the
crystal planes/axes is lower than the critical value intro-
duced by Lindhard θc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2V0=εÞ
p

, where ε is the particle
energy and V0 the average potential energy amplitude [14].
Channeling in bent [15–20] and periodically bent crys-

tals, the latter case corresponding to a crystalline undulator
[21–23], can be applied for the generation of x-ray and
gamma radiation. Monte Carlo simulations are needed to
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predict the characteristic of the emitted radiation and need
to combine the simulation of electron/positron motion in
crystalline materials as well as the generation of radiation,
which is not trivial. Indeed, the particle motion includes
different types of scattering in an ordered crystalline media,
the cross section of which strongly depends on a particle
transverse position, while the radiation generation at high
energies cannot be described in terms of classical electro-
dynamics because of low probability and high energies of
photons produced.
There are different approaches of trajectory calculation

in a crystal, which are reasonable for application at different
energies. At low energies, i.e., few MeV for electrons, only
quantum mechanics allows one to treat the channeling
effect correctly [24–27], while starting from the energies
of ∼102 MeV a classical description works well. In the
classical approach, one may utilize the scheme of binary
collisions which assumes that the motion of a projectile at
all times is influenced by the force due to the nearest atom
or, with the sufficient computer power, one may account
for the interaction with larger number of the crystal atoms
[28–32]. The limitations of the classical binary collision
model are discussed in the work [33].
Another possible approach in the classical framework is

to simulate the particle trajectory in the average continuous
planar or axial potential, proposed by Lindhard [14]. In this
model, already realized in a number of computer codes
[34–39], one simulation step usually contains hundreds
of atoms, considerably reducing the calculation time. The
main difference between these computer codes is the
realization of atomic potential as well as the Coulomb
scattering model, strongly affecting charge particle trajec-
tories. The main approach of radiation spectra simulations
in the energy range, starting from hundreds of MeV is the
Baier-Katkov (BK) quasiclassical operator method [28], in
which the probability of radiation emission is computed
through integration on the classical particle trajectory,
while at the same time it takes into account the quantum
recoil of the primary particle in the photon emission.
Thereby the BK method is suitable with the models
in which the particle motion is described by classical
trajectories, in particular for the Lindhard averaged poten-
tial one. In the literature, different algorithms are present
for the integration of the radiation emission probability
in the framework of the Baier-Katkov method realized
[16,32,40–42], with differences in the integration methods
and, consequently, also in calculation speed.
In this paper, we present the CRYSTALRAD simula-

tion code providing fast Monte Carlo simulations of
both charged particle dynamics and radiation emission in
straight, bent and periodically bent crystal of any material
and crystal lattice type with well verified experimentally
models of scattering and radiation [16–19,34,40,43–45].
Apart from this, the CRYSTALRAD code includes a wide
number of features, namely peculiarities of crystal geom-
etry, possibility of simulations for a set of initial parameters

to solve the optimization problem and, furthermore, MPI
parallelization provides the opportunity to carry out com-
plex calculations at supercomputers with a huge reduction
of needed simulation time.

II. PHYSICAL MODEL FOR TRAJECTORIES
CALCULATION

A. Trajectories calculation in the averaged
continuous atomic potential

A trajectory of charged particle, moving at relatively small
angle with respect to the crystal planes or atomic strings can
be calculated in the approximation of the averaged atomic
potential, as first proposed by Jens Lindhard [14]. In other
words, one needs an averaged interplanar or interaxial
potential UðxÞ to integrate the trajectory equations, that
can be written as

d2x
dz2 þ

U0
xðx;yÞ
pv þ 1

Rx
¼ 0;

d2y
dz2 þ

U0
yðx;yÞ
pv þ 1

Ry
¼ 0;

ð1Þ

where p is the particle momentum, v its velocity, x and y
transverse as well as z longitudinal coordinates, U0

x and U0
y

components of transverse electric field,Rx andRy horizontal
and vertical bending radius of a bent crystal (in the case of
a straight crystal 1=Rx ¼ 1=Ry ¼ 0). In the approximation
of the interplanar potential one may choose the direction of
y-coordinate parallel to the crystal plane, which causes
U0

y ¼ 0, and consequently disappearance of the second
equation in Eqs. (1).
There are a lot of single atom potential models, most of

them are defined through atomic form factors measured
with x-ray diffraction [46]. The examples of interplanar and
interaxial potential, obtained for the Doyle-Terner approxi-
mation [47] with the coefficients calculated in [48] in
comparison with harmonic and Molière approximations
[49] are presented in Fig. 1.

B. Scattering model

The solution of Eqs. (1) gives only coherent part of
particle-crystal interaction, but does not include the incoher-
ent one, i.e., multiple and single scattering on separate atoms,
nuclei and electrons, for instance Coulomb scattering.
A particle can be scattered by a screened atomic potential
as a whole or by a single electron, causing atom ionization.
Coulomb scattering on atom can be treated by a well

fitted cross section of screened atom [50–52], based on
Yukawa potential:

dσC
dΩ

¼ 4
z2pZ2e4

p2v2
1

ðϑ2 þ ϑ21Þ2
; ð2Þ

where ϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2x þ ϑ2y

q
, ϑx and ϑy are scattering angles

in the horizontal and vertical planes, respectively,
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ϑ1 ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.13þ 3.76ðzpZe2=ℏvÞ

q
=ðpaTFÞ so-called char-

acteristic scattering angle [50,51], zp particle charge,
Z atomic number of atom, e electron charge, aTF ¼
ð9π2=128ZÞ1=3a0 Tomas-Fermi screening radius, a0 Bohr
radius, dΩ an element of a solid angle.
By using this cross section and taking into account

dΩ ¼ ϑdϑdφ, where φ is the polar angle, one can find
the r.m.s. angle of multiple scattering in a material of
thickness Δz. However, one must take into account that
in a crystal the scattering cross section is divided onto
coherent and incoherent part [53], where the incoherent
part can be expressed by using the Debye-Waller factor
expð−p2ϑ2u21Þ. Therefore the r.m.s. multiple scattering
angle can be written as:

hϑ2Cmsi ¼ nNΔz
Z

ϑ2

0

Z
2π

0

dσC
dΩ

ð1 − e−p
2ϑ2u2

1Þdφϑdϑ; ð3Þ

where nN is the average nuclear density along the
trajectory element Δz. The angle ϑ2 is the angle, splitting

multiple and single scattering [53]. Indeed, according to
Molière [50,51], Coulomb scattering involves both multi-
ple scattering, described by a Gaussian distribution, and
single scattering characterizing the long non-Gaussian
tails of the distribution of scattering angles. ϑ2 is not
strictly defined, since at its zero value only single
scattering is actually left. However, the scattering on
small angles can be taken into account as a multiple
scattering considerably reducing the number of necessary
computations. One can distinguish between single and
multiple scattering by calculating ϑ2 using the probability
of a single scattering. For convenience of modeling,
the value of probability equal to 0.1 was used. The length
at which the next Coulomb occurs single scattering can be
written as:

LCss ¼ 1=

�
4πnN

�
zZe2

pv

�
2
�

1

ϑ21 þ ϑ22
−

1

ϑ21 þ ϑ2max

��
:

ð4Þ

Single scattering suppression is taken into account with
cutoff by specially generated random number, compared
to the value of the Debye-Waller factor [53].
Another type of single scattering event is scattering on

electrons. Its cross section is represented by the Rutherford
cross section [54]:

dσCe
dΩ

¼ 4
z2e4

p2v2
1

ϑ4
: ð5Þ

However, the main parameter, defining scattering on
electrons is the kinetic energy, transferred to electron
Te ¼ p2ϑ2=2me, where me is the electron mass, which
can be introduced in (5) during integration. Consequently,
the length of the next single Coulomb scattering on electron
can be calculated similarly to (4):

LCe ¼ 1=

�
2πne
m

�
ze2

v

�
2
�

1

Tmin
−

1

Tmax

��
; ð6Þ

where ne is the electron density, Tmax ¼ 2meðγβÞ2=
ð1þ 2meγ=mþ ðme=mÞ2Þ the maximal energy that can
be lost for ionization [55], while Tmin is the ionization
potential that can be found as the Fermi energy at the point
of scattering, β ¼ v=c.
Nuclear scattering is important only for channeling

hadrons (protons, ions). The length of nuclear scattering
events Lel, Ldiff , Linel (elastic, diffractive, and inelastic,
respectively) is almost independent of the energy and can
be usually found in the literature [55] for any type of
material. One must only recalculate this length, taking into
account the nuclear density along the trajectory:

FIG. 1. Averaged potential examples. Top: interplanar potential
in a silicon crystal between (111) crystal planes, calculated in the
models of the harmonic, Molière and Doyle-Terner potentials.
Bottom: interaxial potential in a silicon crystal between h111i
crystal axes in the model of Doyle-Terner.
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LschnNi=N: ð7Þ

The r.m.s. scattering angles can be written as:

hϑ2Ni ¼
1

Bp2
; ð8Þ

where B is a slope determined for each type of scattering.
For example, for protons in the case of elastic scattering
[56], it is written as:

B ¼ 12.85A2=3 GeV−2; ð9Þ
where A is the atomic number of a nucleus in a crystal.
All the types of scattering depend on nuclear and

electron density distributions. The examples of these
distributions are shown in Fig. 2. One can notice that
the electron density for germanium is more than twice
higher, resulting in higher probability of single scattering
on electrons than for Si.

III. ALGORITHM FOR THE DIRECT
INTEGRATION OF THE BAIER-KATKOV

FORMULA TO COMPUTE THE
RADIATION EMISSION

The BK method is based on classical trajectories of
ultrarelativistic particles. Therefore, a QED problem is
reduced to the solution of classical equations of motion of a

charged particle in crystalline field by integration along
the classical trajectory. Moreover, this method takes into
account the quantum recoil that is not negligible at ultra-
relativistic energies and thereby is applicable in the whole
energy range for photon energies ω, except the extreme
case when photon energy approaches to the particle energy,
i.e., ω ≅ ε (we are working a unit system for which
c ¼ ℏ ¼ 1).
The BK quasiclassical formula [28] can be written as:

dE
d3k

¼ α

4π2

Z Z
dt1dt2N̄21 exp ½ik0ðx1 − x2Þ�; ð10Þ

where N21 is the radiation polarization matrix, α is the fine
structure constant, k ¼ ðω;kÞ is the 4-vector of the photon
momentum including radiated energy ω and 3-momentum
k, k0 ¼ εk=ε0, where ε and ε0 ¼ ε − ω are the particle
energy before and after the photon emission, respectively,
x1;2 are the particle coordinate 4-vector.
In the approximation of small angles, Eq. (10) can be

written as [16,40]:

dE
d3k

∼
α

8π2
ε2 þ ε02

ε02
ω2C; ð11Þ

where

C ¼ jI⊥j2 þ γ−2
ω2

ε2 þ ε02
jJj2; ð12Þ

γ is the Lorentz factor.
Thereby, the evaluation of the radiated energy (1) is

reduced to the calculation of the integrals jI⊥j2 and jJj2. In
order to accelerate the numerical integration, one simplifies
the integrals through an integration by parts [16,40]:

J ¼
Z

tfin

tin
exp ½iϕðtÞ�dt ≈

XN
i¼1

exp ½iϕðt̄iÞ�

×

�
1

i _ϕ

����
ti

ti−1

þ ϕ̈

i _ϕ3

����
t̄i

2 sin ð _ϕΔt=2Þ
	
; ð13Þ

where ϕ ¼ k0xðtÞ, t̄i ¼ ðti−1 þ tiÞ=2 and N is the total
number of steps. A similar procedure can be implemented
for the integral I.
The result of integration leads to the radiation spectral

intensity dE=dω, namely the value that is usually measured
experimentally.
The Baier-Katkov method is specially designed for the

cases, when the energy of radiated photon is comparable
with the particle energy. For other cases such as transition
radiation or Cherenkov radiation, calculation approaches
based on classical electrodynamics can be applied. The
equations of classical electrodynamics are also applicable
to the cases of radiation in photonic crystals [57,58] and 2D
materials [59].

FIG. 2. Interplanar nuclear (top) and electron (bottom) densities
in a silicon (solid) and germanium (dashed) crystals between
(110) crystal planes.
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IV. CRYSTALRAD ALGORITHM AND FEATURES

A. General description

The CRYSTALRAD simulation code is an unification of the
CRYSTAL [34] simulation code and the RADCHARM++ [40]
routine. The CRYSTAL simulation code is designed for
trajectory calculations taking into account various coherent
effects of the interaction of charged particles (protons, ions,
electrons, muons, pi-mesons, and their antiparticles) with
straight or curved single crystals and different types of
scattering as described in Sec. II. The RADCHARM++ code
contains the routine to calculate single-photon radiation
spectra through the integration of the BK formula with the
algorithm presented in Sec. III, by using of charged
particles trajectories, calculated by the CRYSTAL code.
The program contains one-dimensional and two-

dimensional models that allow one modeling of classical
trajectories of relativistic and ultrarelativistic charged
particles in the field of atomic planes or strings, respec-
tively. The energy range accessible by the CRYSTALRAD

code is from 100 MeV for electrons/positrons as well as
1 MeV and higher for protons and ions. Indeed, in case of
lower energy for electrons or positrons quantum effects can
contribute significantly and the classical trajectory approxi-
mation fails to work. The restriction on the angles of
particle incidence with respect to the crystalline axes or
planes is no more than several degrees. Otherwise, the
longitudinal step becomes substantially smaller than the
interatomic distance, and both one-dimensional and two-
dimensional models are inapplicable. For calculation of
radiation spectra the crystal length is limited by the
requirement of single-photon emission, given by the total
probability of photon emission to be less than few tenths.
The algorithm for simulation of motion of particles in a

crystal is shown in Fig. 3. The trajectory of a charged
particle is calculated by numerical solution of the equations
of motion (1) by the fourth-order Runge-Kutta method
“3/8” rule [60,61], which gives the dependence xðzÞ, yðzÞ,
θxðzÞ, and θyðzÞ, where θxðzÞ ¼ dx=dz and θyðzÞ ¼ dy=dz
are the particle angles in a horizontal and vertical plane,
respectively.
Coulomb scattering is modeled taking into account the

suppression of incoherent scattering by the model [53]
(2)–(3), as described above. The simulated scattering
angles, denoted by ϑx, ϑy in Fig. 3, are added to the angles
of the particle, obtained by solving the equation of motion.
In addition to this, nuclear elastic, diffractive, and inelastic
scattering are simulated by the model [56] according to
Eqs. (7)–(9).
Geometry of a crystal is also included in the program,

namely crystal bending, the possibility of entry/exit
through its lateral surface, the influence of the miscut
angle [62,63], as well as a crystalline cut, which signifi-
cantly increases channeling efficiency [64,65]. A special
procedure allows one to vary one or more parameters by
specifying a table of values for them and performing

calculation for each set of parameters. Output files include
the values of horizontal and vertical coordinates and
particle angles at the entrance and exit of the crystal, as
well as the efficiency of channeling, the number of inelastic
scattering events, etc.
For the calculation of trajectories and scattering, the

following functions are used: interplanar potential, inter-
planar electrostatic field, nuclear and electron densities,
minimum ionization energy of an atom. All these functions
are stored as interpolation coefficients of cubic splines
[60,61] in the input file, which allows one-dimensional and
two-dimensional models to be specified for any mono-
crystal of any orientation without modifying the source
code. The interplanar potential and its derivative functions
were preliminarily calculated by using the Doyle-Turner
potential [48].

B. Implementation of MPI parallelization

One of the main advantage of the CRYSTALRAD simu-
lation code is the application of the message passing
interface (MPI) allowing one to carry out parallel calcu-
lations on clusters and supercomputers. Since the trajectory
of each particle is simulated independently, MPI paralle-
lization does not require a lot of communications. With the
help of the procedures MPI_COMM_SIZE and MPI_
COMM_RANK, each process receives equal parts of the
particles for simulations.
The uniqueness of each particle trajectory is ensured by

the individual initialization of the random number gener-
ator for each process, in which the process number is the
argument. Since MPI is designed for distributed memory
systems, all the input data (interpolation coefficients of the
main functions, etc.) are loaded into the RAM separately
for each process. In particular the first process reads all
the input data and then broadcasts these data to the other
processes by using the MPI_BCAST procedure.
The main limitations of linear scaling of performance is

the input procedure. However, since it is carried out only
once at the start of the program run, it does not contribute
considerably. Moreover, since simulations do not practi-
cally require interactions between different processes, the
productivity indeed increases almost linearly with their
number. Data exchange is performed only at the end of the
calculations by using the MPI_Reduce procedure, which
calculates the channeling efficiency, the fraction of inelastic
losses, and other data that are written to the output file.
Since it concerns only a few numbers, it practically has no
effect on performance.

C. CRYSTAL and RADCHARM++ unification

The code RADCHARM++ was included into the CRYSTAL

code as a subroutine. The input parameters of RADCHARM++
are arrays containing charged particle angles θx and θy
as well as scattering angles ϑx and ϑy for each trajectory step.
In addition the spectra parameters, namely spectrum energy
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range and step are also uploaded to RADCHARM++.
The output result is the spectrum for each trajectory, being
transferred as an array to theCRYSTALcode and then averaged
over all the trajectories.
In order to verify the validity of the CRYSTALRAD code,

the radiation spectra in the experiment [19] at Mainz
Mikrotron MAMI have been simulated for different
alignment of a silicon bent crystal. The experimental setup
at MAMI is well described in papers [19,43,66]. In the
experiment, a 855 MeVelectron beam with low divergence,
i.e., considerably less than the critical channeling angle,
was directed through a bent crystal, aligned along its (111)
bent crystal planes. After interaction with the bent crystal,
charged particles were deflected by amagnetic field and then
registered by Si microstrip detectors [19,43,66]. Photons
produced inside the crystal andmoving straightforwardwere

detected by a NaI scintillator detector coupled to standard
PMTs. The crystal was 30.5 μm thick with a bending radius
of 33.5 mm. The angular divergence of 855 MeV electron
beam was 30 μrad. The simulation results in comparison
with the experimental data are presented inFig. 4, confirming
the correctness of our simulations. In both simulations and
experiment, the crystal was aligned at 0 and 493 μrad with
respect to the beam direction, corresponding to channeling
and volume reflection orientations, respectively. Volume
reflection is the deflection of overbarrier particles occurring
in a bent crystal, when particle trajectory becomes parallel to
crystal planes in the crystal volume due to the bending
itself [39].
Furthermore, we simulated the expected radiation

spectra for experimental cases presented in [45,67]. The
scope of the experiment [45,67] was the measurement of

FIG. 3. The algorithm of CRYSTALRAD simulation code.
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channeling characteristics, i.e., channeling efficiency and
dechanneling length, in dependence on the radius of bent
crystals. Since channeling radiation strongly depends on
these characteristics, a study of channeling radiation spectra
vs crystal radius could be relevant for the development of
novel x-ray and gamma radiation sources. This dependence
has been obtained by using CRYSTALRAD simulation code
for the silicon sample. The experimental setup was the
same as in the experiment [66] with the replacement of the
Si microstrip detector with a LYSO screen. In details, a
855 MeV electron beam impinged on a 15 μm thick Si
crystal bent along its (111) planes. The angular divergence

of the beam was 21.4 μrad, being one order on magnitude
less than the critical channeling angle. The simulated spec-
tra in dependence on the radius of curvature of the crystal,
divided by the critical channeling radius Rcr ¼ E0=pv,
where E0 is the maximal interplanar electric field, are
presented in Fig. 5. The critical radius Rcr represents the
minimal radius of curvature to still have channeling.
In Fig. 5, one may notice the CR peaks at the energy of

the order of 2 MeV (as in Fig. 4), while the radiation
intensity increases with the radius of curvature, R. Such
behavior would be interesting to investigate in future
experiments.

V. CONCLUSIONS

The CRYSTALRAD simulation code has been introduced.
It is designed for simulation of coherent effects of charged
particles interaction with crystals, accompanied by radia-
tion generation. The code is based on classical trajectories
simulations and calculation of radiation spectra by the
Baier-Katkov quasiclassical method. The code includes a
wide number of features, allowing one to carry out
simulations in crystals of any material and any crystal
lattice type and shape, namely can be used to simulate
straight, bent and periodically bent crystals. Moreover, the
option of variation of initial parameters during one simu-
lation run is included in the code, to reveal the dependence
of the system on initial parameters as well as to solve the
optimization problem. In addition, MPI parallelization
allows one to apply the simulation code on supercom-
puters. The limitations of the code are connected with the
minimal energy of particles to be 100 MeV for electrons/
positrons and with the constraint of spectrum calculation
being the single photon approximation, limiting the crystal
thickness by the radiation probability to be lower than
few tenths.
The CRYSTALRAD simulation code is the unification of

CRYSTAL and RADCHARM++ codes, already validated sep-
arately in past experiments, with improvement due to MPI
parallelization. An example of validation of CRYSTALRAD

simulated radiation spectra has been provided for the
experiment at Mainz Mikrotron MAMI where 855 MeV
electrons interacted with a 30 microns bent Si crystal.
Moreover, simulations of a possible experiment to study
channeling radiation vs. curvature radius at the Mainz
Microtron MAMI have been carried out for a silicon bent
crystal of 15 microns thickness. The radiation intensity
increases with the radius of curvature. This would be
interesting to investigate in view of application for a novel
type of gamma-ray source based on bent [19] or periodi-
cally bent [21–23] crystal.
In conclusion, the CRYSTALRAD simulation code can be

applied for the simulations of a wide number of applica-
tions of crystal for both beam steering and radiation in a
wide range of the energies of modern accelerators, from
hundreds of MeV up to tens of TeV.

channeling

VR

1 2 3 4 5 6 7 8
0.0000
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E
dN

/d
E

FIG. 4. Simulated (points) and experimental (lines) radiation
spectra of 855 MeV electrons in Si bent crystal 30.5 μm thick
with 33.5 mm bending radius for crystal-to-beam perfect align-
ment 0 μrad (channeling) and at 493 μrad (volume reflection).
The beam angular divergence is 30 μrad.

FIG. 5. Simulated radiation spectra of 855 MeV electrons in a
Si bent crystal 15 μm thick in dependence on the ratio of the
crystal radius and its critical value. The beam angular divergence
is 21.4 μrad, the angle of crystal alignment is 0.
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