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Abstract

Case-control genome-wide association (CC-GWAS) studies might provide valuable clues to the
underlying pathophysiologic mechanisms of complex diseases, such as neurodegenerative disease,
cancer. A commonly overlooked complication is that multiple distinct disease states might present
with the same set of symptoms and hence share a clinical diagnosis. These disease states can only
be distinguished based on a biomarker evaluation that might not be feasible in the whole set of
cases in the large number of samples that are typically needed for CC-GWAS. Instead, the
biomarkers are measured on a subset of cases. Or an external reliability study estimates the
frequencies of the disease states of interest within the clinically diagnosed set of cases. These
frequencies often vary by the genetic and/or non-genetic variables. We derive a simple
approximation that relates the genetic effect estimates obtained in a traditional logistic regression
model with the clinical diagnosis as the outcome variable to the genetic effect estimates in the
relationship to the true disease state of interest. We performed simulation studies to assess
accuracy of the approximation that we’ve derived. We next applied the derived approximation to
the analysis of the genetic basis of innate immune system of Alzheimer’s disease.
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INTRODUCTION

Case-control genome-wide analyses scan (CC-GWAS) is a tool that is widely used to
elucidate the genetic basis of complex diseases. A common complication is that multiple
distinct disease states share the observed symptoms and hence the clinical diagnosis.
Frequencies of the disease states within the clinical diagnosis often vary by the key
variables. If the disease states have distinct genetic basses, the analyses with a clinical
diagnosis as an outcome variable might be substantially biased (Carroll et al, 2006).

The specific example that motivated this study is the analyses of the genetic susceptibility to
Alzheimer’s disease (AD). The clinical diagnosis of AD is typically made based on a set of
descriptive criteria and as the result the diagnosis is heterogeneous. One of the major sources
of heterogeneity is whether or not evidence for amyloid is present when measured by the
positron emission tomography (PET). Recent biomarker studies (Salloway and Sperling,
2015) estimate that 36% of ApoE &4 non-carriers and 6% of ApoE &4 carriers diagnosed
with AD do not have evidence for amyloid as measured by PET.

It is possible that the AD-symptoms with and without amyloid evidence have the same
genetic basis and hence the clinical diagnosis is a surrogate of the disease states. It is
possible, however, that the AD-symptoms underlined by the amyloid evidence and the AD-
symptoms with no amyloid evidence have distinct genetic bases. We are interested to
examine the role of the genetic variants serving the innate immune system in susceptibility
to AD, i.e. the AD symptoms underlined by the amyloid deposition. We, hence, define the
disease states to be: 1) disease state of interest: AD symptoms with amyloid evidence; 2)
nuisance disease state: AD symptoms with no amyloid evidence; and 3) healthy control: no
AD symptoms and we assume no amyloid evidence. We derive the theoretical
approximation that provides a simple and general relationship between the parameter
estimates obtained in a model with the clinically diagnosed disease status as an outcome
variable and the estimates in a model with the disease states as an outcome. The derivation is
based on Kullback-Leibler divergence (Kullback, 1959).

Our paper is organized as follows. First, in the Material and Methods section we present the
setting, notation, and the proposed approximation for various models. Next, in the
Simulation Experiments section we describe the empirical studies that are conducted to
compare the resulting performance of the derived approximation that we derived relative to
the empirical estimates. We then compare the estimates in a practical setting of an
Alzheimer’s disease study that aims to investigate the genetic basis of innate immune system
in the relationship to the AD symptoms underlined by amyloid pathology. We conclude our
paper with brief Discussion.

MATERIALS AND METHODS

We define G to be the genotype of single nucleotide polymorphisms (SNPs) measured at
multiple locations. Let X'and Zbe the environmental variables that might interact. We
assume that the genotype is independent of the environment and follows Hardy-Weinberg
equilibrium model Q(g; 6), where @is the frequency of the minor allele.
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We define DL be the observed clinical diagnosis that is inferred based on a set of
descriptive criteria that characterize symptoms. Let D denote the true disease states, where D
= 1 indicates the disease state of interest and D = 1* is the nuisance disease state. It might
not be possible to measure D on the whole set of cases in a GWAS, instead D s available on
a subset or the frequencies of D within the clinically defined set of cases are reliably
estimated in an external reliability study. We define the clinical-pathological diagnosis
relationship using =(X) = pr(D = I‘DCL = 1,X), which is the frequency of the disease state of
interest within the clinically diagnosed set and the frequency varies by X In the context of
AD study, pr(D = 1#|p°L = 1,x) =1—17(X),

pr(D=0[p =1,x) =0, pr(D = 1*|DCL= 0,X)=pr(D = 1|DCL =0,X)=0and

pr(D = 1%

D =0,x) = pr(D = 0| D" = 0,X) = 1. We define the probabilities of the clinical

diagnosis in the population to be z ., = pr(D“" = dd). Similarly, we let the frequencies of
d

the true pathologic state in the population to be z, = pr(D = d).

We described the relationship between the clinical diagnosis and the disease states in the
context of Alzheimer’s disease. The formulation can be easily extended to other settings. For
example, recent biomarker studies described the disease states of breast cancer by
HER/PR/ER status. The status might only be measured on subset of the cases. According to
the Surveillance, Epidemiology, and End Results (SEER) database, the frequencies of the
disease states by HER/PR/ER status vary by age and race/ethnicity. Hence in the context of
breast cancer the relationship pr(D = aip® = 1, x) is a function of X = {age, race/ethnicity}.

For some of the diseases, the disease states can be inferred based on the mutation pattern.
The Cancer Genome Atlas, for example, archives information about mutation pattern on
cancer patients. Disease states of a particular cancer type might be inferred based on
mutation patterns. In this setting, the frequencies of the disease states within the clinically
diagnosed set of clinically diagnosed cases are a function of the genetics, e.g.

prD= dap¢rt =1, G).

For clarity of presentation we assume that genotype is binary to indicate presence of a minor
allele and follows Hardy-Weinberg equilibrium model, environmental variables X and Zare
Bernoulli with frequencies nxand 7 respectively. In the Appendix we discuss how to
extend the approximation to the categorical and continuous variables.

We will collectively refer to the coefficients in the disease risk model for the disease state of
interest as B, in to the nuisance disease state as A and in the model with the clinical
diagnosis as an outcome as I'.

Pc: We first consider a setting when only the genetic variable G is in the risk model, i.e. the
true disease risk model is
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prB’A(D = 1|G)

pry4(D =0|G) Pot b @)

prB’A(D = 1*|G)
pry oD = 0|G)

=ay+tagXG;, (2

while the model used is the usual logistic regression model with the clinical diagnosis as an
outcome variable, i.e.

pr(D" = 1|G)

logi ————
prr(DCL =0 | G)

=70+trgXG. (3)

Derivations provided in Appendix Al show that

7o ~ log{exp(B,) + exp(ay)};  (4a)

rGR log{exp(ﬁo + /}G) + exp(aO + aG)} - log{exp(ﬁo) + exp(ao)}

exp(fo)
exp(f) + exp(ay + ag

~ log{exp(ﬂo) + exp(ao + aG)} - log{exp(ﬂo) + exp(ao)} + ) X Bg-

(4b)

From (4a) and (4b), we derive that

B, ~ log{exp(y,) — exp(ay)};  (4c)

B ~ log{exp(y, +7.) — exp(ay + ag)} — log{exp(y,) — exp(ay)}.  (4d)
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Appendix A3 describes how to obtain Sy, Ba, ag, ag assuming estimates of yp, ¥ are
available from the usual logistic regression and reliable estimates of
7=1(1) X pr(X = 1) + 7(0) X pr(X = 0) and 7r; are available in the literature.

Model 2.

B and Bx: We next consider a setting when the genetic variable G and an environmental
variable Xare in the risk model, i.e. the true disease risk model is

prg 4(D = 1|G, X)
pry (D =0|G,X)

=pPo+ P XG+ Py xX; (5)

prp (D =1%|G,X)
prg 4(D = o\G, X)

=ayg+agXG+ayxX; (6)

while the model used is

pr(Dt =1 |G, X)
pro(d =0|G, %)

log =7y +trgXG+yyxX. (7)

Derivations provided in Appendix A2 show that

7o ~ log{exp(B,) + exp(ay)};  (8a)

rGR 0.5 x Zx[log{exp(ﬂo + ﬂG + ﬁX X x) + exp(aO tagtayX x)} - log{exp(ﬂo + ﬂX X

X) +6Xp<(lo +CIX><X)}]

~ 0.5 % Z [log{exp(B, + By X x) + exp(ay + ag + ay X x)} — log{exp(B, + By X x) +

exp(ay + ay X x)}| + 0.5 x Z

exp(B, + By X x)
N exp(fBy + By X x) + exp(ay + ag + ay X x)

X ﬂG;

(8b)
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Ty ® 0.5x zg[log{exp(ﬁo + /)'X + ﬁG X g) + exp(ao +ay+asX g)} - log{exp(ﬂo + /}G X
g+ exp(ao +agX g)”

~ 0.5 % Z [log{exp(B, + B % g) + exp(ay + ay + ag x g)} — log{exp(B, + S X g) +
g

exp(By+ P % 8)
N exp(By + g X g) + exp(ay + ay + ag X g)

exp(ag+ag % g)}] +O.5><E X By -

(8¢)

Model 3.
Bc: Bx, Bz, and Bx xz.- A model with interaction between the environmental variables Xand
Zis discussed in Appendix.
Model 4.
ﬁGI, ﬁGz and ﬁcl X Gy A model with gene-gene interactions is discussed in Appendix.
Remarks:

1. Model 1, equation (4b). If 5, = a; =0, theny = 0.
2. Model 2, equation (8b). If ;= a; =0, theny; = 0.
3. Model 2, equation (8c). If py = ay =0, theny, = 0.
4. Remarks 1-3 describe when the usual logistic regression models with the clinical

diagnosis as an outcome variable correctly estimate the null effect.

5. The equations that we derived apply to several possible likelihood functions. For
example, parameter estimates in Model 3 can be estimated based on the usual

logistic regression model, i.e. the probability of the form er(DCLIG, X,z)orina
pseudolikelihood (Spinka et al, 2005; Lobach et al, 2018) prr(DCL, GIX,Z,6=1),

where, & = 1 is an imaginary indicator of being selected into the study. All the
derivations apply to both models.

SIMULATION STUDIES

False positive rate

We first perform a series of simulation experiments to examine a false positive rate in the
estimates of B when the data are simulated from model (1)—(2), but the parameter estimates
are obtained from model (3). We define the false positive rate to be the fraction of p-
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values<0.05 across 10,000 simulated datasets in the usual logistic regression analyses as an
outcome variable, i.e. (3), when in fact s, = 0. We simulate the data using model (1) with

coefficients g, = 0.5, Bs=0, ag=log(l) =0, log(1.5) = 0.41, log(2) = 0.69. We next

estimate parameters using model (3). Table 1 presents false positive rates in datasets with
ng = n, = 3,000; 10,000. When the genetic effect is not associated with the clinical diagnosis,

the false positive rate is nominal, i.e. is nearly 0.05. When as increases, the false positive
rate gets inflated, e.g. when a; = log(1.5) = 0.41, the false positive rate is 0.72. Increase in

sample size did not result in decrease of the false positive rate.

Approximation vs. empirical estimates

Model 1

Model 2

We next perform a series of simulation experiments to assess the magnitude of bias and the
approximation to the relationships that we’ve derived. First, we estimate the bias empirically
as the average across 500 simulated datasets where the data are simulated using the true
model (1)—(2), (5)-(6), (A3)—(A4) based on coefficients Band A, but estimate the
parameters I" in the usual logistic regression model (3), (7) and (A5). We then compare these
averages to the approximations that we’ve derived.

We simulate genotype (G), age (A), sex (S), ApoE &4 status to be Bernoulli with frequencies
0 045 O 6.4 1IN the context of previous notations, X'is the ApoE €4 status and Zis a set

consisting of G, A, S. We then simulated the clinical diagnosis status D¢ according to the
models (3), (7) and (A5) and the true disease states D according to model (1)-(2), (5)-(6),
(A3)—(A4). In all simulations we let 6, = 0.10, 6, = 0.50, 65 = 0.52, 6, = 0.07.

We first consider models with one genetic variable. We fist simulate the data using model
(1)-(2) and estimate parameters in the logistic model (3). We set s, = 0.5,

B =log(1) =0, log(1.5) = 0.41, log(2) = 0.69, log(2.5) = 0.92, log(3)=1.1,
ag =log(l) = 0, log(1.5) = 0.41, =0.69 and simulate datasets with 3,000 cases and 3,000

controls. Table 2 presents empirical estimates of S5 and the approximation (4b). Across all
values of Bz and ag, the approximation (4b) is accurate relative to the empirical estimate.

We first consider models with one genetic variable and one environmental variable. We next
generate data using models (5)-(6) but estimate parameters using model (7). We let
Boy=0ay=0.5,

ﬁG =log(1) =0, log(1.5) = 0.41, log(2) = 0.69, log(2.5) = 0.92, log(3) = 1.1, /364 =ag = log(8),
ag = log(1) =0, log(2) = 0.41, log(3) = 0.69, log(4) = 1.1

and generate datasets with 3,000 cases and 3,000 controls. Approximations and the
empirical estimates for s shown in Table 3 demonstrate that the approximation (8b) is
accurate relative to the empirical estimates. The empirical estimate of y e is 2.09, while the

approximation is 2.08.
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We next consider a model with one genetic variable and two environmental variables that
interact. We next simulate data using models (A3)-(A4) and estimate parameters using
model (A5), with the approximation derived in (A6a—c).

Setting 1.—We first consider a setting when the genotype is not associated with the
nuisance disease (ag = 0) and when 4 and A x e4 are not associated with the nuisance
disease status (a., =0, a;=0, a,, ., =0). We simulate the clinical diagnosis and disease

states with coefficients
By= —1. By =10g(0.92) = = 0.08, B, = log(8) =2.1, B, = log(2) = 0.69,

/)’G = log(1), log(1.5), log(2), log(2.5), log(3), /}A wed = log(1), log(2), log(3), log(3),

an= = 1, ag= 10g(0.92), Ay = 0, ay= log(2), ag =0, Apes = 0.

Figure 1 presents biases in estimates of B¢ (panel A), B4 (panel B), Bs (panel C), , (panel
D) and $, .4 (Panel E) in studies with 3,000 cases and 3,000 controls; values of g, ., are

shown along the x-axis and values of B are indicated by color. Figure 1 panels A and D
show that bias in the estimates of Sgand s, can be substantial with largest bias of —0.06;

panel E shows that bias in g, . ., is notable in this case ranging from 0.01 to —0.06;

estimates of 84 and Ssare nearly unbiased consistent with the theoretical observations that
the null effect in some settings can be estimated with no bias even in a misspecified model.
We note that magnitude of bias in ﬁAG and ﬁ}?e;‘ increases as the true value of the coefficient

increases.

Shown on Figure 2 are the empirical bias (Emp) and the approximation (AX) of bias in Bg
indicated by color with values of g, ., along the x-axis and values of B¢ along the panels.

The difference between the Emp and AX starts at ~ 0.6 when Bs = 0.41 and increases to »
1.2 when Bs = 1.1. Bias of ﬂAS and B\A is approximated to be <0.0001. Shown on Figure 3 are

Emp and AX of estimates of s_,, and Figure 4 is presenting estimates of 8, ..

Setting 2.—We next simulate datasets with 30,000 cases and 30,000 controls in the Setting
1. Supplementary Figure 1 shows that biases in the estimates noted in Setting 1 persists for
larger sample sizes.

Setting 3.—We next consider a setting when the genotype and environment are associated
with the nuisance disease state (ag = /og(1.5),a,, = log(2)), but no interaction a, , ., = 0.

We next change the parameters for the nuisance state to be
ay= — 1, ag= l0g(0.92), Ay = log(2), ay, = log(2), ag = log(1.5), Apsees = 0 and all other

parameters as in Setting 1. Shown on Supplementary Figure 2 are biases in the estimates of
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the parameters of interest that reach —1.4 for ﬁAG are near —0.5 for /§€\4, and are up to —-0.15
for fy w ea

Setting 4.—We next consider a Setting 1 but with more common disease of interest, i.e. Gy
= 1.5. Supplementary Figure 3 is showing empirical bias in all estimates, which can still be
substantially biased.

Setting 5.—We next consider a setting where the genetic variable is associated with the
nuisance disease state (a; = log(2)) and there is a significant A x e4 interaction

(a4 « e = l0g(2)). We next change the parameters for the nuisance state to be
ay=0.5, ag = 10g(0.80), a , = log4), a, = log(3), ag=108(2), a, , 4 =108(2). Figure 5
presents biases in the estimates and Supplementary Figures 4-5 show the empirical

estimates and the approximations.

Supplementary Figure 7: Frequency of the disease state of interest (O = 1) and the nuisance
disease (D= 1*) when g, = 1.5, fig = 10g(0.80), f_4 = log(8), B, = log(3),

B = log(1), log(1.5), log(2), 10g(2.5), l0g(3), P ; o o4 = log(1), log(2), log(3), log(3),
ay = 0.5, ag= log(0.80), Ay = log(4), ay= log(3), aG= log(2), Ap e = log(2),
0 =0.10, 0, = 0.50, 8¢ = 0.52, 6, = 0.07. Shown along the x-axis are values of Sz and

indicated by color are values of g, . We note that these frequencies are similar to those in

context of Alzheimer’s disease.

ROLE OF THE GENETIC VARIANTS SERVING INNATE IMMUNE SYSTEM IN
SUSCEPTIBILITY TO ALZHEIMER’s DISEASE

We apply the usual logistic analyses with the clinical diagnosis as an outcome variable to a
dataset collected as part of the Alzheimer’s Disease Genetics Consortium. We next apply the
approximations (7)-(10) and (11)-(14) to see how the genetic estimates change when
presence of the nuisance disease state is recognized.

We mapped Illumina Human 660K markers onto human chromosomes using NCBI dbSNP
database (https://www.ncbi.nlm.nih.gov/projects/SNP/). Chromosomal location, proximal
gene or genes and gene structure location (e.g. intron, exon, intergenic, UTR) has been
recorded for all SNPs. From these data we inferred 165 SNPs to reside in genes serving
innate immune system.
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The dataset consists of 727 controls and 2,797 cases diagnosed with AD.

We are interested to examine a relationship between the pathologic disease state of AD
characterized by presence of amyloid deposition and each of the 165 SNPs serving the
innate immune system. We include ApoE &4 status, age, and sex in the model with an
interaction between ApoE and age. The genetic variant is modeled as a Bernoulli variable as
an indicator of presence or absence of a minor allele. Age is Bernoulli as well that
corresponds to a median split in the dataset.

Table 4 presents estimates of effects of the SNPs obtained using the usual logistic regression
model with the clinical diagnosis as an outcome variable in a univariable model (3) and with
adjustment for SNP + ApoE &4 + Age + Sex (7); and the corresponding models (1-2) and
(5-6) that recognize presence of the nuisance disease state. In the univariable setting the
empirical bias is estimated as the difference between the main effect estimates obtained in
model (3) and model (1-2), and the approximation to the bias is estimated as derived in (4b).
In the multivariable setting, the empirical bias is the difference between main effect
estimates obtained in model (7) and (5-6), and the approximation is as derived in (8b).

First shown in Table 4 are 16 estimates with p-value<0.05 after the Benjamini-Hochberg
multiple testing adjustment in a univariable model (3) and then added are 13 SNPs with p-
value <0.05 in a univariable model (1-2). Across all these SNPs, the approximation was
accurate relative to the empirical bias.

We describe the findings further in Web-based Supplementary file. In section “Alzheimer’s
disease study” we describe which variants have been previously reported in the literature.
We also discuss the 11 variants from Table 4 relevant to amyloid protein and 5 variants from
Table 4 relevant to tau protein.

DISCUSSION

We’ve examined a situation when multiple disease states share observed symptoms and
hence the clinical diagnosis. Both theoretically and in extensive simulation studies we
observed that the magnitude of bias can be substantial in the situations when the frequency
of the nuisance disease state within the clinically diagnosed set varies by the key variables.
We derived a simple and general approximation to the relationship between the genetic
effect estimates that use the clinical diagnosis as an outcome variable and the estimates that
recognize the presence of the nuisance disease state.

While the effect of misclassification of the disease status has been examined extensively in
statistical literature (Carroll et al, 2006), we extend the literature by deriving a simple and
general approximation to the bias in a multivariable setting. The approximation provides a
simple formula to assess how elastic the estimates of interest are to the values of parameters
in the nuisance risk model. The regression coefficients or plausible ranges for the
coefficients of the nuisance disease state are often available in the literature.

In the derivations we assume that the link functions and disease risk models for the clinical
diagnosis and the disease risk are the same, for example, logit and additive with the same
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variables. The derivations are readily generalizable to the settings when the link function is
the same, but the disease risk models are different. The generalization to the different link
functions, however, is out of the scope of the current paper and requires additional
derivations and is subject to future studies.

Simulation studies that we conducted showed that when the presence of the nuisance disease
is ignored, the genetic effect estimates can be biased in either direction. These biases can be
substantial in magnitude leading to false positive and false negative results. The magnitude
of bias in the genetic effect estimates is a function of the frequencies of the disease state of
interest and the nuisance disease state in the population (through the intercept), coefficients
of the genetics in the nuisance disease state model, and coefficients of the environment both
in the disease state of interest and the nuisance disease state. The interplay between all of
these parameters in the form of the approximation that we’ve derived determines the
magnitude and directionality of the bias. Importantly, the magnitude of bias persists in large
sample sizes.

The approximation relies on the external information published in the literature. In situations
when the external estimates are deemed not reliable, we advocate for sensitivity analyses by
varying the external estimates and assessing the change in the genetic estimates of interest.
The form of the approximation that we’ve derived is simple and such analyses can be easily
performed. For example, the parameters in the nuisance model can be set on a plausible
interval and the degree of change in the estimates of interest can then be assessed. Often in
practice the actual values of the coefficients are not of interest per se. Instead, what is of
interest is the relative order of the genetic variants according to their magnitude of effect.
Hence it might be useful to assess how the relative order of the estimates changes when the
nuisance parameters are varied on a plausible range.

While our study is motivated by the setting of Alzheimer’s disease, the results are readily
applicable for other complex diseases. For example, Manchia el al (2013) examined the
effect of heterogeneity, i.e. presence of non-cases, in the context of diabetes and showed that
ignoring the heterogeneity leads to reduced statistical power to detect an association and also
reduced the estimated risks attributable to susceptibility alleles.

The approximation that we’ve derived is widely applicable in other areas of research where
the diagnosis is heterogeneous. For example, when disease states correspond to subtypes of
a complex disease. We also see the application to the analyses of Electronic Health Records,
where the disease status might be subject to exposure-dependent differential
misclassification (Chen et al, 2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Al. Approximation using Kullback-Leibler divergence

We show schematics of the derivations based on Model 3, the other models can be derived
accordingly. We denote the model the true model (9)-(10) based on probability

cL cL cL cL
pre(DMIG, X, Z) of pre(D ,GIX,Z,5=1)aSQB,A(D ,G,X,Z):prB’A(D LGIX,Z,6=1).

Similarly, we denote model (3) with (4) as QF(DCL, G.X.Z) = prDIG. X, 2).

Kullback (1959) showed that parameters I converge to values that minimize Kullback-
Leibler divergence criteria between the two models, specifically
0. A(DCL, G. X, z)

y = argminiE E log\ ——F——+————
GX.2"pCLlig x,7 QF(DCL,G,X,Z)

Considerable algebraic derivations arrive to the following system of equations to be solved
for parameters T’

|prp oD = 11G.X.2)+ prg (D =1%1G,X.2)| x pr(G)

Eg x.z

er(DCL =1 |G, X, z)

9 exp(y0+yX><X+yG><G+}/Z><Z+yXXZ><X><Z)

X
‘)F1+exp(;/0+;/X><X+yG><G+7Z><Z+yXXZ><X><Z)

pry, 4(0=0|G.X.2) % pr(G)

prp0<t = O‘G, X,7)

% 0 1 -0
W1t explyy + 1y XX +7GXG+1,XZ+7y o , XXX Z)

(A1)

exp(y0+}/X><X+yG><G+yZ><Z+yXXZ><X><Z)

Define M(X, G, Z;T) = pr(G) x Then (A1)

Lt exp(yy+ry XX +7oXG+r,xZ 41y, XX XZ)

becomes
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Prg A(D:llG,X,Z)+prB A(D:l""lG,X,Z)
Eg y X xMX.G.z:D)| = —
+2 er(D :1‘G,X,Z)
prp 4(D=01G.X.2)
er(DCL =0 ‘ G.X, z)
pr (D=1|G,X,Z)+pr (D=1*‘G,X,Z)
Eg y ,ZXM(X.G.Z:T) B.A o B.A
X prD =1|G,X,Z)
pry A(D=O|G,X,Z)
B CL _ =0
pr0t =0lG.x.2)
pr (D=1|G,X,Z)+pr 0 =1%G,X,2)
Eg y ,|GXM(X.G.Z:T) B.A ” B.A
»As prpD =1‘G,X,Z)
pry A(D:O‘G,X,Z)
B CL _ =0
prr(D =0(G,X,2)
or (D=1‘G,X,Z)+pr (D =1%|G,Xx,2)
Eg x 7| XXZXM(X.G.Z:T) B.A B.A

pre0t =1 ‘G, X,7)
g A= O‘G,X,Z)

-0
pre0<t = O|G, X,7)
Values of T" such that
prg 4D = 1‘G,X,Z)+pr3 AD=15G.X.2)  prp =0‘G,X,Z)
’ CL : =— L =1
prp@©t = I‘G,X,Z) prp@t = 0|G, X.7)

for all G, X; Zsolve the system of equations (Al).
By definition,
7G=025% Y [logit{prr(DCL = 1|G =1,X=xZ= z)} - logit{prr(DCL —1lg=0x

X,z
=x,Z=72)}].

With Taylor series expansion around SBs = 0 we arrive at (12a). Derivation for the other
parameters is similar. If X'is continuous, then e.g.,
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. CL . CL
yX=0.5XZ[log1t{prr(D =1 G=g,X=x+1,Z=0)}—logtt{prr(D =11G=gX=
8

xZ=0)}].
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Figure 1.

Empirical biases in estimates of f;, 31, B¢, By B4  ea @Cr0ss 500 datasets with 3,000 cases

and 3,000 controls when the disease states are simulated according to risk model (1)-(2), but
the parameters are estimated using model (3). Here the genotype, ApoE &4 status and A x e4
are not associated with the nuisance disease state. Genotype, age, sex, ApoE &4 status are
simulated to be binary with frequencies 6, = 0.10,6,, = 0.50,6¢ = 0.52,6 , = 0.07. The disease

states are then simulated according to risk model (1)-(2) with
By= —1,p¢=10g(092) = - 0.08, 5_, = log(8) =2.1, f, = log(2) = 0.69,

ﬂG = log(1),log(1.5),l0og(2),log(2.5),log(3), N ed = log(1) = 0,log(1.5) = 0.41,1log(2) = 0.69,
log(2.5) =0.92,

ay= —1,ag=10g(0.92),a 4 = 0,a, = log(2),a;=0,a, ., =0. Valuesof g, _, arealong

the x-axis and values of B¢ are indicated by color.
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Figure 2.

Empirical bias (Emp) and bias approximated by (A6b)(AX) in B estimates when the data
are generated according to disease states as in (A3)—(A4), but the parameters are estimated
in the model (A5). Empirical estimates are the averages 500 datasets with 3,000 cases and
3,000 controls. Genotype, age, sex, ApoE &4 status are simulated to be binary with
frequencies 6, = 0.10,6,, = 0.50,6 = 0.52,6,_, = 0.07. The pathologically defined disease

states are then simulated according to risk model (A3)-(A4) with Gy = -1,8s= log (0.92) =
—0.08,8c4 = 10g(8) = 2.1,84 = log(2) = 0.69,85 = log(1) = 0,/o9(1.5) = 0.41,/09(2) =
0.69,/09(2.5) =0.92,/09(3) = 1.1,84 x 4 = 109(1) =0,/09(1.5) = 0.41, log(2.5) =0.92,aq =
-1,as5=109(0.92),ac4 =0,a4 = l09(2),a 4= 0,a4x & = 0. Values of g, ., are along the x-

axis and empirical estimates are shown in blue, approximations (A6a—c) are in red.
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Empirical bias (Emp) and bias approximated by (A6b)(AX) in B4 estimates when the data
are generated according to disease states as in (A3)—(A4), but the parameters are estimated
in the model (A5). Genotype, age, sex, ApoE €4 status are simulated to be binary with
frequencies 6, = 0.10,6,, = 0.50,6 = 0.52,6,, = 0.07. The pathologically defined disease

states are then simulated according to risk model (A3)-(A4) Gy = —1,8s= 109(0.92) =
—0.08,8.4 = l0g(8) = 2.1,84 = log(2) = 0.69, B = log(1) = 0,/09(1.5) =0.41,/09(2) =
0.69,/09(2.5) = 0.92,/09(3) = 1.1,B4 x 4 = l09(1) =0,/09(1.5) = 0.41,/09(2) = 0.69,/09(2.5) =
0.92, ag=-1,a5= 109(0.92),ac4 = 0, ag = 109(2), ag=0,a4x 4 = 0. Values of B4 x « are
along the x-axis and empirical estimates are shown in blue, approximations are in red..
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Figure 4.
Empirical bias (Emp) and bias approximated by (A6b)(AX) in B4 x « estimates when the

data are generated according to disease states as in (A3)-(A4), but the parameters are
estimated in the model (A5). Genotype, age, sex, ApoE &4 status are simulated to be binary
with frequencies 6, = 0.10,6, = 0.50,6¢ = 0.52,6,_, = 0.07. The pathologically defined

disease states are then simulated according to risk model (A3)—(A4)
By= —1.pg=108(092) = —0.08, f, = log(8) = 2.1, §, = log(2) = 0.69,

ﬁG =log(1) = 0,log(1.5) = 0.41,log(2) = 0.69, log(2.5) = 0.92,l0g(3) = l.l,ﬂA « 4= log(1) =0,
log(1.5) = 0.41, log(2) = 0.69, log(2.5) = 0.92,

ay= — lLag=10g(0.92),a , = 0,a, = log(2),a;=0,a, . ., =0.Values of B4« « are along

the x-axis and empirical estimates are shown in blue, approximations are in red..
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Figure 5.

Empirical biases in estimates of f;, 5,4, B By B4 « s 2Cr0ss 500 datasets with 3,000 cases

and 3,000 controls when the disease states are generated as in (A3)-(A4), but the parameters
are estimated in the model (A5). Genotype, age, sex, ApoE &4 status are simulated to be
binary with frequencies ¢, = 0.10,6,, = 0.50,6¢ = 0.52,6,, = 0.07. The pathologically defined

disease states are then simulated according to risk model (1)-(2) with
By =15, =108(0.80), f 4 = log(8), f, = log(3),

B =log(1) = 0,log(1.5) = 0.41,1l0g(2) = 0.69,10g(2.5) = 0.92,l0g(3) = 1.1, f,, 4 =log(1) =0,
log(1.5) = 0.41,log(2) = 0.69, log(2.5) = 0.92,

ay = 0.5, a5 =10g(0.80), a4 = log(4),a, = log(3),a; = log(2),a, \ 4 =l0g(2). Values of

Bax « are along the x-axis and values of B are indicated by color.
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Table 1:

False positive rate defined as the proportion of p-values<0.05 across 10,000 simulated datasets in the usual
logistic regression analyses as an outcome variable (3), when in fact Bz = 0 and the data are generated from

(1)-(2). We let g, = 0.5, f; =0, a; = log(1) = 0, log(1.5) = 0.41, log(2) = 0.69.

ac= | Log(1)=0 | Log(1.5)=0.41 | Log(2) = 0.69
ng=n; = 3,000 0.052 0.72 0.99

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

ny=n;= 10, 000

0.048

0.79

0.99
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Empirical estimates of Sgand guproximation (4b). The data are simulated from models (1)-(2) and is
estimated using model (3). Empirical estimates are the averages across 500 datasets with 3,000 cases and
3,000 controls. We let 5, = a; = 0.5,

Table 2:

ﬁG =log(1) =0, log(1.5) = 0.41, log(2) = 0.69, log(2.5) = 0.92, log(3) = 1.1,
log(2) = 0.41, log(3) = 0.69, log(4) = 1.1.

Ao
ag
Log(1)=0 | Log(1.5)=0.41 | Log(2)=0.69 | Lo0g(2.5)=0.92 | Log(3)=1.1
Log(1)=0 0.003, 0 0.23, 0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69
Log(2)=0.41 | 0.41, 0.41 | 0.57, 0.56 0.70, 0.69 0.82, 0.81 0.92, 0.92
Log(3)=0.69 | 0.70, 0.69 | 0.82, 0.81 0.93, 0.92 1.0, 7.0 11,11
Log(4)=1.1 | 0.93, 092 | 1.02, 1.01 11,11 12,12 13,13
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Empirical estimates of y and approximation (8b). The data are simulated from models (5)-(6) and is

Table 3:

Page 22

estimated using model (7). Empirical estimates are the averages across 500 datasets with 3,000 cases and

3,000 controls. We let 5, = a; = 0.5,

ﬁG = log(1), log(1.5), log(2), log(2.5), log(3),

Pea= ey =108(®),

ag = log(1), log(2), log(3), log(4).

Bo
ag
Log(1)=0 | Log(1.5)=0.41 | Log(2)=0.69 | Lo0g(2.5)=0.92 | Log(3)=1.1
Log(1)=0 0.0056, 0 | 0.23,0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69
Log(2)=0.41 | 0.41, 0.41 | 0.57, 0.56 0.79, 0.69 0.82, 0.81 0.92, 0.92
Log(3)=0.69 | 0.70, 0.69 | 0.82, 0.81 0.92, 0.92 1.0, 1.0 11,11
Log(4)=1.1 | 0.92, 092 | 1.02,1.01 1,1, 1.1 12,12 12,13
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