
A simple approximation to bias in the genetic effect estimates 
when multiple disease states share a clinical diagnosis

Iryna Lobach1,*, Inyoung Kim2, Alexander Alekseyenko3, Siarhei Lobach4, and Li Zhang5

1Department of Epidemiology and Biostatistics, University of California, San Francisco, San 
Francisco, USA

2Department of Statistics, Virginia Tech University, Blacksburg, VA, USA

3Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 
USA

4Applied Mathematics and Computer Science Department, Belarusian State University, Minsk, 
Belarus

5Department of Medicine, University of California, San Francisco, San Francisco, USA

Abstract

Case-control genome-wide association (CC-GWAS) studies might provide valuable clues to the 

underlying pathophysiologic mechanisms of complex diseases, such as neurodegenerative disease, 

cancer. A commonly overlooked complication is that multiple distinct disease states might present 

with the same set of symptoms and hence share a clinical diagnosis. These disease states can only 

be distinguished based on a biomarker evaluation that might not be feasible in the whole set of 

cases in the large number of samples that are typically needed for CC-GWAS. Instead, the 

biomarkers are measured on a subset of cases. Or an external reliability study estimates the 

frequencies of the disease states of interest within the clinically diagnosed set of cases. These 

frequencies often vary by the genetic and/or non-genetic variables. We derive a simple 

approximation that relates the genetic effect estimates obtained in a traditional logistic regression 

model with the clinical diagnosis as the outcome variable to the genetic effect estimates in the 

relationship to the true disease state of interest. We performed simulation studies to assess 

accuracy of the approximation that we’ve derived. We next applied the derived approximation to 

the analysis of the genetic basis of innate immune system of Alzheimer’s disease.
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INTRODUCTION

Case-control genome-wide analyses scan (CC-GWAS) is a tool that is widely used to 

elucidate the genetic basis of complex diseases. A common complication is that multiple 

distinct disease states share the observed symptoms and hence the clinical diagnosis. 

Frequencies of the disease states within the clinical diagnosis often vary by the key 

variables. If the disease states have distinct genetic basses, the analyses with a clinical 

diagnosis as an outcome variable might be substantially biased (Carroll et al, 2006).

The specific example that motivated this study is the analyses of the genetic susceptibility to 

Alzheimer’s disease (AD). The clinical diagnosis of AD is typically made based on a set of 

descriptive criteria and as the result the diagnosis is heterogeneous. One of the major sources 

of heterogeneity is whether or not evidence for amyloid is present when measured by the 

positron emission tomography (PET). Recent biomarker studies (Salloway and Sperling, 

2015) estimate that 36% of ApoE ε4 non-carriers and 6% of ApoE ε4 carriers diagnosed 

with AD do not have evidence for amyloid as measured by PET.

It is possible that the AD-symptoms with and without amyloid evidence have the same 

genetic basis and hence the clinical diagnosis is a surrogate of the disease states. It is 

possible, however, that the AD-symptoms underlined by the amyloid evidence and the AD-

symptoms with no amyloid evidence have distinct genetic bases. We are interested to 

examine the role of the genetic variants serving the innate immune system in susceptibility 

to AD, i.e. the AD symptoms underlined by the amyloid deposition. We, hence, define the 

disease states to be: 1) disease state of interest: AD symptoms with amyloid evidence; 2) 

nuisance disease state: AD symptoms with no amyloid evidence; and 3) healthy control: no 

AD symptoms and we assume no amyloid evidence. We derive the theoretical 

approximation that provides a simple and general relationship between the parameter 

estimates obtained in a model with the clinically diagnosed disease status as an outcome 

variable and the estimates in a model with the disease states as an outcome. The derivation is 

based on Kullback-Leibler divergence (Kullback, 1959).

Our paper is organized as follows. First, in the Material and Methods section we present the 

setting, notation, and the proposed approximation for various models. Next, in the 

Simulation Experiments section we describe the empirical studies that are conducted to 

compare the resulting performance of the derived approximation that we derived relative to 

the empirical estimates. We then compare the estimates in a practical setting of an 

Alzheimer’s disease study that aims to investigate the genetic basis of innate immune system 

in the relationship to the AD symptoms underlined by amyloid pathology. We conclude our 

paper with brief Discussion.

MATERIALS AND METHODS

We define G to be the genotype of single nucleotide polymorphisms (SNPs) measured at 

multiple locations. Let X and Z be the environmental variables that might interact. We 

assume that the genotype is independent of the environment and follows Hardy-Weinberg 

equilibrium model Q g; θ , where θ is the frequency of the minor allele.

Lobach et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We define DCL be the observed clinical diagnosis that is inferred based on a set of 

descriptive criteria that characterize symptoms. Let D denote the true disease states, where D 
= 1 indicates the disease state of interest and D = 1* is the nuisance disease state. It might 

not be possible to measure D on the whole set of cases in a GWAS, instead D is available on 

a subset or the frequencies of D within the clinically defined set of cases are reliably 

estimated in an external reliability study. We define the clinical-pathological diagnosis 

relationship using τ X = pr D = 1 DCL = 1, X , which is the frequency of the disease state of 

interest within the clinically diagnosed set and the frequency varies by X. In the context of 

AD study, pr D = 1* DCL = 1, X = 1 − τ X ,

pr D = 0 DCL = 1, X = 0,   pr D = 1* DCL = 0, X = pr D = 1 DCL = 0, X = 0 and 

pr D = 1* DCL = 0, X = pr D = 0 DCL = 0, X = 1. We define the probabilities of the clinical 

diagnosis in the population to be π
dCL = pr DCL = dcl . Similarly, we let the frequencies of 

the true pathologic state in the population to be πd = pr D = d .

We described the relationship between the clinical diagnosis and the disease states in the 

context of Alzheimer’s disease. The formulation can be easily extended to other settings. For 

example, recent biomarker studies described the disease states of breast cancer by 

HER/PR/ER status. The status might only be measured on subset of the cases. According to 

the Surveillance, Epidemiology, and End Results (SEER) database, the frequencies of the 

disease states by HER/PR/ER status vary by age and race/ethnicity. Hence in the context of 

breast cancer the relationship pr D = d|DCL = 1, X  is a function of X = {age, race/ethnicity}. 

For some of the diseases, the disease states can be inferred based on the mutation pattern. 

The Cancer Genome Atlas, for example, archives information about mutation pattern on 

cancer patients. Disease states of a particular cancer type might be inferred based on 

mutation patterns. In this setting, the frequencies of the disease states within the clinically 

diagnosed set of clinically diagnosed cases are a function of the genetics, e.g. 

pr D = d|DCL = 1, G .

For clarity of presentation we assume that genotype is binary to indicate presence of a minor 

allele and follows Hardy-Weinberg equilibrium model, environmental variables X and Z are 

Bernoulli with frequencies ηX and ηZ, respectively. In the Appendix we discuss how to 

extend the approximation to the categorical and continuous variables.

We will collectively refer to the coefficients in the disease risk model for the disease state of 

interest as B, in to the nuisance disease state as A and in the model with the clinical 

diagnosis as an outcome as Γ.

Model 1.

βG: We first consider a setting when only the genetic variable G is in the risk model, i.e. the 

true disease risk model is
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log
prB, A(D = 1 G)
prB, A(D = 0 G)

= β0 + βG × G; (1)

log
prB, A(D = 1* G)
prB, A(D = 0 G)

= α0 + αG × G; (2)

while the model used is the usual logistic regression model with the clinical diagnosis as an 

outcome variable, i.e.

log
prΓ(DCL = 1 G)
prΓ(DCL = 0 G)

= γ0 + γG × G . (3)

Derivations provided in Appendix A1 show that

γ0 ≈ log exp β0 + exp α0 ; (4a)

γG ≈ log exp β0 + βG + exp α0 + αG − log exp β0 + exp α0

≈ log exp β0 + exp α0 + αG − log exp β0 + exp α0 +
exp β0

exp β0 + exp α0 + αG
× βG .

(4b)

From (4a) and (4b), we derive that

β0 ≈ log exp γ0 − exp α0 ; (4c)

βG ≈ log exp γ0 + γG − exp α0 + αG − log exp γ0 − exp α0 . (4d)

Lobach et al. Page 4

Genet Epidemiol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix A3 describes how to obtain β0, βG, α0, αG, assuming estimates of γ0, γG are 

available from the usual logistic regression and reliable estimates of 

τ = τ 1 × pr X = 1 + τ 0 × pr X = 0  and π1 are available in the literature.

Model 2.

βG and βX: We next consider a setting when the genetic variable G and an environmental 

variable X are in the risk model, i.e. the true disease risk model is

log
prB, A(D = 1 G, X)
prB, A(D = 0 G, X)

= β0 + βG × G + βX × X; (5)

log
prB, A(D = 1* G, X)
prB, A(D = 0 G, X)

= α0 + αG × G + αX × X; (6)

while the model used is

log
prΓ(DCL = 1 G, X)
prΓ(DCL = 0 G, X)

= γ0 + γG × G + γX × X . (7)

Derivations provided in Appendix A2 show that

γ0 ≈ log exp β0 + exp α0 ; (8a)

γG ≈ 0.5 × x log exp β0 + βG + βX × x + exp α0 + αG + αX × x − log exp(β0 + βX ×
x + exp α0 + αX × x

≈ 0.5 ×
x

log exp β0 + βX × x + exp α0 + αG + αX × x − log exp β0 + βX × x +

exp α0 + αX × x + 0.5 ×
x

exp β0 + βX × x
exp β0 + βX × x + exp α0 + αG + αX × x

× βG;

(8b)
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γX ≈ 0.5 × g log exp β0 + βX + βG × g + exp α0 + αX + αG × g − log exp β0 + βG ×
g + exp α0 + αG × g

≈ 0.5 ×
g

log exp β0 + βG × g + exp α0 + αX + αG × g − log exp β0 + βG × g +

exp α0 + αG × g + 0.5 ×
x

exp β0 + βG × g
exp β0 + βG × g + exp α0 + αX + αG × g

× βX .

(8c)

Model 3.

βG, βX, βZ, and βX×Z.: A model with interaction between the environmental variables X and 

Z is discussed in Appendix.

Model 4.

βG1
, βG2

 and βG1 × G2
: A model with gene-gene interactions is discussed in Appendix.

Remarks:

1. Model 1, equation (4b). If βG = αG = 0, then γG = 0.

2. Model 2, equation (8b). If βG = αG = 0, then γG = 0.

3. Model 2, equation (8c). If βX = αX = 0, then γX = 0.

4. Remarks 1–3 describe when the usual logistic regression models with the clinical 

diagnosis as an outcome variable correctly estimate the null effect.

5. The equations that we derived apply to several possible likelihood functions. For 

example, parameter estimates in Model 3 can be estimated based on the usual 

logistic regression model, i.e. the probability of the form prΓ(DCL |G, X, Z) or in a 

pseudolikelihood (Spinka et al, 2005; Lobach et al, 2018) prΓ(DCL, G | X, Z, δ = 1), 

where, δ = 1 is an imaginary indicator of being selected into the study. All the 

derivations apply to both models.

SIMULATION STUDIES

False positive rate

We first perform a series of simulation experiments to examine a false positive rate in the 

estimates of βG when the data are simulated from model (1)–(2), but the parameter estimates 

are obtained from model (3). We define the false positive rate to be the fraction of p-
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values≤0.05 across 10,000 simulated datasets in the usual logistic regression analyses as an 

outcome variable, i.e. (3), when in fact βG = 0. We simulate the data using model (1) with 

coefficients β0 = 0.5,   βG = 0,   αG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69. We next 

estimate parameters using model (3). Table 1 presents false positive rates in datasets with 

n0 = n1 = 3, 000; 10, 000. When the genetic effect is not associated with the clinical diagnosis, 

the false positive rate is nominal, i.e. is nearly 0.05. When αG increases, the false positive 

rate gets inflated, e.g. when αG = log 1.5 = 0.41, the false positive rate is 0.72. Increase in 

sample size did not result in decrease of the false positive rate.

Approximation vs. empirical estimates

We next perform a series of simulation experiments to assess the magnitude of bias and the 

approximation to the relationships that we’ve derived. First, we estimate the bias empirically 

as the average across 500 simulated datasets where the data are simulated using the true 

model (1)–(2), (5)-(6), (A3)–(A4) based on coefficients B and A, but estimate the 

parameters Γ in the usual logistic regression model (3), (7) and (A5). We then compare these 

averages to the approximations that we’ve derived.

We simulate genotype (G), age (A), sex (S), ApoE ϵ4 status to be Bernoulli with frequencies 

θG, θA, θS, θϵ4. In the context of previous notations, X is the ApoE ϵ4 status and Z is a set 

consisting of G, A, S. We then simulated the clinical diagnosis status DCL according to the 

models (3), (7) and (A5) and the true disease states D according to model (1)–(2), (5)-(6), 

(A3)–(A4). In all simulations we let θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07.

Model 1

We first consider models with one genetic variable. We fist simulate the data using model 

(1)–(2) and estimate parameters in the logistic model (3). We set β0 = 0.5, 

βG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92, log(3)=1.1, 

αG = log 1 = 0, log 1.5 = 0.41, = 0.69 and simulate datasets with 3,000 cases and 3,000 

controls. Table 2 presents empirical estimates of βG and the approximation (4b). Across all 

values of βG and αG, the approximation (4b) is accurate relative to the empirical estimate.

Model 2

We first consider models with one genetic variable and one environmental variable. We next 

generate data using models (5)-(6) but estimate parameters using model (7). We let 

β0 = α0 = 0.5, 

βG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92, log 3 = 1.1,   βϵ4 = αϵ4 = log 8 ,
  αG = log 1 = 0, log 2 = 0.41, log 3 = 0.69, log 4 = 1.1

and generate datasets with 3,000 cases and 3,000 controls. Approximations and the 

empirical estimates for γG shown in Table 3 demonstrate that the approximation (8b) is 

accurate relative to the empirical estimates. The empirical estimate of γϵ4ϵ is 2.09, while the 

approximation is 2.08.
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Model 3

We next consider a model with one genetic variable and two environmental variables that 

interact. We next simulate data using models (A3)–(A4) and estimate parameters using 

model (A5), with the approximation derived in (A6a–c).

Setting 1.—We first consider a setting when the genotype is not associated with the 

nuisance disease (αG = 0) and when ϵ4 and A × ϵ4 are not associated with the nuisance 

disease status (αϵ4 = 0,   αG = 0, αA × ϵ4 = 0). We simulate the clinical diagnosis and disease 

states with coefficients 

β0 = − 1, βS = log 0.92 = − 0.08, βϵ4 = log 8 = 2.1, βA = log 2 = 0.69,

βG = log 1 , log 1.5 , log 2 , log 2.5 , log 3 , βA × ϵ4 = log 1 , log 2 , log 3 , log 3 ,

α0 = − 1, αS = log 0.92 , αϵ4 = 0, αA = log 2 , αG = 0, αA × ϵ4 = 0.

Figure 1 presents biases in estimates of βG (panel A), βA (panel B), βS (panel C), βϵ4 (panel 

D) and βA × ϵ4 (panel E) in studies with 3,000 cases and 3,000 controls; values of βA × ϵ4 are 

shown along the x-axis and values of βG are indicated by color. Figure 1 panels A and D 
show that bias in the estimates of βG and βϵ4 can be substantial with largest bias of −0.06; 

panel E shows that bias in βA × ϵ4 is notable in this case ranging from 0.01 to −0.06; 

estimates of βA and βS are nearly unbiased consistent with the theoretical observations that 

the null effect in some settings can be estimated with no bias even in a misspecified model. 

We note that magnitude of bias in βG and βA × ε4 increases as the true value of the coefficient 

increases.

Shown on Figure 2 are the empirical bias (Emp) and the approximation (AX) of bias in βG 

indicated by color with values of βA × ϵ4 along the x-axis and values of βG along the panels. 

The difference between the Emp and AX starts at ≈ 0.6 when βG = 0.41 and increases to ≈ 
1.2 when βG = 1.1. Bias of βS and βA is approximated to be <0.0001. Shown on Figure 3 are 

Emp and AX of estimates of βϵ4, and Figure 4 is presenting estimates of βA × ϵ4.

Setting 2.—We next simulate datasets with 30,000 cases and 30,000 controls in the Setting 

1. Supplementary Figure 1 shows that biases in the estimates noted in Setting 1 persists for 

larger sample sizes.

Setting 3.—We next consider a setting when the genotype and environment are associated 

with the nuisance disease state (αG = log(1.5),αϵ4 = log 2 ), but no interaction αA × ϵ4 = 0.

We next change the parameters for the nuisance state to be 

α0 = − 1, αS = log 0.92 , αϵ4 = log 2 , αA = log 2 , αG = log 1.5 , αA × ϵ4 = 0 and all other 

parameters as in Setting 1. Shown on Supplementary Figure 2 are biases in the estimates of 
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the parameters of interest that reach −1.4 for βG, are near −0.5 for βϵ4, and are up to −0.15 

for   βA × ε4.

Setting 4.—We next consider a Setting 1 but with more common disease of interest, i.e. β0 

= 1.5. Supplementary Figure 3 is showing empirical bias in all estimates, which can still be 

substantially biased.

Setting 5.—We next consider a setting where the genetic variable is associated with the 

nuisance disease state (αG = log 2 ) and there is a significant A × ϵ4 interaction 

(αA × ϵ4 = log 2 ). We next change the parameters for the nuisance state to be 

α0 = 0.5, αS = log 0.80 , αϵ4 = log 4 , αA = log 3 , αG = log 2 , αA × ϵ4 = log 2 . Figure 5 

presents biases in the estimates and Supplementary Figures 4–5 show the empirical 

estimates and the approximations.

Supplementary Figure 7: Frequency of the disease state of interest (D = 1) and the nuisance 

disease (D = 1*) when β0 = 1.5, βS = log 0.80 , βϵ4 = log 8 , βA = log 3 ,

βG = log 1 , log 1.5 , log 2 , log 2.5 , log 3 , βG × ϵ4 = log 1 , log 2 , log 3 , log 3 ,

α0 = 0.5, αS = log 0.80 , αϵ4 = log 4 , αA = log 3 , αG = log 2 , αA × ϵ4 = log 2 ,

θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07. Shown along the x-axis are values of βG and 

indicated by color are values of βA × ϵ4. We note that these frequencies are similar to those in 

context of Alzheimer’s disease.

ROLE OF THE GENETIC VARIANTS SERVING INNATE IMMUNE SYSTEM IN 

SUSCEPTIBILITY TO ALZHEIMER’s DISEASE

We apply the usual logistic analyses with the clinical diagnosis as an outcome variable to a 

dataset collected as part of the Alzheimer’s Disease Genetics Consortium. We next apply the 

approximations (7)-(10) and (11)-(14) to see how the genetic estimates change when 

presence of the nuisance disease state is recognized.

We mapped Illumina Human 660K markers onto human chromosomes using NCBI dbSNP 

database (https://www.ncbi.nlm.nih.gov/projects/SNP/). Chromosomal location, proximal 

gene or genes and gene structure location (e.g. intron, exon, intergenic, UTR) has been 

recorded for all SNPs. From these data we inferred 165 SNPs to reside in genes serving 

innate immune system.
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The dataset consists of 727 controls and 2,797 cases diagnosed with AD.

We are interested to examine a relationship between the pathologic disease state of AD 

characterized by presence of amyloid deposition and each of the 165 SNPs serving the 

innate immune system. We include ApoE ϵ4 status, age, and sex in the model with an 

interaction between ApoE and age. The genetic variant is modeled as a Bernoulli variable as 

an indicator of presence or absence of a minor allele. Age is Bernoulli as well that 

corresponds to a median split in the dataset.

Table 4 presents estimates of effects of the SNPs obtained using the usual logistic regression 

model with the clinical diagnosis as an outcome variable in a univariable model (3) and with 

adjustment for SNP + ApoE ε4 + Age + Sex (7); and the corresponding models (1–2) and 

(5–6) that recognize presence of the nuisance disease state. In the univariable setting the 

empirical bias is estimated as the difference between the main effect estimates obtained in 

model (3) and model (1–2), and the approximation to the bias is estimated as derived in (4b). 

In the multivariable setting, the empirical bias is the difference between main effect 

estimates obtained in model (7) and (5–6), and the approximation is as derived in (8b).

First shown in Table 4 are 16 estimates with p-value<0.05 after the Benjamini-Hochberg 

multiple testing adjustment in a univariable model (3) and then added are 13 SNPs with p-

value <0.05 in a univariable model (1–2). Across all these SNPs, the approximation was 

accurate relative to the empirical bias.

We describe the findings further in Web-based Supplementary file. In section “Alzheimer’s 

disease study” we describe which variants have been previously reported in the literature. 

We also discuss the 11 variants from Table 4 relevant to amyloid protein and 5 variants from 

Table 4 relevant to tau protein.

DISCUSSION

We’ve examined a situation when multiple disease states share observed symptoms and 

hence the clinical diagnosis. Both theoretically and in extensive simulation studies we 

observed that the magnitude of bias can be substantial in the situations when the frequency 

of the nuisance disease state within the clinically diagnosed set varies by the key variables. 

We derived a simple and general approximation to the relationship between the genetic 

effect estimates that use the clinical diagnosis as an outcome variable and the estimates that 

recognize the presence of the nuisance disease state.

While the effect of misclassification of the disease status has been examined extensively in 

statistical literature (Carroll et al, 2006), we extend the literature by deriving a simple and 

general approximation to the bias in a multivariable setting. The approximation provides a 

simple formula to assess how elastic the estimates of interest are to the values of parameters 

in the nuisance risk model. The regression coefficients or plausible ranges for the 

coefficients of the nuisance disease state are often available in the literature.

In the derivations we assume that the link functions and disease risk models for the clinical 

diagnosis and the disease risk are the same, for example, logit and additive with the same 
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variables. The derivations are readily generalizable to the settings when the link function is 

the same, but the disease risk models are different. The generalization to the different link 

functions, however, is out of the scope of the current paper and requires additional 

derivations and is subject to future studies.

Simulation studies that we conducted showed that when the presence of the nuisance disease 

is ignored, the genetic effect estimates can be biased in either direction. These biases can be 

substantial in magnitude leading to false positive and false negative results. The magnitude 

of bias in the genetic effect estimates is a function of the frequencies of the disease state of 

interest and the nuisance disease state in the population (through the intercept), coefficients 

of the genetics in the nuisance disease state model, and coefficients of the environment both 

in the disease state of interest and the nuisance disease state. The interplay between all of 

these parameters in the form of the approximation that we’ve derived determines the 

magnitude and directionality of the bias. Importantly, the magnitude of bias persists in large 

sample sizes.

The approximation relies on the external information published in the literature. In situations 

when the external estimates are deemed not reliable, we advocate for sensitivity analyses by 

varying the external estimates and assessing the change in the genetic estimates of interest. 

The form of the approximation that we’ve derived is simple and such analyses can be easily 

performed. For example, the parameters in the nuisance model can be set on a plausible 

interval and the degree of change in the estimates of interest can then be assessed. Often in 

practice the actual values of the coefficients are not of interest per se. Instead, what is of 

interest is the relative order of the genetic variants according to their magnitude of effect. 

Hence it might be useful to assess how the relative order of the estimates changes when the 

nuisance parameters are varied on a plausible range.

While our study is motivated by the setting of Alzheimer’s disease, the results are readily 

applicable for other complex diseases. For example, Manchia el al (2013) examined the 

effect of heterogeneity, i.e. presence of non-cases, in the context of diabetes and showed that 

ignoring the heterogeneity leads to reduced statistical power to detect an association and also 

reduced the estimated risks attributable to susceptibility alleles.

The approximation that we’ve derived is widely applicable in other areas of research where 

the diagnosis is heterogeneous. For example, when disease states correspond to subtypes of 

a complex disease. We also see the application to the analyses of Electronic Health Records, 

where the disease status might be subject to exposure-dependent differential 

misclassification (Chen et al, 2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A1. Approximation using Kullback-Leibler divergence

We show schematics of the derivations based on Model 3, the other models can be derived 

accordingly. We denote the model the true model (9)-(10) based on probability 

prΓ(DCL |G, X, Z) or prΓ(DCL, G | X, Z, δ = 1) as QB, A DCL, G, X, Z = prB, A(DCL, G | X, Z, δ = 1). 

Similarly, we denote model (3) with (4) as QΓ DCL, G, X, Z = prΓ(DCL |G, X, Z).

Kullback (1959) showed that parameters Γ converge to values that minimize Kullback-

Leibler divergence criteria between the two models, specifically

γ = argmin EG, X, Z E
DCL G, X, Z

log
QB, A DCL, G, X, Z

QΓ DCL, G, X, Z
.

Considerable algebraic derivations arrive to the following system of equations to be solved 

for parameters Γ

EG, X, Z
prB, A D = 1 G, X, Z + prB, A D = 1* G, X, Z × pr G

prΓ DCL = 1 G, X, Z

× ∂
∂Γ

exp γ0 + γX × X + γG × G + γZ × Z + γX × Z × X × Z

1 + exp γ0 + γX × X + γG × G + γZ × Z + γX × Z × X × Z

+
prB, A(D = 0 G, X, Z) × pr G

prΓ(DCL = 0 G, X, Z)

× ∂
∂Γ

1
1 + exp γ0 + γX × X + γG × G + γZ × Z + γX × Z × X × Z

= 0

(A1)

Define M X, G, Z; Γ = pr G ×
exp γ0 + γX × X + γG × G + γZ × Z + γX × Z × X × Z

1 + exp γ0 + γX × X + γG × G + γZ × Z + γX × Z × X × Z
Then (A1) 

becomes
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EG, X, Z X × M X, G, Z; Γ
prB, A D = 1 G, X, Z + prB, A D = 1* G, X, Z

prΓ DCL = 1 G, X, Z

−
prB, A D = 0 G, X, Z

prΓ DCL = 0 G, X, Z
= 0

EG, X, Z Z × M X, G, Z; Γ
prB, A(D = 1 G, X, Z) + prB, A(D = 1* G, X, Z)

prΓ(DCL = 1 G, X, Z)

−
prB, A(D = 0 G, X, Z)

prΓ(DCL = 0 G, X, Z)
= 0

EG, X, Z G × M X, G, Z; Γ
prB, A(D = 1 G, X, Z) + prB, A(D = 1* G, X, Z)

prΓ(DCL = 1 G, X, Z)

−
prB, A(D = 0 G, X, Z)

prΓ(DCL = 0 G, X, Z)
= 0

EG, X, Z X × Z × M X, G, Z; Γ
prB, A(D = 1 G, X, Z) + prB, A(D = 1* G, X, Z)

prΓ(DCL = 1 G, X, Z)

−
prB, A(D = 0 G, X, Z)

prΓ(DCL = 0 G, X, Z)
= 0

Values of Γ such that

prB, A(D = 1 G, X, Z) + prB, A(D = 1* G, X, Z)

prΓ(DCL = 1 G, X, Z)
=

prB, A(D = 0 G, X, Z)

prΓ(DCL = 0 G, X, Z)
= 1

for all G, X, Z solve the system of equations (A1).

By definition,

γG = 0.25 × ∑
x, z

logit prΓ(DCL = 1 G = 1, X = x, Z = z) − logit prΓ(DCL = 1 G = 0, X

= x, Z = z) .

With Taylor series expansion around βG = 0 we arrive at (12a). Derivation for the other 

parameters is similar. If X is continuous, then e.g.,
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γX = 0.5 × ∑
g

logit prΓ(DCL = 1 G = g, X = x + 1, Z = 0) − logit prΓ(DCL = 1 G = g, X =

x, Z = 0) .
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Figure 1. 
Empirical biases in estimates of βG, βA, βS, βϵ4, βA × ϵ4 across 500 datasets with 3,000 cases 

and 3,000 controls when the disease states are simulated according to risk model (1)–(2), but 

the parameters are estimated using model (3). Here the genotype, ApoE ϵ4 status and A × ϵ4
are not associated with the nuisance disease state. Genotype, age, sex, ApoE ϵ4 status are 

simulated to be binary with frequencies θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07. The disease 

states are then simulated according to risk model (1)–(2) with 

β0 = − 1, βS = log 0.92 = − 0.08, βϵ4 = log 8 = 2.1, βA = log 2 = 0.69,

βG = log 1 , log 1.5 , log 2 , log 2.5 , log 3 , βA × ϵ4 = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69,
log 2.5 = 0.92,

α0 = − 1, αS = log 0.92 , αϵ4 = 0, αA = log 2 , αG = 0, αA × ϵ4 = 0. Values of βA × ϵ4 are along 

the x-axis and values of βG are indicated by color.
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Figure 2. 
Empirical bias (Emp) and bias approximated by (A6b)(AX) in βG estimates when the data 

are generated according to disease states as in (A3)–(A4), but the parameters are estimated 

in the model (A5). Empirical estimates are the averages 500 datasets with 3,000 cases and 

3,000 controls. Genotype, age, sex, ApoE ϵ4 status are simulated to be binary with 

frequencies θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07. The pathologically defined disease 

states are then simulated according to risk model (A3)–(A4) with β0 = −1,βS = log (0.92) = 

−0.08,βϵ4 = log(8) = 2.1,βA = log(2) = 0.69,βG = log(1) = 0,log(1.5) = 0.41,log(2) = 

0.69,log(2.5) =0.92,log(3) = 1.1,βA × ϵ4 = log(1) =0,log(1.5) = 0.41, log(2.5) =0.92,α0 = 

−1,αS = log(0.92),αϵ4 =0,αA = log(2),αA = 0,αA × ϵ4 = 0. Values of βA × ϵ4 are along the x-

axis and empirical estimates are shown in blue, approximations (A6a–c) are in red.
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Figure 3. 
Empirical bias (Emp) and bias approximated by (A6b)(AX) in βϵ4 estimates when the data 

are generated according to disease states as in (A3)–(A4), but the parameters are estimated 

in the model (A5). Genotype, age, sex, ApoE ϵ4 status are simulated to be binary with 

frequencies θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07. The pathologically defined disease 

states are then simulated according to risk model (A3)–(A4) β0 = −1,βS = log(0.92) =

−0.08,βϵ4 = log(8) = 2.1,βA = log(2) = 0.69, βG = log(1) = 0,log(1.5) =0.41,log(2) = 

0.69,log(2.5) = 0.92,log(3) = 1.1,βA × ϵ4 = log(1) =0,log(1.5) = 0.41,log(2) = 0.69,log(2.5) = 

0.92, α0 = −1,αS = log(0.92),αϵ4 = 0, αA = log(2), αG = 0,αA × ϵ4 = 0. Values of βA × ϵ4 are 

along the x-axis and empirical estimates are shown in blue, approximations are in red..
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Figure 4. 
Empirical bias (Emp) and bias approximated by (A6b)(AX) in βA × ϵ4 estimates when the 

data are generated according to disease states as in (A3)–(A4), but the parameters are 

estimated in the model (A5). Genotype, age, sex, ApoE ϵ4 status are simulated to be binary 

with frequencies θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07. The pathologically defined 

disease states are then simulated according to risk model (A3)–(A4) 

  β0 = − 1, βS = log 0.92 = − 0.08, βϵ4 = log 8 = 2.1, βA = log 2 = 0.69,

βG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92, log 3 = 1.1, βA × ϵ4 = log 1 = 0,
log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92,

α0 = − 1, αS = log 0.92 , αϵ4 = 0, αA = log 2 , αG = 0, αA × ϵ4 = 0. Values of βA × ϵ4 are along 

the x-axis and empirical estimates are shown in blue, approximations are in red..
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Figure 5. 
Empirical biases in estimates of βG, βA, βS, βϵ4, βA × ϵ4 across 500 datasets with 3,000 cases 

and 3,000 controls when the disease states are generated as in (A3)–(A4), but the parameters 

are estimated in the model (A5). Genotype, age, sex, ApoE ϵ4 status are simulated to be 

binary with frequencies θG = 0.10, θA = 0.50, θS = 0.52, θϵ4 = 0.07. The pathologically defined 

disease states are then simulated according to risk model (1)–(2) with 

β0 = 1.5, βS = log 0.80 , βϵ4 = log 8 , βA = log 3 ,

βG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92, log 3 = 1.1,   βA × ϵ4 = log 1 = 0,
log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92,

α0 = 0.5, αS = log 0.80 , αϵ4 = log 4 , αA = log 3 , αG = log 2 , αA × ϵ4 = log 2 . Values of 

βA × ϵ4 are along the x-axis and values of βG are indicated by color.
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Table 1:

False positive rate defined as the proportion of p-values≤0.05 across 10,000 simulated datasets in the usual 

logistic regression analyses as an outcome variable (3), when in fact βG = 0 and the data are generated from 

(1)-(2). We let β0 = 0.5, βG = 0, αG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69.

αG = Log 1 = 0 Log 1.5 = 0.41 Log 2 = 0.69
n0 = n1 = 3, 000 0.052 0.72 0.99

n0 = n1 = 10, 000 0.048 0.79 0.99
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Table 2:

Empirical estimates of βG and approximation (4b). The data are simulated from models (1)–(2) and is 

estimated using model (3). Empirical estimates are the averages across 500 datasets with 3,000 cases and 

3,000 controls. We let β0 = α0 = 0.5, 

βG = log 1 = 0, log 1.5 = 0.41, log 2 = 0.69, log 2.5 = 0.92, log 3 = 1.1,   βϵ4 = αϵ4 = log 8 ,   αG = log 1 = 0,
log 2 = 0.41, log 3 = 0.69, log 4 = 1.1.

αG

βG

Log(1)=0 Log(1.5)=0.41 Log(2)=0.69 Log(2.5)=0.92 Log(3)=1.1

Log(1)=0 0.003, 0 0.23, 0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69

Log(2)=0.41 0.41, 0.41 0.57, 0.56 0.70, 0.69 0.82, 0.81 0.92, 0.92

Log(3)=0.69 0.70, 0.69 0.82, 0.81 0.93, 0.92 1.0, 1.0 1.1, 1.1

Log(4)=1.1 0.93, 0.92 1.02, 1.01 1.1, 1.1 1.2, 1.2 1.3, 1.3
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Table 3:

Empirical estimates of γG and approximation (8b). The data are simulated from models (5)-(6) and is 

estimated using model (7). Empirical estimates are the averages across 500 datasets with 3,000 cases and 

3,000 controls. We let β0 = α0 = 0.5, 

βG = log 1 , log 1.5 , log 2 , log 2.5 , log 3 ,   βϵ4 = αϵ4 = log 8 ,   αG = log 1 , log 2 , log 3 , log 4 .

αG

βG

Log(1)=0 Log(1.5)=0.41 Log(2)=0.69 Log(2.5)=0.92 Log(3)=1.1

Log(1)=0 0.0056, 0 0.23, 0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69

Log(2)=0.41 0.41, 0.41 0.57, 0.56 0.79, 0.69 0.82, 0.81 0.92, 0.92

Log(3)=0.69 0.70, 0.69 0.82, 0.81 0.92, 0.92 1.0, 1.0 1.1, 1.1

Log(4)=1.1 0.92, 0.92 1.02, 1.01 1,1, 1.1 1.2, 1.2 1.2, 1.3
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