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Abstract. We study the non-isothermal plane motion of viscous fluid on the outer surface of
rotating with constant angular velocity horizontally placed cylinder in the fields of surface
tension, gravity and inertia. The problem was solved by direct method and evolution of the free
surface was investigated taking into account varying temperature of fluid.

1. Introduction

Today we observe the development of new promising technologies, which are based on the flow of
layer of melts on rotating surfaces. Thus it’s important to study the motion, instability and
decomposition of layers of fluid with variable viscosity, depending on temperature. The non-
isothermal plane flow on the outer surface of rotating with constant angular velocity cylinder is
investigated. The impact of inertia, surface tension and gravity is taken into account. Such flows occur
in formation of mineral and metal fibers from the melts by centrifugal casting and coating application
on rotating surfaces.

The solution of the isothermal problem on the outer cylindrical surface in the approximation of a
thin film was studied in [1-3]. The motion of a not necessary thin layer of a viscous fluid on the outer
surface of a rotating cylinder taking into account inertial forces was explored in [4, 5]. The results of
experimental studies of the flow were described in [1, 6]. In [7], the three-dimensional flow of a thin
layer was investigated for a slow rotation of the cylinder without taking into account the inertial
forces.

2. Model

We consider non-isothermal plane motion of not necessary thin viscous layer on outer surface of
cylinder that rotates with constant angular velocity w,. Such flows are used in coating and film
applications on rotating surfaces. We use moving coordinate system 0,7, @, T, that rigidly connected
with surface of rotating cylinder, and instead of transversal velocity component w we use relative
angular velocity w(n, ¢, 7) = wn~! — 1, that describes deviation of angular velocity from the velocity
when the cylinder and viscous layer move as a whole. The motion of fluid is described by Navier-
Stokes equations with variable viscosity, energy equation, continuity equation and free surface
equation. These equations are nondimensionalized by cylinder radius Ry and velocity wgRy. The
dimensionless temperature is determined by T = (Tf — Te)Te_l, where T is dimensional temperature
of the fluid and T, is dimensional temperature of the environment and cylinder. We have:

Ve + vy + 0V, — (0 + 120 = —p, + k(T)Reg *(Av — 2771w, — n72v)
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+(dk/dT) Reg (2Tyvy + Tp(wy +17%v,)) = Frtsin(p +1); (1)
wr + vy, + ww, + 207 v(w + 1) = —n7?p, + k(T)Reg* (Aw + 2n~tw, + 271_3V<p)

+(dk/dT) Reyt (Tnn_z(v(p +n%w,) + 2T, 3 (v + nw(p)) —Frin7lcos(p + 1), (2)

T+ VT, + wT, = Pe (T, + 17T, + n7%T,) + @; ®)
(771/)17 + (nw)go =0; 4)
n=nh(p1), h+wh,=v. 5)

We require boundary condition of adhesion, the absence of viscous interaction with environment,
jump of normal stresses on the free surface caused by the surface tension, third kind boundary
conditions for the temperature on the cylinder surface and free surface, and the initial conditions:

n=1 v=0 w=0; (6)
n="h(p1), (1-n72h3)(nw, +n1""v,)+2n  hy(vy — 17 v —w,) = 0; 7

_ _ _ -1 _ _
n=h(p,1), (2/R)We ' =p—p,—2k(T)Re;*(1+n72h3) (v —n the(wyn +n"1v,)

+n72h (W, + 17 1)); (8)

n=1 T,=NuyT;, 9

n=nh(p1), T,=—-Nu,T, (10)

=0, h=ho(p) v=vom @) w=wem¢) T=T7n ). (11)

In equations (1) - (12) subscript denotes the partial derivative in the specified direction, @ —
dissipative function, A — Laplace operator, 2/R, — mean curvature of the layer surface:

@ = 2k(T)Re; *Eck (vﬁ + (w, + 77‘11/)2 + (M, + nwn)z),
A=0%/0n%+n"t0/on +n"%0%/0¢?, (12)
2/Rs = (h? + 2h2 — hh,,,) (h% + h2) ~*°.

Relations (1) - (12) represent a nonlinear initial-boundary value problem with respect to functions

v(n,¢,7), w,¢,7), p(n,¢,7), T(,¢,7) and free boundary n = h(e, 7). Equations (1) - (12) have
following dimensionless parameters: initial Reynolds number, Froude number, Weber number, ration
of viscosities, Peclet number, Eckert number and two Nusselt numbers

Rey = Réwovy™Y, Fr = Ryw3g™t, We = pRiw3c71,
k(T) = u(Tuo~t, Pe = pcR3woA™t, Eck = Riw3(cT,) 1, (13)
Nu1 = alRol_l, NU.Z = azRol_l.

Heat transfer conditions on the cylinder surface and fluid, and also for fluid and environment are
determined by empirical formulas [8]:

Nu; = 0.49Re;%°,  Re; = 2Rwovp,~Y,  Re; < 103;
Nu,=0,245 Re;%®, Re; > 103. (14)
Nu, = 0.49Re,*°, Re, = 2Rwyv,” !, Re, < 103;
Nu,=0,245 Re,*®, Re, > 103. (15)
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In equations (1) - (15) we use the next designations: ¢ — the surface tension of the fluid, g —
gravity acceleration, ¢ — specific heat capacity, A — thermal conductivity of the fluid, a; and a, —
thermal diffusivity on 7 = 1 and n = h(¢, T) respectively, vy — initial kinematic viscosity of the fluid
when T =T,, v, — kinematic viscosity of the environment, p,— ambient pressure, u(T) — dynamic
viscosity of the fluid, that depends on temperature.

In case of sufficiently fast rotation of the cylinder, the value Re~&™1> 1, Fr~g™2> 1,
We~e™2 » 1 (by “~” we denote the order of magnitude). At the same time the relative change in
fluid flow in the transversal direction is substantially less than in the radial direction, and the radial
velocity component is much less than the transversal component, i.e.

Re l~g, Frl~g?, We l~g?,
d/0t, 0/0p~¢c K 1, d/on~1, v~¢, w~1, h~1.

We exclude the infinitesimals from the system (1) - (12). In equation (1) and boundary conditions
(8), (10), (11) we take into account terms of the first order. In the remaining equations we take into
account terms with order ¢, leaving also in (2) and (9) the effect of gravity and surface tension. We
obtain the following system with boundary and initial conditions:

Py = (0 + 1), (16)
wr + vy + 0w, + 207 (w + 1) = —n72p, + k(T)Rej H(wyy + 30 w,)
+(dk/dT) Req ' Tyw, —n~*Fr~* cos(¢ + 1); (17)
T. +vT, + 0T, = Pe (T, + n7'T,) + 2k(T)Reg ' Eck n*w}, (18)
(mv)y + (w)y =0, (19)
n=nh(p1), h+wh,=v; (20)
n=1 v=0, w=0, n=h(p,1), w;=0; (21)
n=h(p,1), We '(h™' —h*hyy) =P —Pa/ (22)
n=1 -T,=NuyT;, n=h(p1), T,=Nu,T; (23)
=0, h=he(@)v=vom @) w=wo(n¢)T=To® ¢) (24)

Note the initial-boundary value problem (16) - (24) takes into account the influence of physical
factors such as gravity forces, surface tension, inertia, viscosity, external pressure on the liquid flow.
And the condition of thinness of the layer is not required.

To solve the problem (16) — (24) we use direct Kapitsa-Shkadov method [9]. We introduce new
variable {:

(=Mm-1/6(p,7), 0={<1, 6(p,7) = h(p,7) -1

Dependency of relative angular velocity from variable { has quadratic form, that satisfies boundary
conditions (21):

w(() v, T) = _N((pr T)((l - 05()/ (25)

where N (¢, 7) is 27 periodic function on ¢ to be determined. N (¢, 7) = 0 corresponds to the rotation
of the cylinder and the fluid layer as a whole.

Like the Navier-Stokes equations, the heat equation has a parabolic form. Suppose that the solution
of the heat equation can also be sought in the form of a quadratic dependence on the radial coordinate:

T, ¢,7) = B(p,7)({* + b{ +¢).
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The constants b and ¢ are determined from the boundary conditions (23):

b = —(2Nuy + 26Nuy + 2Nuy + 262Nuy Nu, + §3Nuy Nu,Nuy)
X (Nuy + Nuy + §2NuyNuy)™t,

¢ = (=2 + Nuy + 26Nuy + Nu, — §?Nuy + §2NuyNuy + §3NuyNuy )
X (Nuy + Nuy + 62NuyNuy) ™t

Next, after switching to a variable { we integrate equations (17), (18) over the layer thickness from
0 to 1. The pressure in the layer p({, ¢, 7) is determined from equation (16). Substituting (25) into
continuity equation (19) allows us to obtain a formula for the radial velocity component v.

Substituting v(§, @,1), w(6, 9, 1), p(6,¢,7), T(S,¢,T) values into integrated over the layer
thickness equations (17), (18), we obtain two equations of evolution. The third equation of evolution is
derived from the free surface equation (20). To solve the problem by the direct method, it is necessary
to define the dependence of viscosity on temperature. To define u(T) we use the second order
polynomial function built using empirical tabular data.

In general, the evolution equations have the form

Ny = f1(8, 64,600 8ppp B, By, N,Ny); By = f2(8,84,B,By,N,Ny); &; = f3(8,84,B,B,). (26)

They are supplemented by initial conditions and periodicity boundary conditions for the angular
coordinate.

Functions f3, f5, f3 are obtained in the process of calculating the integrals and used for specific
calculations. These values are complex and are not provided in this article. The equations of evolution
of a not necessary thin layer in the case of an isothermal problem were obtained in [4]. They are:

8. = H(8)B, + R(5,B)8,, 7)
B, = U(,T)8, +V(8,T)By — 60(8,) + Sppp — 2658,p(1 + 8) (1 + 8)2Eo(5)We) ™

+30(8 +2) cos( + 1) (Fr Eo(8)) ' — 10B(6 — 35 — 62)(Re5%Ey(5))",  (28)
where:
H(8) = 5(56 +8)(24(5 + 1)), R(5,T) = B(56 + 4)(12(6 + 1)),
Eo(8) = 20 + 258 + 982, E{(8) = 20 + 506 + 2752,
U(8,T) = B2U,(8) + BU,(8) + Uy(8), V(8,T) = BV,(8) + Vo (5),

U,(8) = 6E;1(5) (42‘1(336 + 55368 + 388%) — (12(6 + 1))'1(55 +4)(20 + 506 + 2752)),
U1 (8) = (40 + 508)E51(8), Uyp(8) = —60(8 + 1)Ey 1(8), Vo(8) = 5(40 + 258)E51(65),
V1(8) = Eg*(6)((336 + 1616 — 34562)217 — (56 + 8)(20 + 506 + 2756%)(24(5 + 1))‘1.

3. Numerical solution
The numerical method for solving the problem is based on the method of lines, when the flow region
from 0 to 27 in the angular coordinate is divided into N=360; 720 or more rays. Partial derivatives
with respect to ¢ are replaced by finite differences. Further, the system of 3N ordinary equations is
integrated numerically remembering f3, f>, f3 (26) on the previous step.

We study the evolution of the shape of the free surface, that has initial constant thickness &, or a
sinusoidal form &y(¢) = 8y + a sin(k¢). The numeric solution of the problem was carried out under
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the following conditions: liquid is aqueous solutions of glycerol with a density of 1260 kg/m’, surface
tension coefficient of 0.07 N/m, ambient and cylinder temperature of 293 °K, the initial temperature of
the fluid is 323 °K; the cylinder radius is 2.5 c¢m. The kinematic viscosity of glycerol was
approximated by a quadratic function depending on a temperature using tabular data:

u(T) = 365.41 T? — 2.314 T + 0.0037.

Let’s show an example of solving the isothermal problem (27), (28). If the initial profile of the free
surface of a layer is in a sinusoidal form, then at the first the main initial perturbations are developed
as shown in Figure 1. Then the secondary perturbation remains small, and the instability is growing
due to one of the main maxima of the free surface, which is shown in Figure 2 when

So(p) = 0.1+ 0.01 sin(4¢).

Figure 1. Shape of the free surface of the Figure 2. Shape of the free surface of the
viscous layer: T=m Re =318, viscous layer: T = 1.5m, Re =31.38,
Fr = 8.15, We =899.4. Fr =8.15, We =899.4.

Figure 3 shows non-isothermal and isothermal solutions. In the non-isothermal case, the layer is
cooled, so the viscosity of the liquid increases, and the disturbances grow more slowly. We study the
development of perturbations of a layer whose thickness is constant at the initial moment of time.
First, the development of disturbances is determined by the influence of gravity. One maximum and
one surface minimum appear. Over time, under the action of inertial forces and nonlinear effects, the
number of local extrema increases, and other disturbances arise, as shown in Figure 4.

Figure 3. The shapes of the free surface of
viscous layer for 1 — non-isothermal problem,
2 — isothermal problem: &, = 0.1,7 = 2.5,
Re =17.7, Fr = 2.5, We = 279.1,
Eck =88 -1077, Pe = 32275,
Nu, = 8.13,Nu, = 25.11, T, = 0.1024.

Figure 4. Shape of the free surface of the

viscous layer: §, = 0.05, 7 = 27,Re = 90.1,

Fr =1.02,We = 1800,Eck = 1.4 - 1076,
Pe = 163934, Nu,; = 18.33, Nu, = 56.58,
Ty, = 0.1024.
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The distribution of temperature along the angle ¢ is not uniform too as we can see on Figure 5. We
can see that due to influence of dissipative forces and greater heat transfer coefficient the temperature
on the free surface is higher than on the surface of the cylinder.

I

0.104 |

0.103}

0 1(’12;,

) 1['1:~
[ 4

0.100}

Figure 5. The distribution of temperature for different angles ¢: 1 —¢ =0,2—-¢ = 0.5n,3 - ¢ =7,
4 - @=15m &, =0.057=16, Re =90.1, Fr = 1.02, We = 1800, Eck = 1.4 - 107°,
Pe = 163934, Nu; = 18.33, Nu, = 56.58, T, = 0.1024.

4. Conclusions

The plane motion of a viscous fluid layer on the outer surface of a horizontally placed rotating
cylinder was investigated in the fields of surface tension, gravity and inertia forces with the varying
temperature. The energy equation takes into account convective and dissipative terms.

In the case of a sufficiently fast rotation of the cylinder, the equations of the first approximation
were obtained, similar to the equations of the boundary layer. The system of partial differential
equations for determining the evolution of the free surface was obtained by a direct method. It was
numerically solved and analyzed. The obtained system allows to study the motion of thin and not thin
layers with arbitrary Reynolds numbers. The shapes of the free surface were investigated, and a
comparison was made with the results of isothermal solution.
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