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Abstract. The plane motion of thin layers of viscous immiscible liquids on the outer surface of 

a horizontal cylinder rotating at a constant angular velocity in a field of gravity and inertia is 

explored. In the case of sufficiently slow motion, neglecting the inertial terms of the Navier-

Stokes equations, circumferential and radial velocity components were obtained, as well as an 

interrelated system of evolution equations for the inner and outer layers in a gravitational field. 

The problem of determining the type of surfaces of two layers in the case of unsteady motion 

of liquids on the outer surface of a rotating cylindrical shell is solved. 

1.   Introduction 

The development of a number of promising technologies, which are based on film flows on rotating 

surfaces in the field of centrifugal forces, is of interest to study the movement of two immiscible layers 

of viscous liquids on the outer surface of a rotating cylinder. The results of the study of such a flow 

can be used in the technology of applying two-layer coatings on cylindrical surfaces with moderate 

rotation of the cylinder and the formation of composite metal fibers from the melt during its rapid 

rotation. 

The article [1] gives a solution to the flat problem of determining the type of surfaces of two layers 

in the case of steady motion of liquids on the outer surface of a rotating cylindrical shell. In the work 

[2], the complete formulation of the problem of the motion of two immiscible flat layers of viscous 

liquids on the inner surface of a horizontal cylinder is given and the problem is solved in the case of a 

flat steady motion in a gravity field with moderate rotation of the cylinder. The flat perturbed motion 

of one thin layer on a rotating cylinder is considered in [3, 4]. The results of experimental studies of 

single-layer flow are described in [3, 5]. The perturbed motion of a non-thin layer of a viscous fluid on 

the outer surface of a rotating cylinder with full allowance for inertial forces was explored in [6]. 

2.  Problem Statement 

Consider in the stationary polar coordinate system O, y, θ the case of a flat perturbed motion of two 

thin layers (films) of viscous immiscible liquids on the outer surface of a rotating cylinder. The flow 

pattern is shown in Figure 1. 
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Figure 1. Motion pattern of fluid layers on the outer surface of a rotating cylinder. 

ω0 – rotational speed of cylinder, g – gravity acceleration, pa – unperturbed 

environmental pressure. 

Fluid motion is described by the Navier-Stokes, continuity, unknown boundary line and free 

surface equations [2]. The boundary conditions express sticking to the moving boundary, the equality 

of velocities, tangential and normal forces at the boundary line of two liquids y=1+h1(θ,t), the absence 

of tangential stresses at the free boundary y=1+h2(θ,t). At the time t=0 initial conditions are specified  

initial surface forms and initial velocity distribution, and also the condition of periodicity in θ with a 

period of 2π. 

The equations of motion and the boundary conditions are dimensionless along the cylinder radius 

R0, its rotational speed ω0R0 and the density of the inner fluid layer ρ1. They contain dimensionless 

parameters – Reynolds Rei=R0
2
ω0νi

-1
, Froude Fr=R0ω0

2
g

-1
, Weber Wei=ρ1R0

3
ω0

2
σi

-1
 numbers, density 

ratio k=ρ1ρ2
-1

. Here νi – kinematic viscosity coefficients, g – gravity acceleration, σi – surface tension 

coefficients for liquids. The index i=1 everywhere denotes the values of the inner layer with the 

boundary y=1+h1, index i=2 – the outer layer with a free boundary y=1+h2. 

We introduce a small parameter ε, which has the meaning of the ratio of the average film thickness 

to the radius of the cylinder. The starting point for deriving the thin film equations is the idea [4]: 

 .,,1,
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WwVεvrεyHεh   (1) 

Substituting relations (1) into the system of equations, which is the formulation of the problem, 

from the Navier-Stokes equation in the projection on the radial direction, taking into account the 

boundary conditions, we determine the pressure pi(r,θ,t). Substituting the obtained pi into the Navier-

Stokes equations in the circumferential direction, we obtain the equations: 
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We introduce the notation: Reiε
2
=κi, Wei

-1
Reiε

3
=χi, Fr

-1
Reiε

2
=μi, i=1,2. Suppose that in the process 

of approaching transition as ε→0 dimensions κi, χi, μi tend to finite values. Physically, this assumption 

means that in equations (2), (3) the forces of inertia, viscosity, capillarity and gravity with small ε have 

the same order. Approaching to the limit in (2) – (3) as ε→0, we obtain the equations: 

 ,cos
3

2

3

2

11

1

1

2

3

1

3

1

112

1

2

1

1

1

1

1

1 

































































θ

H

θ

H
χ

We

We

θ

H

θ

H
χθμ

r

W

θ

W
W

r

W
V

t

W
κ  (4) 

 .cos
3

2

3

2

222

2

2

2

2

2

2

2

2 















































θ

H

θ

H
χkθμ

r

W

θ

W
W

r

W
V

t

W
κ  (5) 

Substituting equations (1) into the equations of continuity, free surface and boundary conditions, at 

ε→0 we get the following relations: 
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To the boundary conditions (6) – (10) for the system (4) – (5), we add periodicity conditions for Vi, 

Wi, Hi on to θ with a period of 2π and initial conditions: 

     ,0,,,
00

 tθrWWθHH
iiii  (11) 

where Hi0, Wi0 – specified functions. The initial condition for Wi at t=0 uniquely defines the initial 

value of the functions Vi. 

Equations (4) – (11) form a boundary value problem, the solution of which is interpreted as motion 

in two thin layers of liquids on the outer surface of a rotating cylinder with unknown boundary lines 

and the outer flow region. 

3.  Derivation of Evolution Equations 

Consider the case of slow rotation, when you can neglect the inertial terms, i.e. κi=0. For small 

changes in the surface, we also consider that the contribution of the surface tension forces is small, i.e. 

χi=0. It should be noted that the research method proposed below is applicable when taking into 

account surface forces, but the evolution equations will be more complicated. Equations (4) – (5) are 

reduced to: 
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We introduce the notation: l=Re1Re2
-1

μ2k
-1

. Solving the system (12) taking into account the boundary 

conditions (8) – (10), we find the circumferential velocity components Wi: 
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From the continuity equation (6) taking into account (13) – (14) we obtain the radial components: 
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Substituting the found values of the speeds Vi, Wi (13) – (16) into (7), we get the system: 
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The resulting system of differential equations (17) – (18) is the evolution equations for a two-layer 

film flow of viscous immiscible liquids on the outer surface of a horizontal cylinder that rotates with 

constant angular velocity in a gravity field, when the inertial terms of the motion equations can be 

neglected. 

4.  Solving Evolution Equations 

The numerical method for studying system (17) – (18) with initial conditions (11) and periodicity 

conditions along the angular coordinate with a period of 2π is based on the method of straight lines 

followed by integration using fourth-order Runge-Kutta formulas. Consider the numerical solution of 

the system (17) – (18). At the initial time, the films have a constant thickness h10 and h20. Now we 

compare the problem solutions in two cases: in the first case, the viscosity and density of the inner 

layer is 2 times greater than that of the outer; in the second case, on the contrary, the outer layer is 

more viscous and dense. Solutions obtained on the time interval [0, 200π], correspond to 100 full turns 

of the cylinder. The flow parameters for both solutions are presented in the Table 1. 

Table 1. Dimensionless flow parameters. 

Case ε h10 h20 k=ρ1ρ2
-1

 Re1 Re2 Fr μ1 μ2 

«1» 0.01 0.01 0.02 2 13.09 26.18 0.0987 0.01326 0.02653 

«2» 0.01 0.01 0.02 0.5 26.18 13.09 0.0987 0.02653 0.01326 

In the first case, when the viscosity and density of the inner layer is greater than that of the outer, 

changes in the surface are significantly less than in the second case. The radial velocity components 

have values of the order of 10
-4

, which is much less than the velocities in the circumferential direction. 
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The circumferential velocity components reach their maximum values on the descent of the liquid 

from the cylinder surface with θ ∈ [π/2, 3π/2], and the layer thicknesses in this area, on the contrary, 

take the minimum values. The maximum thickness of the layers is achieved on the rise of the fluid 

through the cylinder in a symmetric region. 

Figure 2 shows the differences in changes in the shapes of the surfaces of the inner layers y=h1(θ,t) 

for two different sets of flow parameters from Table 1, and Figure 3 shows the speeds w1 of the motion 

of the same layers in the circumferential direction. 

   

Figure 2. Three-dimensional plot of the surfaces 

of the inner layers of liquids y=1+h1(θ,t). 

 
Figure 3. The circumferential velocity 

components y=w1(θ,t). 

Table 2 shows the maximum and minimum values of hi, as well as the amplitudes of changes in the 

forms of the surfaces of the layers for the two variants of liquids from the Table 1. 

Table 2. Extreme and amplitude values. 

Case Max h1 Min h1 Amplitude h1 Max h2 Min h2 Amplitude h2 

«1» 0.01016 0.00985 0.00031 0.02063 0.01943 0.0012 

«2» 0.01083 0.00937 0.00146 0.02259 0.01815 0.00444 

The problem solutions are carried out for thin layers, therefore the absolute value of the layer 

deviations from the initial value is very small. To display the effect on the change in the form of the 

surface of a more dense and viscous external fluid, we give the ratios of the deviations of the maxima 

of the layers from the initial values h10 и h20. In the second case, the maximum of the inner layer h1 

deviates from the initial value of the layer thickness by an amount 5.2 times larger than in the first. 

The outer layer in the second case deviates from the h20 value by an amount 4.1 times larger than in 

the first case. 

Let us construct the two-dimensional plots at fixed points in time. In Figure 4, the forms of the 

surfaces y=1+hi for both variants of the calculation at a fixed time t=π are presented in the same 

graphic area. Now we demonstrate how the form of the surface of the layer changes over time in the 

period of one turn. Figure 5 shows the surface form of the outer layer y=1+h2 for the first variant of 

dimensionless flow criteria from Table 1 at fixed points in the first turn of the cylinder [0, 2π].  
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Figure 4. Forms of surfaces of the inner and outer 

layers y=1+hi(θ,t) with t=π. 

 
Figure 5. Forms of the surface of the outer layer 

y=1+h2(θ,t) at different times t. 

We will also construct plots of each of the surfaces of the layers in different plot areas. Figure 6 

shows the forms of the surfaces of only the inner layer y=1+h1 for two different variants of flow 

parameters from Table 1 at a fixed time t=π/2, in Figure 7 – only the outer layer y=1+h2 at time t=3π/2. 

   

Figure 6. Forms of surfaces of the inner layers 

y=1+h1(θ,π/2). 

 
Figure 7. Forms of surfaces of the outer layers 

y=1+h2(θ,3π/2). 

We construct the surface forms of the layers in several complete turns. Figure 8 shows the plots of 

the surfaces of the outer layer y=1+h2(θ,t) at times t={0, 2π, 4π, 6π, 8π, 10π}: (a) – for the first case of 

flow characteristics from table 1, (b) – for the second case. 

 

Figure 8. Surface forms y=1+h2 with t={0, 2π, 4π, 6π, 8π, 10π}. 
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The surfaces of the outer layers through a full turn have a similar form, but each time they 

increasingly deviate from the original constant thickness h20=0.02 by values of the order of 10
-4

 due to 

the development of nonlinear perturbations due to the action of gravity and inertia. 

5.  Conclusions 

Using the basic postulates of the thin-layer theory, an interconnected system of evolution equations is 

obtained to determine the type of the inner and outer layers in the case of a two-layer film flow of 

viscous immiscible liquids on the outer surface of a rotating cylinder in a gravitational force field. 

Solutions are obtained for the problem of the flow of two thin layers (films) of viscous liquids on the 

outer surface of a cylinder in a field of gravity for the case of slow and moderate rotation. The 

velocities of motion of the layers of liquids, the boundary between the layers, and the free surface 

were determined and analyzed depending on the dimensionless flow criteria. 
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