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THE ZIEGLER SPECTRUM OF THE RING OF ENTIRE COMPLEX

VALUED FUNCTIONS

SONIA L’INNOCENTE, FRANÇOISE POINT, GENA PUNINSKI, AND CARLO TOFFALORI

Abstract. We will describe the Ziegler spectrum over the ring of entire complex valued func-

tions.

1. Introduction

In [23] the third and fourth authors developed the model theory of modules over Bézout

domains. For instance, a substantial information on the structure of the Ziegler spectrum over

an arbitrary Bézout domain B, ZgB , was obtained. However, as it was mentioned there, this

information is expected to be elaborated for particular classes of Bezout domains. One example

of this refinement was given in [22], and some information on the structure of the Ziegler spectrum

of the ring of algebraic integers is contained in a recent preprint [16].

In this note we will investigate this topological space for the prominent example of a Bézout

domain: the ring E = E(C) of complex valued entire functions. This was the question that

Luigi Salce once asked Ivo Herzog. We will show that the points of ZgE are given by triples

(U, I, J), where U is an ultrafilter on an (at most countable) nowhere dense subset D of C, and

I, J are cuts on the linearly ordered abelian semigroup N
D/U . The isolated points of this space

correspond to principal ultrafilters, hence are of the form Et(k) = E/(z− t)kE, where t ∈ C and

k ≥ 1, and they form a dense subset in the Ziegler spectrum.

We will also describe the closed points of ZgE as the finite length points E/Mk for maximal

ideals M of E (for instance the modules Et(k) are such), plus the generic points. Here generic

means the quotient field of a prime factor E/P of E, in particular the quotient field Q of E,

which is the field of meromorphic functions.

We will also show that the Cantor–Bendixson derivative T ′
E of the theory TE of E-modules

coincides with the theory of ES-modules, where S is the multiplicatively closed set consisting of

nonzero polynomials. There are no isolated points on the next level, i.e. the first CB-derivative

Zg′E is a perfect space. Furthermore, no nontrivial interval in the lattice of positive primitive

formulae of T ′
E is a chain, hence this theory lacks both breadth and width. Further we will show

that the pure injective hull of ES is a superdecomposable module E-module. Finally we will see

that the closed points in Zg′E are generics.

This paper paves the way for some future applications, say to the proof of decidability of the

theory of E-modules. However we decided to postpone these developments, but spell out now,
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in a meticulous way, the facts on the Ziegler spectrum of Bézout domains which occur when

investigating this space for E. We hope that they will be useful when studying the model theory

of modules over other examples of Bézout domains which occur in analysis, say, the ring of real

analytic functions.

Due to the fact that none of the authors is an expert in complex analysis we will be quite

insisting in collecting and explaining some facts in this area, which are well known to experts,

but were difficult to find for us. To make up for this we will also include precise references and

explanations (mostly taken from [23]) from model theory of modules over Bézout domains.

2. The ring of entire functions

Let C denote the field of complex numbers. Recall that a function f : C → C is said to

be entire, if it is given by an everywhere convergent power series
∑∞

n=0 anz
n with complex

coefficients an, i.e. lim
n→∞

n
√

|an| = 0. For instance, the exponential function ez =
∑∞

n=0
zn

n! is

entire, so as the sine function sin z =
∑∞

n=0
z2n+1

(2n+1)! . More examples and explanations can be

found in any complex analysis textbook, say [1] or [24]. For instance, each entire function is

differentiable, and its derivative is of the same kind.

If we add or multiply entire functions pointwise, the result is likewise. Thus, entire functions

form a commutative ring E whose unity is the constant function of value 1. We will be interested

in ring theoretic properties of E. Note that the cardinality of E is the continuum c = 2ℵ0 .

Let Z(f) = {z ∈ C | f(z) = 0} denote the zero set of an entire function f . Then Z(f) is

at most countable set whose only possible accumulation point is at infinity. For instance, this

is the case for the sine function: Z(sin z) consists of points πk, k ∈ Z. On the other hand, the

zero set of each polynomial is finite, and the zero set of the exponential function is empty. If

z ∈ C then µf (z) will denote the multiplicity of z as a root of f , which is a natural number, in

particular µf (z) = 0 iff z is not a zero of f . Thus to each entire f we assign the multiplicity

function µf : Z(f) → N. Usually the zeroes of an entire function f are counted as z0, z1, z2, . . .

such that |zk| ≤ |zk+1|, and each zk occurs only finitely many times.

If f, g ∈ E then clearly Z(fg) = Z(f)∪Z(g) and, for any z, its multiplicity µfg(z) is the sum

of multiplicities µf (z) and µg(z). Since the zero set of an entire function is nowhere dense, E is

a domain: fg 6= 0 for nonzero f, g ∈ E.

The next fact shows that the zero set and the multiplicity of an entire function determine the

principal ideal it generates.

Fact 2.1. Let f, g ∈ E. Then g ∈ fE if and only if Z(f) ⊆ Z(g) and µf (z) ≤ µg(z) for each

z ∈ Z(f). In particular f ∈ E is invertible if and only if Z(f) = ∅.

The proof of this result requires Weierstrass’ theorem on functions with a prescribed set of

zeroes. Namely, for each k define the Weierstrass primary factor Ek(z) = (1 − z) exp(z +

z2/2!+· · ·+zk/k!), which is an entire function with z = 1 as its only (simple) zero. Let {zk} be an

absolute value nondecreasing sequence of complex numbers such that each zk occurs mk times.

Then the infinite product
∏∞

k=0Ek(z/zk) is an entire function whose zero set consists of the zk
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with multiplicity mk. Further, if f is any function with this property, then, by Weierstrass’

factorization theorem, f = eg ·
∏∞

k=0Ek(z/zk) for an entire function g.

A useful variant of this result is the following.

Fact 2.2. (see [6, Prop. 1.1]) Let {zk} be an absolute value nondecreasing sequence of complex

numbers with no finite accumulation point. Let {wnk} be a double sequence of complex numbers.

Then there exists an entire function f such that f (n)(zk) = wnk for all k, n.

Recall that a commutative domain B is said to be Bézout, if each 2-generated ideal of B

is principal. This amounts to the so-called Bézout identities: for each 0 6= a, b ∈ B there

are c, r, s, u, v such that c = ar + bs and a = cu, b = cv, hence c generates the ideal aB + bB.

Then c is a greatest common divisor of a and b, written gcd(a, b), which is defined up to a

multiplicative unit. Similarly, the notion of a least common multiple, lcm(a, b), makes perfect

sense, and (with a suitable choice of units) we obtain the formula ab = gcd(a, b) · lcm(a, b).

The following fact goes back to Weierstrass, but was brought into prominence by Helmer [9].

We will sketch its proof, borrowed from elsewhere.

Fact 2.3. The ring E of entire complex valued functions is a Bézout domain.

Proof. We look for a greatest common denominator of f, g ∈ E, i.e. an element h ∈ fE + gE

such that f, g ∈ hE. We may assume that f, g are nonzero and not invertible. It follows easily

that Z(h) = Z(f) ∩ Z(g), and the multiplicity of each z ∈ Z(h) equals the minimum of µf (z)

and µg(z). Choose any such h. Since it divides both f and g, canceling by h, we may assume

that Z(f) ∩ Z(g) = ∅, hence we have to solve the equation fu+ gv = 1.

In fact, it suffices to find v ∈ E such that Z(f) ⊆ Z(1 − gv) and µf (z) ≤ µ1−gv(z) for each

z ∈ Z(f), - then u exists by Fact 2.1. For each z ∈ Z(f) we will specify few values of v and its

derivatives, and then construct v using Fact 2.2.

Thus choose z ∈ Z(f) and assume (for simplicity) that µf (z) = 3. Using the standard

interpretation of multiple roots in terms of common roots with derivatives, we need to satisfy

the following equalities:

(1− gv)(z) = 0, (1− gv)′(z) = 0 and (1− gv)′′(z) = 0 .

The first condition reads 1 = g(z)v(z). From f(z) = 0 it follows g(z) 6= 0, hence define

v(z) = −1/g(z). To satisfy the second and the third equations we set v′(z) = −g′(z)v(z)/g(z)

and v′′(z) = (−g′′(z)v(z) − 2g′(z)v′(z))/g(z). �

We will need one more property of E. Recall that elements a, b of a Bézout domain B are

called coprime if gcd(a, b) = 1, that is, if aB+ bB = B holds. Following [4, p. 118] we say that

B is adequate if, for all nonzero noninvertible a, b ∈ B, there is a factorization a = cd such that

gcd(c, b) = 1 and, for each noninvertible divisor d′ of d, the elements d′ and b are not coprime.

In the ring of entire functions the latter means that Z(d) ⊆ Z(b).

Fact 2.4. E is an adequate Bézout domain.
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Proof. Let f, g ∈ E be nonzero and not invertible. Choose h ∈ E such that Z(h) = Z(f) \Z(g),

and µh(z) = µf (z) for each z in this set, in particular h and g are coprime. Then f = hu, where

Z(u) = Z(f) ∩ Z(g) ⊆ Z(g), as desired. �

Z(f) Z(g)

Z(h) Z(u)Z(h)

A (commutative) domain V is said to be a valuation domain, if its ideals are linearly ordered

by inclusion. More generally, a domain R is said to be a Prüfer domain if, for each prime

ideal P , the localization RP is a valuation domain, - see [4, Ch. 3] for equivalent definitions and

properties. Since each Bézout domain B is a Prüfer domain, it follows that any prime ideals

P1, P2 of B included in a maximal ideal M are comparable, i.e. there is no following inclusion

diagram for prime ideals.

◦

✹✹
✹✹

✹✹

✡✡
✡✡
✡✡

M

◦P1 ◦ P2

For adequate Bézout domains no opposite inclusion diagram occurs.

Fact 2.5. (see [10, Thm. 4]) Let B be an adequate Bézout domain. Then every nonzero prime

ideal P is contained in a unique maximal ideal, in particular B/P is a valuation domain.

Note that the latter statement follows from the former, because each local Bézout domain is

a valuation domain. For more details on the proof, see a similar situation in Lemma 3.3 below

(just replace I and I♯ by P ).

The ring E possesses more remarkable properties, for instance, being adequate, it has ele-

mentary divisors and (see [14]) stable rank 1, but we will not use these properties in the

paper.

3. Ideals of Bézout domains

First let us make a trivial remark concerning arbitrary ideals of Bézout domains.

Remark 3.1. Let I be an ideal of a Bézout domain B and 0 6= a ∈ I. Then b ∈ I if and only

if gcd(a, b) ∈ I.

Thus to describe I it suffices to look at the divisors b of a. For instance, if B = E, then the

latter implies that Z(b) ⊆ Z(a).

We say that a proper ideal I of a Bézout domain B is weakly prime, if its complement

I∗ = B \ I is closed with respect to least common multiples, i.e. a, b ∈ I∗ yields lcm(a, b) ∈ I∗.

Clearly each prime ideal is weakly prime. On the other hand, for instance, the ideal z2E of E is
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weakly prime but not prime. These ideals appeared very naturally in [23] and have many nice

properties to justify their name. We mention just a few.

Here is Matlis’ like definition, - see [17]. Let I♯ consist of elements r ∈ B such that ar ∈ I for

some a ∈ I∗. For instance 0 ∈ I♯, 1 /∈ I♯ and I ⊆ I♯.

Lemma 3.2. If I is a weakly prime ideal of a Bézout domain B, then I♯ is a prime ideal

containing I. Further if P is prime ideal, then P = P ♯.

Proof. Clearly I♯ is closed with respect to multiplication by elements of B. To check that it

is closed with respect to addition, suppose that r1, r2 ∈ I♯, hence airi ∈ I for some ai ∈ I∗.

Since I is weakly prime we conclude that a = lcm(a1, a2) ∈ I∗. Then ari ∈ I for every i yields

a(r1 + r2) ∈ I, therefore r1 + r2 ∈ I♯.

If P is prime, then the inclusion P ♯ ⊆ P follows from the definition of P ♯. �

The following result extends Fact 2.5, with almost the same proof.

Lemma 3.3. Each nonzero weakly prime ideal I of an adequate Bézout domain B is contained

in a unique maximal ideal, in particular B/I is a valuation ring, possibly with zero divisors.

Proof. Suppose that I is contained in different maximal ideals M1,M2, hence 1 = q1 + q2 for

some q1 ∈M1 \M2 and q2 ∈M2 \M1.

◦M1 ◦M2

◦

✡✡✡✡✡✡

✹✹✹✹✹✹

P

Choose a nonzero p ∈ I. Applying the definition of being adequate to p and q1 we get a

factorization p = r1s1, where gcd(r1, q1) = 1, and q1 is not coprime to any nonunit dividing s1.

From gcd(r1, q1) = 1 and q1 ∈ M1 it follows that r1 /∈ M1, in particular r1 /∈ I♯ . Since I♯ is

prime, we derive s1 ∈ I♯. Similarly p = r2s2, where r2 /∈ I♯, s2 ∈ I♯, and q2 is not coprime to

any nonunit dividing s2.

From s1, s2 ∈ I♯ we conclude that s = gcd(s1, s2) ∈ I♯. Applying the above condition

to s and q1, and then involving q2, we construct a nonunit dividing both q1 and q2, a clear

contradiction. �

The description of maximal ideals of E is well known, and there is a reasonably good (see some

comments below) description of prime ideals of E. We approach this classification backwards,

first describing weakly prime ideals. Because it involves ultrafilters on countable sets, we will

introduce this terminology.

3.1. Ultrafilters. Let D be a nonempty at most countable set (mostly a subset of C). Recall

that a nonempty collection of subsets of D is said to be a filter, if 1) ∅ /∈ U ; 2) U is upward

closed, i.e. if K ⊆ L ⊆ D, then K ∈ U implies L ∈ U ; 3) U is closed with respect to finite

intersections.
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The set of filters on D is partially ordered by inclusion, and maximal elements of this ordering

are called ultrafilters. In fact U is an ultrafilter iff for any partition D = K1∪K2 either K1 ∈ U

or K2 ∈ U holds.

For instance, for each d ∈ D, there exists a principal ultrafilter Ud, namely K ∈ Ud iff

d ∈ K. If D is finite, then each ultrafilter on D is of this form. Otherwise U is non-principal,

in particular each cofinite set belongs to U , therefore U is not closed with respect to countable

intersections. Further, by [13, pp. 255–256], there are 2 c ultrafilters on a countable (infinite)

D.

Let A be any algebraic system in a countable language and let U be an ultrafilter on D. Then

the elements of ultraproduct AU = AD/U are equivalence classes of functions µ : D → A.

Here the functions µ and µ′ are equivalent if they take the same values on a large subset of

D, i.e. if the equalizer {d ∈ D | µ(d) = µ′(d)} is in U .

All operations and relations are naturally transferred to AU , and A is embedded into AU

diagonally. From [3, Cor. 4.1.13] it follows that AU is an elementary extension of A, in particular

A and AU are elementary equivalent. If U = Ud is principal, then the evaluation map f 7→ f(d)

defines an isomorphism from AU onto A. Otherwise these algebraic systems are not isomorphic,

and (see [3, Thm. 6.1.1]) AU is ω1-saturated of cardinality c. Further, if we assume the

Continuum Hypothesis, CH, then (see [3, Thm. 6.1.1]) the isomorphism type of AU does not

depend on U , as soon as U is non-principal.

Our main interest will be when A = N considered as a linearly ordered abelian semigroup

(with respect to addition). If D and U are as above, then let N = NU denote the ultraproduct

N
D/U . Thus, if U is principal, then N ∼= N, and otherwise N = N

D/U is an ω1-saturated

linearly ordered abelian semigroup of cardinality c. For instance (taking D = ω for simplicity),

if U is not principal, then the function µ(n) = 10n + 1 is less than the function µ′(n) = n2 in

N , because 10n + 1 is less than n2 for n ≥ 11.

As a linear ordering NU contains a least (but no largest) element, and has a lot of simple

intervals. Namely, if µ ∈ NU , then the function µ′(d) = µ(d) + 1 covers µ, i.e. µ < µ′ in NU

and there is no µ′′ strictly between µ and µ′. Further it is easily seen that for µ ≤ µ′ ∈ NU , the

interval [µ, µ′] is of finite length iff the difference µ′ − µ is bounded by some k, i.e. the set

{d ∈ D | µ′(d)− µ(d) ≤ k} is large.

We define the functions µ, µ′ ∈ N to be finite equivalent, written µ ∼fin µ
′, if the interval

between µ and µ′ (or vice versa) is of finite length. Each equivalence class of ∼fin in N is

countable. Because N is ω1-saturated, it follows that the factor set N ′ = N/ ∼f is a linear

ordering of cardinality c which is dense, i.e. for each a < b in this chain there exists c such that

a < c < b.

3.2. Weakly prime ideals. In what follows we will use the approach from Gillman–Jerison

book [5].

Let I be a nonzero ideal of E. Choose 0 6= f ∈ I, hence the zero set D = Z(f) is at most

countable and nowhere dense. Let Uf consist of subsets of D of the form Z(g), where g ∈ I.

Using the divisibility properties of entire functions it is easily checked that Uf is a filter on D.
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Then we obtain the following dichotomy. If there is a g ∈ I with the smallest Z(g) ∈ Uf , then

I is called fixed, otherwise I is said to be free.

Lemma 3.4. Let I be a nonzero weakly prime ideal of E, 0 6= f ∈ I and D = Z(f). Then Uf

is an ultrafilter on D.

Proof. We have already mentioned that U = Uf is a filter. To prove that U is maximal, consider

a nontrivial partition D = K1 ∪ K2. Let f1 ∈ E have K1 as its zero set, and multiplicity of

each z ∈ K1 is the same as for f ; and similarly define f2. If f1, f2 /∈ I then, by the assumption,

g = lcm(f1, f2) /∈ I. But g generates the same ideal as f , a contradiction. �

Note that, if f, g ∈ I, then h = gcd(f, g) ∈ I, and Uh is a common restriction of Uf and Ug

on the zero set Z(h).

For fixed weakly prime ideals (z− t)kE, k ≥ 1 the smallest zero set is the singleton {t}. Thus

to distinguish weakly prime ideals we need more invariants.

Recall that a cut on a linearly ordered set L is a proper partition L = L1 ∪ L2 such that L2

is upward closed, hence L1 is downward closed. Clearly each cut is uniquely determined by L2

and vice versa, hence we will often identify the cut with its upper part.

The following proposition describes weakly prime ideals using cuts on some chains.

Proposition 3.5. Let I be a nonzero weakly prime ideal of E.

1) If I is fixed then I = (z − t)kE for some t ∈ C and k ≥ 1.

2) Suppose that I is free. Choose 0 6= f ∈ I and let D = Z(f). Let c(I) consist of multiplicity

functions µg, g ∈ I restricted to D, considered as elements of NUf
= N

D/Uf . Then c(I) is a

cut on this chain, further Uf and c(I) determine I uniquely.

Proof. 1) If I is fixed, then choose 0 6= f ∈ I with the least zero set. Since Uf is an ultrafilter,

we conclude that Z(f) is a singleton {t}. It follows that I = (z − t)kE for some k ≥ 1.

2) Suppose that I is free. First we will show that c(I) is upward closed. Suppose that µg ≤ µ

modulo U for some function µ ∈ N
D, hence µg(d) ≤ µ(d) for each d in a large subset K of D.

We need to construct an entire u such that the restriction of its multiplicity function to D equals

µ modulo U .

By the definition of Uf we find h ∈ I such that Z(h) = K. Replacing h by gcd(g, h) we may

assume that µh(d) ≤ µ(d) for each d ∈ K. Now construct an entire u such that µu restricted to

K coincides with µ, and equals zero otherwise. Then h divides u, hence u ∈ I.

It remains to check that Uf and c(I) determine I uniquely. Suppose that I ′ 6= I is another

weakly prime ideal which contains f and define the same ultrafilter Uf on D = Z(f), and the

same cut c(I). By symmetry we may assume that there exists g ∈ I \ I ′. By the assumption,

there exists g′ ∈ I ′ such that the restrictions of µg and µg′ to D equal modulo U . Choose a large

K ⊆ D on which these multiplicity functions coincide. Construct h ∈ I, h′ ∈ I ′ whose zero sets

equal K, and µh(z) = µh′(z) for each z ∈ K. It clearly follows that h ∈ I \ I ′, but hE = h′E, a

contradiction. �
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Thus nonzero weakly prime ideals I, I ′ of E coincide iff for some (or any) 0 6= f ∈ I ∩ I ′

they define the same ultrafilter U = Uf on the zero set D = Z(f), and the same cut on the

corresponding chain NU .

The following remark is obvious.

Remark 3.6. Let I ⊆ I ′ be nonzero weakly prime ideals of E. If 0 6= f ∈ I then they define

the same ultrafilter U = Uf on D = Z(f), and c(I) ≤ c(I ′) for corresponding cuts on NU , i.e.

the upper part of c(I) is contained in the upper part of c(I ′).

Proof. Clearly U(I) ⊆ U(I ′), hence the equality follows from the maximality of ultrafilters. The

remaining part is straightforward. �

Because each prime ideal is completely prime, we recover a well known description of prime

ideals of E. Namely, prime ideals P are distinguished by the property that the cut c(P ) on the

chain NU is prime, i.e., if the equivalence class of a multiplicity function µk is in c(P ) for some

k, then the same holds true for µ. For instance (taking again D = ω for simplicity), if µ(n) = 2n

is in c(I), then µ′(n) = n belongs to there, but also µ′′(n) = ⌊n/2⌋.

In particular fixed prime ideals are exactly the maximal ideals Mt = (z − t)E, t ∈ C. If P

is not fixed, then, because all calculations are made modulo a nonprincipal ultrafilter U , the

property of being prime is quite tricky. For instance (see [6]) for each pair of prime ideals P ⊂ P ′

there exist at least 2ℵ1 ideals strictly between P and P ′. The main idea is that this interval

contains a Dedekind complete η1-set of prime ideals, hence [5, Cor. 13.24] gives the desired

cardinality.

If we assume the continuum hypothesis, then ℵ1 = c, hence the length of a maximal chain of

prime ideals in E equals 2 c. However, if we accept the Martin axiom with the negation of CH,

then we see only (following [15]) that this length is at least 2ℵ1 = c. We do not know what is

the face value of the Krull dimension of E.

Finally we obtain a classical description of maximal idealsM of E. Here the corresponding cut

c(I) contains all positive multiplicity functions, hence is uniquely determined by the ultrafilter

U . Thus either M is fixed, hence equals Mt = (z − t)E for some t ∈ C; or M is free, therefore

is uniquely determined by the ultrafilter Uf on D = Z(f) for any 0 6= f ∈ M . From this it is

obvious that each weakly prime ideal of E is contained in a unique maximal ideal.

4. Model theory of modules

In this section we will recall main notions of the model theory of modules, - for which we refer

to [18]; the particular case of Bézout domains is treated in detail in [23].

Let R be a commutative ring. A positive-primitive formula ϕ(x) in one free variable x

is an existential formula ∃ y (yA = xb̄), where y = (y1, . . . , yk) is a tuple of bound variables, A

is a k × l matrix over R, and b̄ is a row of length l. For instance, for each a ∈ R, we have the

divisibility formula a | x of the form ∃ y (ya = x), and the annihilator formula xa = 0.

Let N be a right R-module and choose m ∈ N . We say that m satisfies ϕ in N , written

N |= ϕ(m), if there exists a tuple m = (m1, . . . ,mk) in N such that mA = mb holds. For
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instance N |= (a | x)(m) iff m = m′a for some m′ ∈ N , i.e. if m is divisible by a in N . Further

N |= (xa = 0)(m) iff ma = 0.

The corresponding definable subgroup, ϕ(N), consists of m ∈ N which satisfy ϕ. Since R

is commutative, ϕ(N) is a submodule of N . For instance (a | x)(N) = Na, and (xa = 0)(N)

consists of elements of N which are annihilated by a.

We need the following ’elimination of quantifiers’ result for pp-formulae over Bézout domains.

Fact 4.1. (see [23, L. 2.3]) Let B be a Bézout domain. Then each pp-formula ϕ(x) is equivalent

in the theory of B-modules to a finite sum of formulas a | x ∧ xb = 0, a, b ∈ B; and to a finite

conjunction of formulas c | x+ xd = 0, c, d ∈ B.

If B = E then a further reduction is possible. For instance, if 0 6= c is not a unit and d

is nonzero, then one may assume that Z(d) ⊆ Z(c) in the latter formula. Namely decompose

d = ed′ such that gcd(e, c) = 1 according to the definition of being adequate, in particular

Z(d′) ⊆ Z(c). Since c and e are coprime, it follows from [23, Sect. 3] that the formulae

c | x+xd = 0 and c | x+xd′ = 0 are equivalent. Further, using elementary duality, we may also

assume that, if 0 6= b is not a unit and a 6= 0, then Z(a) ⊆ Z(b) in the former formula.

An inclusion of modules N ⊆ N ′ is said to be pure if, for each m ∈ N and each pp-formula

ϕ, from N ′ |= ϕ(m) it follows that N |= ϕ(m). For instance each injective module is pure in any

its overmodule. We say that a module is pure injective if it is injective with respect to pure

embeddings. For example, each injective module is pure injective, and the same holds true for

each R-module of finite length.

The isomorphism types of indecomposable pure injective modules form points of a topological

space, the Ziegler spectrum of R, ZgR. In fact there at most 2max(|R|,ℵ0) such points. The

topology on this space is given by (quasi-compact) basic open sets (ϕ/ψ), where ϕ,ψ range over

pp-formulae in one variable. Here (ϕ/ψ) consists of points N in ZgR such that ϕ(N) is not a

subset of ψ(N). We will often refer as ’ϕ over ψ’ to this set. For instance, the open set xa = 0

over x = 0 consists of indecomposable pure injective modules containing a nonzero element

annihilated by a.

For Bézout domains Fact 4.1 provides a better basis for Ziegler topology.

Fact 4.2. Let B be a Bézout domain. Then the basic open sets a | x∧xb = 0 over c | x+xd = 0,

a, b, c, d ∈ B form an open basis of Ziegler topology.

Of course some such pairs of pp-formulae define empty sets, hence redundant. A precise

criterion when this happens can be extracted from [23, Sect. 4].

Since E is a Prüfer domain, each indecomposable pure injective module N is pp-uniserial,

i.e. the lattice of definable subgroups of N is a chain. It follows that each basic open set as

above equals to the intersection of the following open sets: 1) a | x over xb = 0; 2) a | x over

c | x; 3) xb = 0 over c | x, and 4) xb = 0 over xd = 0, hence these sets give a subbasis for the

Ziegler topology.

The support of some such pairs is easily understood. For instance, look at the pair a | x over

c | x. If it is nontrivial then, taking the conjunction and using [23, L. 3.1], we may assume that
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a 6= 0 and c = ga for some nonunit g. This pair opens a point N iff Nga is a proper subset of

Na. Since N is pp-uniserial, this is the same as Ng ⊂ N and Na 6= 0. Thus we can further

decompose this basic open set into the intersection of open sets x = x over g | x, and x = x over

xa = 0.

However, we see no real advantage in working with this subbasis, because (we thank Lorna

Gregory for this remark) the intersection of arbitrary such pairs, say xb = 0 over x = 0, and

x = x over a | x may be non-compact, hence equals to an infinite union of basic open sets.

Let N be an R-module and let m be a nonzero element of N . The positive primitive type

of m in N , written ppM (m), consists of pp-formulae ϕ such that m satisfies ϕ in N , in particular

this set is closed with respect to finite conjunctions and implications. The converse is also true:

if p is a collection of pp-formulae closed with respect to finite conjunctions and implications,

then there exists a module N and its element m such that p = ppN (m).

A pp-type p is said to be indecomposable if it is realized by a nonzero element in an

indecomposable pure injective module. This module is unique up to an isomorphism over the

realization, and is called the pure injective envelope of p, written PE(p). Note that different

pp-types may lead to isomorphic pure injective envelopes, for example, this is the case when

N is an indecomposable pure injective module and p = ppM(m), q = ppM(mr), where mr is

nonzero, thus q is a direct shift of p.

Now we specialize to Bézout domains. First we refine the classification of indecomposable

pp-types from [23, Thm. 4.5].

Lemma 4.3. Let B be a Bézout domain. Then there exists a natural one-to-one correspondence

between indecomposable pp-types p in one variable in the theory of B-modules and the pairs

(I, J) such that the following holds.

1) The annihilator ideal I = I(p), consisting of b ∈ B such that xb = 0 ∈ p, is a weakly

prime ideal.

2) The non-divisibility ideal J = J(p), consisting of a ∈ B such that a | x is not in p, is a

weakly prime ideal.

3) I♯ and J ♯ are comparable prime ideals.

Such pairs are called admissible in [23].

Proof. The only difference with [23] is that in there 3) is formulated as follows. If d ∈ I∗

divides b ∈ I, and c ∈ J∗ divides a ∈ J , then the quotients b/d and a/c are not coprime. This

means that b/d ∈ I♯ and a/c ∈ J ♯, hence that I♯ + J ♯ is a proper ideal. The remaining part is

straightforward. �

Note that, if I = 0 and J = 0, then 3) gets trivial. On the other hand, if B = E and I, J are

nonzero, then 3) means that there is 0 6= f ∈ I ∩ J , and the ultrafilters Uf on D = Z(f) defined

by I and J coincide, and there are no further restrictions. Thus we are led to the following

definition.

A triple (U, I, J) is said to be admissible, if I, J are weakly prime ideals of E such that one

of the following holds.



11

1) I = J = 0 and U is an empty.

2) I is nonzero, J = 0 and, for some 0 6= f ∈ I, U = Uf is an ultrafilter on D = Z(f)

corresponding to I.

3) I = 0, J is nonzero and, for some 0 6= g ∈ J , U = Ug is an ultrafilter on D = Z(g)

corresponding to J .

4) I, J 6= 0 and there is 0 6= h ∈ I ∩ J such that U = Uh is an ultrafilter on D = Z(h) defined

by both I and J .

When I or J are nonzero, they define the cuts c(I) and c(J) on the ultraproduct NU = N
D/U ,

and are uniquely determined by these cuts. We will often identify ideals with the corresponding

cuts.

Note that the triples (U, I, J) and (U ′, I ′, J ′) in 4) produce the same pp-type iff I = I ′,

J = J ′, hence U and U ′ have a common restriction to Z(f) ∩ Z(g), and similarly for 2) and

3). For instance, if U is defined on some D and generated by t ∈ D, then I = (z − t)kE and

J = (z − t)lE, and these k, l ≥ 1 uniquely determine the pp-type.

In particular there is a unique pp-type corresponding to the pair I = J = 0 as in 1). This

pp-type is realized by any nonzero element in the quotient field Q of E, which is the field of

meromorphic functions.

We will denote by p(U, I, J) the indecomposable pp-type associated to an admissible triple

(U, I, J), and by PE(U, I, J) the corresponding indecomposable pure injective module.

It follows from [25, Thm. 5.4] that over a commutative ring R each indecomposable pure

injective module N localizes. Namely define the localizing ideal P = P (N) to consist of

elements of R which do not act by multiplication as automorphisms of N . Then P is a prime

ideal and N is (pure injective indecomposable) module over the localization RP . This ideal is

easily recognized in our setting.

Lemma 4.4. Let (U, I, J) be an admissible triple over E, and let N = PE(U, I, J) be the

corresponding indecomposable pure injective module. Then the localizing ideal of N is the prime

ideal I♯ ∪ J ♯.

Proof. Choose m ∈ N which realizes p = p(U, I, J). If f ∈ E then it is easily checked that the

multiplication by f does not increase p iff f /∈ I♯ ∪ J ♯, from which the result follows.

Namely, for every f ∈ I♯ there is g ∈ I∗ such that gf ∈ I. It follows that mg 6= 0 and

mgf = 0, hence f cannot determine an automorphism of N ; and similarly if f ∈ J ♯. Conversely,

let f /∈ I♯∪J ♯. Then I♯ and J ♯ are preserved under multiplication by f . Thus this multiplication

does not increase p and determines an automorphism of N . �

Another possibility to grasp the meaning of this ideal is the following. We have f /∈ I♯ ∪ J ♯

iff Z(f) is separated from U , i.e. if there exists K ∈ U such that Z(f) ∩K = ∅.

Having described indecomposable pp-types, we wish to classify their envelopes, i.e. inde-

composable pure injective modules. To determine points of ZgE, it remains to describe the

equivalence relation on such pp-types which correspond to the isomorphism relation on their



12

envelopes. We have already mentioned the typical occurrence of such identification: the shift

by an element of the ring.

It follows from [23, L. 4.7] that for Bézout domains this is the only possibility: if m,m′ are

nonzero elements in an indecomposable pure injective module N , then there exists r ∈ B such

that ppN (mr) = ppN(m′) or ppN (m) = ppN(m′r), hence these types are identified by either

direct or inverse shift. This leads to a simple description of this equivalence relation on the level

of admissible pairs. We say that admissible pairs (I, J) and (I ′, J ′) are equivalent, if their

pure injective envelopes are isomorphic. By [23, L. 4.6, 4.7] this happens iff one of the following

holds.

1) There exists a /∈ I such that I ′ = (I : a) = {b ∈ B | ab ∈ I} and (J ′)∗ = J∗
a = {b ∈ B |

b/ gcd(a, b) ∈ J∗}, the direct shift by a,

2) The symmetric condition with (I, J) and (I ′, J ′) interchanged, the inverse shift by a.

Note that the direct or inverse shift of the zero ideal is zero again, furthermore such shifts do

not change prime ideals.

For E the above shifts correspond to a simultaneous shifting of the pair of cuts. Namely, we

choose a function µ in the lower part of c(I), subtract it from the multiplicity function of each

f ∈ I to get I ′, and add this function to the multiplicity function of each g ∈ J to get J ′; or

make a similar construction starting with µ in the lower part of c(J).

For instance, suppose that I is a principal cut generated by the function µ(n) = n + 1 in

the ultraproduct ND/U for some zero set D identified with ω; and let J correspond to the the

principal cut on D generated by η(n) = n2. Then the function ρ(n) = n is in the lower part of

c(I). Taking the direct shift by ρ, we obtain an equivalent pair (I ′, J ′), where I ′ is the maximal

ideal MU , such that c(I ′) is generated by µ′(n) = 1; and c(J ′) is generated by η′(n) = n2 + n.

Thus we have obtained the following description of points of ZgE .

Theorem 4.5. Let E be the ring of entire functions. There is a natural one-to-one correspon-

dence between points of the Ziegler spectrum of E (hence isomorphism type of indecomposable

pure injective modules) and admissible triples (U, I, J) with respect to the following equivalence

relation.

1) For nonzero I, J, I ′, J ′, the triples (U, I, J) and (U ′, I ′, J ′) are equivalent iff U and U ′ can

be restricted on a common zero set D ∈ U,U ′ such that the restriction of cuts corresponding to

(I, J) and (I ′, J ′) can be identified by a shift.

2) If I = 0 but J is nonzero, then (U, I, J) and (U ′, I ′, J ′) are equivalent iff I ′ = 0 and J, J ′

can be restricted to a common zero set D ∈ U,U ′ such that the restriction of cuts corresponding

to J and J ′ on D can be identified by a shift.

3) If I is nonzero but J = 0, then (U, I, J) and (U ′, I ′, J ′) are equivalent iff J ′ = 0 and I, I ′

can be restricted to a common zero set D ∈ U,U ′ such that the restriction of cuts corresponding

to I and I ′ on D can be identified by a shift.

4) If I = J = 0, then we have only one admissible triple (∅, 0, 0) in this equivalence class.
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5. The Ziegler spectrum

In the previous section we have described the points of the topological space ZgE . In this

section we will touch upon the topology. First we estimate the number of points in this space.

Proposition 5.1. The cardinality of the Ziegler spectrum of E equals 2 c.

Proof. Since the cardinality of E is continuum, we conclude that |ZgE | ≤ 2 c. On the other

hand, chosen a nonzero countable subset D of C, one can construct 2 c ultrafilters U on D, hence

the same amount of free maximal ideals of E. When M ranges over these maximal ideals, then

the admissible triples (U,M, 0) provide non-isomorphic indecomposable pure injective modules.

Namely, if a /∈ M then (M : a) = M , hence the direct or inverse shift does not change the

corresponding cut. �

In fact the above constructed points can be separated from each other using Ziegler topology.

Namely, assume that U,U ′ are different ultrafilters on D, hence there is a zero set Z(g) ⊆ D

which is in U but not in U ′. Then g acts with torsion on PE(U,M, 0), but as an automorphism

on PE(U ′,M, 0), hence the former point is separated from the latter by the pair xg = 0 over

x = 0. Thus ZgE has a collection of 2 c points which can be pairwise separated, hence not

elementary equivalent.

We will employ the following point of view on the Ziegler spectrum of any Bézout domain

B. Because each point of ZgB localizes, the whole space is covered by the closed subsets, the

Ziegler spectra of localizations BP for prime (or just maximal) ideals of B. If we consider these

spaces as ’stalks’, then the topology on ZgB is patched from these topologies using basic open

sets from Fact 4.2.

Each BP is a valuation domain, and the Ziegler spectrum of this class of rings was thoroughly

investigated (see [20, Ch. 12, 13], or [8] for recent development). In more detail, let Γ denote the

value group of a valuation domain V . The nonnegative part Γ+ of Γ can be identified as a poset

with principal ideals of V . We use the first copy of Γ+ to represent annihilator formulae, and

its second copy to encode divisibility formulae. In this way the sum a | x+xb = 0 is represented

by the point (b, a) on the quarter plane Γ+ × Γ+, and each pp-formula corresponds to a finite

collection (conjunction) of such points. Further the whole lattice of pp-formulae over V is a free

product of these two chains in the variety of modular lattices, in particular it is distributive.

Also indecomposable pp-types over V correspond to pairs of cuts (I, J) on Γ+, hence are

represented as points on the completed quarter plane Γ̂× Γ̂, or rather by lines on this plane of

slope −1 (moving along the line corresponds to taking shifts). If a, b, c, d 6= 0, then the basic

open set a | x ∧ xb = 0 over c | x+ xd = 0 in the Ziegler spectrum is interpreted in [21, Sect. 4]

as the rectangle (d, b]× (c, a] on the plane ’catching’ an indecomposable pure injective module,

if its line intersects this rectangle.

To recover topology consider the ’generic’ case of a basic open set (ϕ/ψ), where ϕ
.
= a |

x∧xb = 0 and ψ
.
= c | x+xd = 0 for some nonzero noninvertible a, b, c, d ∈ B. Using a standard

trick (see [23]) one may assume that c = ga and b = dh for nonunits g, h ∈ B.
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Now suppose that P is a prime ideal of B and V = BP . If g /∈ P , then the above open

set (ϕ/ψ) is trivial when restricted to ZgV ; and the same holds true when h /∈ P . Otherwise

g, h ∈ P , and we will intepret this open set as the above rectangle (d, b]P × [c, a]P (over V ).

Thus the basic open set (ϕ/ψ) can be thought of as a sheaf of rectangles when P runs over

prime ideals.

We will demonstrate few instances of this approach applied to the Ziegler spectrum of E.

Recall that the ring of quotients of E is the field Q of meromorphic functions. Since this module

is indecomposable and injective, it is a point of ZgE . Further, for each t ∈ C and each k ≥ 1,

the module Et(k) = E/(z− t)kE is indecomposable of finite length, hence is also a point in ZgE .

First we will describe isolated points in ZgE.

Theorem 5.2. The finite length points Et(k), t ∈ C, k ≥ 1 are isolated and dense in ZgE.

Those are the only isolated points in this space.

Proof. First we will check that each point Et(k) is isolated. Namely set a = 1, c = z − t,

b = (z − t)k, d = (z − t)k−1 and consider the basic open set (ϕ/ψ), where ϕ
.
= a | x ∧ xb = 0

and ψ
.
= c | x + xd = 0. Clearly this pair opens the module Et(k) on the element 1̄. Suppose

that this pair opens an indecomposable pure injective module N on an element m. If I is the

annihilator of m, then (z − t)k ∈ I and (z − t)k−1 /∈ I yields I = (z − t)k. Similarly for the

non-divisibility ideal J of N we obtain z − t ∈ J , hence J = (z − t)E. Thus we conclude that

N is isomorphic to Et(k).

Now we would like to show that these points are dense in ZgE . It suffices to check that each

nontrivial basic open set (ϕ/ψ), where ϕ
.
= a | x ∧ xb = 0 and ψ

.
= c | x + xd = 0, contains

such a point. We may assume that this open set contains a point not from the list, say a point

PE(U, I, J), where I, J are nonzero, 0 6= f ∈ I, J and U = Uf is a nonprincipal ultrafilter on

D = Z(f). By refining D we may assume that µc(z) < µa(z) and µd(z) < µb(z) for each z ∈ D,

and choose any t ∈ D. Since all multiplicities are natural numbers, it is easy, for some k, to

shift a pp-type of 1 in Et(k) in this interval, as desired.

Similar arguments apply when I = 0 or J = 0. �

Having described isolated points, we will look at the closed ones. We need the following

auxiliary result.

Lemma 5.3. Let V be a valuation domain and let N be an indecomposable finite endolength

point in the Ziegler spectrum of V . Then one of the following holds.

1) N is the quotient field Q(V/P ) for some factor V/P by a prime ideal P , the generic point.

2) N is isomorphic to EP (k) = VP /P
k
P , k ≥ 2, where P is a prime ideal of V such that the

ideal PP is not idempotent.

Here we excluded the case k = 1 in 2), because the factor VP /PP is isomorphic to Q(V/P ).

Proof. Each module Q(V/P ) has endolength one, and each module EP (k) has finite length over

VP , hence is of finite endolength over V .
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Suppose that N is an indecomposable finite endolength V -module. It follows that N is Σ-pure

injective, i.e. has a d.c.c. on definable subgroups. The structure of such modules over valuation

domains is well known (see [20, Ch. 16] for a more general setting). Namely, let I denote the

annihilator of N and let P be the localizing ideal of N , hence I ⊆ P .

Then N is a VP -module, furthermore V ′ = VP /IP is a noetherian valuation ring and N is

isomorphic to the injective envelope (over this ring) of the unique simple V ′-module VP/PP .

If V ′ is not artinian, then N has the ascending chain of definable (annihilator) subgroups,

hence is not of finite endolength, a contradiction. Thus V ′ is artinian, hence self-injective, and

N is isomorphic to V ′, i.e. to VP /I ∼= VP /P
k
P for some k ≥ 1.

If k = 1, then V ′ = VP /PP
∼= Q(V/P ), hence N is generic. Otherwise we may assume that

PP is not idempotent. �

Note that this description works equally well for any Bézout domain B. Because it is diffi-

cult to decide in this general framework when the maximal ideal PP of the localization BP is

idempotent, we will prefer to stay down to living examples. For instance, if B = A is the ring

of algebraic integers, then one could take square roots, hence each prime ideal is idempotent.

This is almost the case for E with few exceptions, - see below.

Note that the lattice of pp-formulae of a Bézout domain B is always distributive, hence the

same holds true for any theory T of E-modules. It follows from [18, Thm. 5.3.28] that the

isolated condition holds true: each isolated point in T is isolated by a minimal pair. Now

from [18, Cor. 5.3.23] we conclude that a point in the Ziegler spectrum of this theory is closed

iff it is of finite endolength.

However one should be cautious when using Lemma 5.3 in this general setting - this lemma

applies just to the theory of all modules. This is exactly the case we investigate now.

Proposition 5.4. The following is a complete list of closed points of ZgE.

1) The generic modules Q(E/P ), where P runs over prime ideals of E. In particular, when

P = 0, we obtain the field Q of meromorphic functions.

2) The modules Et(k) = E/(z − t)kE, t ∈ C, k ≥ 2.

3) The modules EM (k) = E/Mk for each free maximal ideal M and k ≥ 2.

Proof. Clearly all such points are of finite endolength, hence closed.

Let N be a closed point, and let P be its localization ideal, in particular N is a closed point

in the Ziegler spectrum of the valuation domain EP . Using Lemma 5.3 we may assume that

that N ∼= EP (k), k ≥ 2, where the ideal PP of EP is not idempotent.

It is easily seen that, if P is a non-maximal prime ideal of E, then there are square roots in

P . We conclude that P is idempotent, therefore occurs just in case 1). Thus we may assume

that P =M is maximal.

If M is fixed, then M = (z− t)E, hence not idempotent. Furthermore clearly the localization

EM is isomorphic to the power series ring C[[X]], hence N is isomorphic to Et(k).

Suppose that M is free and maximal, with corresponding nonprincipal ultrafilter U . The

intersection M∞ of powers of M is a prime ideal of E consisting of functions which are not
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constant modulo U , and this ideal is not idempotent. Furthermore being the intersection of

powers Mk, this ideal clearly annihilates N . Also it follows from [12, Thm. 8] that the factor

E/M∞ is isomorphic to C[[X]]. It is easily derived that N ∼= EM (k). �

Dropping from ZgE the isolated points we obtain Zg′E , the first Cantor–Bendixson deriv-

ative of this space, with the induced topology. This class of modules generates the theory T ′
E ,

the CB-derivative of the theory TE of all E-modules.

Theorem 5.5. The theory T ′
E coincides with the theory of ES-modules, where S is the multi-

plicative closed set consisting of nonzero polynomials.

Proof. Note that for each point t ∈ C and each nonprincipal ultrafilter U on a zero set D, we have

D \ {t} ∈ U , therefore z− t acts by multiplication as an automorphism on each indecomposable

pure injective module corresponding to U .

It follows that each point of Zg′E is defined over ES (we put for simplicity from now on

E′ = ES). On the other hand, it is not difficult to check that E′ is the model of T ′
E , hence (see

[18, Cor. 6.1.5]) the ring of definable scalars of T ′
E coincides with E′. �

Thus, after taking the first derivative, we obtain a more regular Bézout domain E′. Further,

because of the isolated condition, the lattice of pp-formulae of T ′
E is obtained from the lattice

of pp-formulae of E by collapsing intervals of finite length.

We will not need higher CB-derivatives, because of the following result.

Theorem 5.6. Zg′E has no isolated points. Furthermore no nontrivial interval in the lattice of

pp-formulae of T ′ is a chain.

Proof. Since the theory of all E-modules enjoys the isolation condition, the latter statement

implies the former.

Clearly it suffices to prove the claim for each localization V = EM , whereM is a free maximal

ideal with corresponding ultrafilter U . Let L be the lattice of pp-formulae of ZgV . Then L is

freely generated by two copies of the chain NU . We put to use results of [19]. Namely, the effect

of the first step of the CB-analysis on the lattice L is that it collapses the intervals of finite

length on each of two copies of N .

Thus the lattice L′ is freely generated by two copies of the derivative chain N ′. We have

already seen in Section 3.1 that this chain is dense. It easily follows that no nontrivial interval

in L′ is a chain, as desired. �

For a definition of width and breadth of a lattice see [18, Sec. 7.1]. It follows from Theorem

5.6 that both dimensions are undefined for the theory of E′-modules, and hence for E-modules.

Furthermore in [23] we constructed a superdecomposable pp-type, hence a superdecomposable

pure injective module over E. It follows that nonzero polynomials act as automorphisms on this

module, hence it is defined over E′. Below we will show that the pure injective envelope of E′

itself is superdecomposable if viewed as a module over E′ and consequently over E.
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But before that let us consider the closed points in T ′
E . From the above discussion it follows

that they are of finite endolength. Note that the prime ideals of ES one-to-one correspond to

free prime ideals of E.

Lemma 5.7. The closed points in Zg′E are exactly the generic points Q(E/P ), where P runs

over free prime ideals of E.

Proof. Following the proof of Proposition 5.4, it suffices to notice that each prime ideal P of

E′ is idempotent. Namely, the only case we have not considered is when P corresponds to the

free maximal ideal M . However, after localizing, we obtain MS = (M∞)S , hence this ideal is

idempotent. �

Recall that a module M is said to be superdecomposable, if no nonzero direct summand

of M is indecomposable. We need the following general fact.

Lemma 5.8. Let B be a commutative Bézout domain. Then the following are equivalent.

1) The pure injective envelope of B as a module over itself is superdecomposable.

2) If 0 6= a ∈ B is not invertible, then there are coprime nonunits a1, a2 ∈ B dividing a.

Proof. Since B is coherent, each pp-definable subgroup in B (as a module) is a principal ideal

(see [18, Thm. 2.3.19]). Let p = ppB(1) denote the pp-type taken in the theory of B (i.e. in the

theory of flat = torsion free B-modules), hence p is a filter in the lattice of principal ideals of B.

Then 1) says that p is superdecomposable, i.e. contains no large formulas. Since B is

distributive, this is the same as to say that for each ϕ ∈ p− there are ϕ1, ϕ2 ∈ p− such that

ϕ → ϕi and ϕ1 + ϕ2 ∈ p, i.e. ϕ1 + ϕ2 is a trivial formula. Replacing formulas by ideals they

define, we obtain the desired. �

We apply this criterion to our setting.

Proposition 5.9. The pure injective envelope of E′ (over E′ and hence over E) is a superde-

composable module.

Proof. Suppose that fE′ is a proper ideal of E′, hence we may assume that f ∈ E, f is not a

polynomial and Z(f) is an infinite countable set. Let Z(f) = I1 ∪ I2 be a partition of Z(f) into

infinite sets. Choose f1 ∈ E such that Z(f1) = I1 and f ∈ f1E. Then f = f1f2, where both

functions are noninvertible in E′ and Z(f2) = I2, hence f1 and f2 are coprime. �

The following question naturally arises from the previous results.

Question 5.10. Describe all representations of PE(E′) as a pure injective envelope of direct

sums of pure injective modules.

For instance, describe all direct summands of this module, and all direct sum decompositions

PE(E′) = N1 ⊕N2.
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