БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

YTBEPK HAIO

Проректор по учебной работе и образовательным инновациям «14» июня 2021 г.

Регистрационный № Д- 9747/уч.

ЛАБОРАТОРИЯ СПЕЦИАЛИЗАЦИИ «СПЕКТРАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В БИОФИЗИКЕ»

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 04 07 Физика наноматериалов и нанотехнологий

Учебная программа составлена на основе ОСВО 1-31 04 07-2013 и учебных планов УВО №G31-218/уч. от 20.02.2018 г., №G31и-219/уч. от 20.02.2018 г.

составитель:

Е.И. Коваленко – доцент кафедры биофизики Белорусского государственного университета, кандидат биологических наук, доцент

РЕЦЕНЗЕНТ:

Д.Г. Щербин — заведующий лабораторией нанобиотехнологий ГНУ «Институт биофизики и клеточной инженерии НАН Беларуси», доктор биологических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой биофизики физического факультета Белорусского государственного университета (протокол № 11 от 26.04.2021 г.);

Научно-методическим Советом БГУ (протокол № 5 от 24.05.2021 г.)

Заведующий кафедрой биофизики д.б.н., доцент

A6

Г.Г. Мартинович

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины: практическое освоение спектральных методов анализа структуры и свойств биосистем.

Задачи учебной дисциплины:

- 1. Получение студентами навыков практической работы с оптическим, спектральным оборудованием (спектрофотометрами, флуориметрами),
- 2. Получение студентами навыков препаративной работы с биообъектами и проведения спектральных исследований биообъектов.
- 3. Освоение студентами методов математической обработки, графического представления, статистической обработки экспериментальных данных с применением компьютерных средств.
- 4. Приобретение студентами опыта в применении базовых научнотеоретических знаний для решения практических задач, анализа данных.
- 5. Ознакомление студентов на практике с различными факторами, влияющими на спектральные характеристики исследуемых материалов.
 - 6. Усвоение основных спектральных закономерностей.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к циклу дисциплин специализации компонента учреждения высшего образования.

Учебная дисциплина базируется на знаниях и представлениях, заложенных при изучении ряда физических дисциплин, в которых рассматриваются основы физических методов исследования конденсированных материалов. Программа дисциплины тесно связана с дисциплинами «Основы биохимии. Клеточная физиология» (5 семестр) и «Основы молекулярной биофизики» (6 семестр), «Спектральные методы исследования нанобиоматериалов» (7 семестр) и лаборатория специализации «Биофизические методы исследования наносистем» (8 семестр).

Требования к компетенциям

Освоение учебной дисциплины Лаборатория специализации «Спектральные методы исследования в биофизике» должно обеспечить формирование следующих академических, социально-личностных и профессиональных компетенций:

академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть системным и сравнительным анализом.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.
 - АК-5. Быть способным порождать новые идеи (обладать креативностью).

- АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-8. Иметь лингвистические навыки (устная и письменная коммуникация).
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

социально-личностные компетенции:

- СЛК-2. Быть способным к социальному взаимодействию.
- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-5. Быть способным к критике и самокритике.
- СЛК-6. Уметь работать в команде.

профессиональные компетенции:

- ПК-1. Применять знания теоретических и экспериментальных основ физики наноматериалов и нанотехнологий, методов исследования физических объектов, методов измерения физических величин, методов автоматизации эксперимента, методов планирования, организации и ведения научно-производственной, научно-педагогической, производственнотехнической, опытно-конструкторской работы.
- ПК-3. Пользоваться компьютерными методами сбора, хранения и обработки информации, системами автоматизированного программирования, научно-технической и патентной литературой.
- ПК-6. Использовать новейшие открытия в естествознании, методы научного анализа, информационные образовательные технологии, физические основы современных технологических процессов, включая нанотехнологии.
 - ПК-9. Пользоваться глобальными информационными ресурсами.

В результате освоения учебной дисциплины студент должен:

знать:

количественного основы качественного И спектрального анализа; закономерности электронной и колебательной спектроскопии поглощения и испускания, а также светорассеяния на частицах; оптические схемы приборов; основных спектральных основы спектральных методов исследования первичной и пространственной структуры биополимеров кислот); энергии (белков нуклеиновых влияние переноса межмолекулярных взаимодействий на спектральные характеристики; основы спектральных и других оптических методов изучения биологических мембран и нанобиообъектов

уметь:

подготавливать образцы для проведения исследований (растворы веществ, суспензии биообъектов и др.); планировать эксперимент; проводить измерения с использованием различного оборудования для спектральных исследований; проводить математическую обработку полученных

экспериментальных данных с использованием пакета Excel и построение итоговых графических зависимостей; применять теоретические знания о спектральных закономерностях для получения информации об изучаемом биообъекте с учетом результатов экспериментов; формулировать краткие, четкие выводы в соответствии с поставленной в работе целью, анализировать причины расхождения результатов экспериментов с теорией.

владеть:

препаративными методиками работы с биообъектами; спектральными методами исследования; базовыми математическими методами обработки экспериментальных данных с применением компьютерных средств.

Структура учебной дисциплины

Дисциплина изучается в 7 семестре дневной формы получения высшего образования. Всего на изучение учебной дисциплины Лаборатория специализации «Спектральные методы исследования в биофизике» для очной формы получения высшего образования отведено:

-150 часов, в том числе 80 аудиторных часов, из них: лабораторные занятия - 80 часов.

Трудоемкость учебной дисциплины составляет 4 зачетные единицы. Форма текущей аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Физические закономерности формирования электронно- колебательных спектров поглощения сложных молекул.

- 1.1. Закон Бугера-Ламберта-Бера. Графический метод спектрофотометрического определения концентрации веществ.
- 1.2. Количественный спектро-фотометрический анализ смесей поглощающих веществ. Определение наличия примесей, обнаружение химических превращений веществ.

Тема 2. Учет рассеяния при исследовании среднедисперсных систем методом спектрофотометрии.

Виды светорассеяния на частицах. Спектральная зависимость интенсивности светорассеяния на частицах различных размеров. Определение концентрации пигмента в высокодисперсных системах.

Тема 3. Спектрофотометрия нуклеиновых кислот.

Качественный и количественный анализ растворов нуклеиновых кислот, определение загрязненности белком препаратов нуклеиновых кислот. Анализ гипохромного эффекта для определения степени спиральности ДНК. Получение кривой плавления и определение коэффициента специфичности ДНК.

Тема 4. Спектры поглощения аминокислот и простых белков в УФ-лиапазоне.

Спектральные особенности и типы переходов, обуславливающие формирование электронно-колебательных спектров ароматических и других аминокислот. Влияние рН. Хромофоры белков. Спектрофотометрическое титрование белка и выявление пространственного расположения аминокислотных остатков в белковой глобуле.

Тема 5. Основы люминесцентной спектроскопии Формирование спектров возбуждения и испускания. Различные координатные представления спектров люминесценции. Практический анализ основных закономерностей люминесценции. Концентрационное тушение флуоресценции. Люминесценция в растворах с различной полярностью растворителей.

Тема 6. Исследование поляризации люминесценции в растворах сложных органических молекул. Исследование поляризации люминесценции в растворах сложных органических молекул. Вращательная деполяризация, формула Левшина-Перрена. Зависимость степени поляризации флуоресценции от вязкости растворителя.

Тема 7. Спектры люминесценции аминокислот и белков.

Влияние полярности окружения на спектральные свойства ароматических аминокислот. Анализ содержания и пространственного расположения триптофановых и тирозиновых остатков в белковой глобуле.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования

	, , , , , , , , , , , , , , , , , , ,	Количество аудиторных часов				1			
<u>~</u>		K	личеств	о аудитој	эных час	OR	OB	 ⊠	
Номер раздела, гемы	Название раздела, темы		Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний	
1	2	3	4	5	6	7	8	9	
1	Физические закономерности формирования				20			отчет, устный опрос	
	электронно-колебательных спектров поглощения							, 5	
	сложных молекул								
1.1	Закон Бугера-Ламберта-Бера. Графический метод				10				
	спектрофотометрического определения концентрации								
	веществ.				1.0				
1.2	Количественный спектрофотометрический анализ				10				
	смесей поглощающих веществ. Определение наличия								
	примесей, обнаружение химических превращений								
	веществ.				10				
2	Учет рассеяния при исследовании среднедисперсных				10			отчет, устный опрос	
2	систем методом спектрофотометрии				10				
3	Спектрофотометрия нуклеиновых кислот							отчет, устный опрос	
4	Спектры поглощения аминокислот и простых белков в				10			отчет, устный опрос	
	УФ-диапазоне				1.0				
5	Основы люминесцентной спектроскопии				10			отчет, устный опрос	
6	Исследование поляризации люминесценции в				10			отчет, устный опрос	
	растворах сложных органических молекул							1	
7	Спектры люминесценции аминокислот и белков				10			отчет, устный опрос	
	Всего часов				80			зачет	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Физические закономерности формирования электронно-колебательных спектров сложных молекул: методические рекомендации к лабораторному спецпрактикуму «Спектральные методы исследования в биофизике» для студентов направления специальности 1-31 04 07 «Физика наноматериалов и нанотехнологий» / Е. И. Коваленко. Минск: БГУ, 2019. 39 с.
- 2. Учет рассеяния при исследовании среднедисперсных методом спектрофотометрии: методические рекомендации к лабораторному спецпрактикуму «Спектральные методы исследования в биофизике» для 07 «Физика студентов специальности 1-31 04 наноматериалов нанотехнологий» / Е.И. Коваленко. – Минск : БГУ, 2020. - 16 c. http://elib.bsu.by/handle/123456789/240821
- 3. Основы люминесцентной спектроскопии: методические рекомендации к лабораторному спецпрактикуму «Спектральные методы исследования в биофизике» для студентов специальности 1-31 04 07 «Физика наноматериалов и нанотехнологий» / Е. И. Коваленко. Минск: БГУ, 2020. 25 с. http://elib.bsu.by/handle/123456789/240816
- 4. Спектрофотометрия нуклеиновых кислот : методические рекомендации к лабораторному спецпрактикуму «Спектральные методы исследования в биофизике» для студентов специальности 1-31 04 07 «Физика наноматериалов и нанотехнологий» / Е. И. Коваленко. Минск : БГУ, 2020. 20 с. http://elib.bsu.by/handle/123456789/240818
- 5. Люминесценция: пособие для студ. физич. фак. / И.М. Гулис, А.И. Комяк. Минск: БГУ, 2009.
- 6. Молекулярная спектроскопия: учеб. пособие для студ. физ. фак. БГУ / А. И. Комяк. Минск : БГУ, 2005.
- 7. Векшин Н.Л. Флуоресцентная спектроскопия биополимеров. Краткий учебный курс. 2006.

Перечень дополнительной литературы

- 1. Кантор Ч., Шиммел П. Биофизическая химия: В 3-х т. Т.2. Методы исследования структуры и функции биополимеров М.: Мир, 1985.
 - 2. Рубин А.Б. Биофизика. М.: Кнорус. 2019.
 - 3. Бенуэлл К. Основы молекулярной спектроскопии. М., Мир, 1985
- 4. Тучин В.В. Оптическая биомедицинская диагностика. В 2-х томах. Физматлит, 2007.
- 5. Нолтинг Б. Новейшие методы исследования биосистем М.: Мир, 2005.
- 6. Лопатин В.Н., Приезжев А.В., Апонасенко А.Д. Методы светорассеяния в анализе дисперсных биологических сред М.: Физматлит, 2004.

- 7. Тен Г.Н., Бурова Т.Г., Баранов В.И. Спектроскопическое исследование структуры оснований нуклеиновых кислот. Учебное пособие. Саратов: Научная книга, 2004.
- 8. Лакович Дж. Основы флуоресцентной спектроскопии. М.: Мир, 1986.
- 9. Introduction to Experimental Biophysics / Jay L. Nadeau. CRC Press, 2017, 764 p.
- 10. Methods in Molecular Biophysics / N.R. Zaccai, Cambridge University Press, 2017.
 - 11. Biophysics / G. Ehrenstein, H. Lecar. Academic Press, 1982.
- 12. Methods in Modern Biophysics / B. Nölting, Springer Science & Business Media, 2013.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Для текущего контроля качества усвоения знаний по дисциплине рекомендуется использовать отчеты по лабораторным работам (в письменном виде, выполненные с использованием программ Excel и Word либо аналогичных программ) и устные опросы (студенты должны провести сопоставление теории с полученными ими экспериментальными данными). С участием студентов группы проводится дискуссия с целью сравнения экспериментальных данных, полученных разными студентами и анализа факторов, влияющих на характеристики исследуемых биообъектов.

По отчетам и устным опросам за каждую работу выставляется оценка. Оценка по каждой из работ должна быть не ниже 4 баллов, оценка ниже 4 баллов считается неудовлетворительной. При всех оценках не ниже 4 студент допускается к сдаче зачета. Оценка текущего контроля:

$$T = (K_1 + K_2 + K_3 + K_4 + K_5 + K_6 + K_7 + K_8 + K_9)/9$$

Формой текущей аттестации по дисциплине Лаборатория специализации «Спектральные методы исследования в биофизике» учебным планом предусмотрен зачет.

Допуск к зачету — только после выполнения студентом всех текущих контрольных мероприятий при $T \ge 4$. Зачет проводится в устной форме и включает 2 части: студент должен ответить на один из устных вопросов, приведенных в первой части вопросов и задач к зачету, а также решить одну из практических задач, приведенных во второй части, тогда выставляется «зачтено».

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

Методы преподавания: проблемный, поисковый, исследовательский, дискуссия

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы обучающихся

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы. По каждой из тем лабораторных работ студент должен:

- самостоятельно изучить теорию;
- подготовить ответы на вопросы, приведенные в методичках;
- провести обработку результатов экспериментов и провести их обсуждение;
- подготовиться к дискуссии по сопоставлению собственных экспериментальных данных со сведениями из теоретических дисциплин.

Примерный перечень вопросов к зачету

Часть 1. Рекомендуемые вопросы

- 1. Особенности оптических схем для исследования спектров поглощения и люминесценции.
- 2. Определение Т%, D, I флуоресценции. Связь λ , ν , E, $\tilde{\nu}$.
- 3. Концентрационные зависимости оптической плотности. Оптимальные диапазоны для D и для C (наименьшие погрешности измерения, линейная связь параметров). Закон Бугера-Ламберта-Бера. Отклонение от закона

Бугера-Ламберта-Бера. Графический метод спектрофотометрического определения концентрации веществ.

- 4. Количественный спектрофотометрический анализ смесей поглощающих веществ. Определение наличия примесей, обнаружение химических превращений веществ.
- 5. Мешающее влияние рассеяния света в дисперсных системах на спектры поглощения веществ. Методы устранения или учета рассеяния при спектрофотометрическом анализе.
- 6. Люминесцентный анализ. Диаграмма Яблонского. Характеристики основных переходов. Флуоресценция и фосфолюминесценция.
- 7. Формирование спектров возбуждения и испускания люминесценции. Связь со спектрами поглощения. Основные закономерности люминесценции и их причины. Сдвиг Стокса. Правило Каши. Влияние растворителя на параметры флуоресценции вещества.
- 8. Зеркальная симметрия спектров в различных координатах. Определение частоты и энергии чисто электронного перехода.
- 9. Миграция энергии возбуждения. Эффективность миграции энергии.
- 10. Исследование поляризации люминесценции в растворах сложных органических молекул. Предельная степень поляризации. Вращательная деполяризация. Зависимость степени поляризации флуоресценции от вязкости растворителя.
- 11. Гипохромный эффект при изменении пространственной структуры нуклеиновых кислот. Кривая плавления ДНК. Спектрофотометрическое определение коэффициента специфичности ДНК.
- 12. Люминесцентные свойства белков. Влияние рН и полярности растворителя на люминесцентные свойства белков.

Часть 2. Практические задачи (численные значения замещены на *X* и *Y*)

1. Белок растворили в буферной среде при рН 7 в концентрации X1 М. Для полученного раствора измерили зависимость оптической плотности (D) от длины волны (λ) падающего излучения в диапазоне длин волн от 245 до 320 нм. При измерениях использовали кювету толщиной 1 см. В зарегистрированном спектре $D(\lambda)$ выявлена одна полоса с максимальным значением D_{280} = X2, соответствующим λ =280 нм. При длинах волн 295, 310 и 320 нм значения оптической плотности раствора белка составили: D_{295} = X3, D_{310} = X4, D_{320} = X5. Известно, что коэффициенты молярного поглощения для растворов тирозина ($\varepsilon_{\text{тир}}$) и триптофана ($\varepsilon_{\text{трп}}$) при нейтральных значения рН следующие: $\varepsilon_{\text{гир}}$ =1040 $M^{\text{-1}} \cdot \text{сm}^{\text{-1}}$ и $\varepsilon_{\text{трп}}$ =5600 $M^{\text{-1}} \cdot \text{сm}^{\text{-1}}$ при λ =280 нм; $\varepsilon_{\text{трп}}$ =1700 $M^{\text{-1}} \cdot \text{сm}^{\text{-1}}$ при λ =295 нм. Проведите учет рассеяния на молекулах белка, после чего определите число остатков тирозина и триптофана, входящих в состав одной молекулы данного белка.

- 2. Исследуется влияние нового фактора определенный белок. на выявления Предложите спектральные методики ДЛЯ количества пространственного расположения различных ароматических лотных остатков в белковой глобуле, анализа степени нативности белка и выявления структурных перестроек в результате воздействия на белок.
- 3. Клетки подвергли воздействию УФ-излучения, после чего из них, а также из контрольных образцов интактных клеток изолировали мембраны. В полученные образцы мембран провели внедрение молекул флуоресцентного зонда и исследовали значения степени поляризации люминесценции Р при одной и той же температуре среды. Установлено, что значения Р для облученных образцов в 1,4 раза выше, чем для контрольных. Оцените как изменилась микровязкость мембран в результате воздействия УФ-излучения.
- 4. Значения оптической плотности раствора ДНК в 0,15 М NaCl, измеренные при $T=25~^{0}$ C, составили: $D_{258}=X11$, $D_{270}=X12$, $D_{264}=D_{252}=X22$, $D_{300}=0$. При нагревании образца обнаружено постепенное повышение оптической плотности, и при температуре $100~^{0}$ C зарегистрировано $D_{258}=X33$. Анализ зависимости $D_{258}(T)$ показал, что значение температуры плавления ДНК составляет YYYY 0 C. Оцените концентрацию ДНК в образце, рассчитайте коэффициент специфичности ДНК (относительное содержание пар «гуанин-цитозин» и «аденин-тимин»). Оцените чистоту препарата ДНК. Какова величина гипохромного эффекта? Является ли ДНК нативной?
- 5. Раствор НАД имел D_{340} =X, толщина кюветы 1 см. После частичного восстановления НАД до НАДН оптическая плотность плотность раствора увеличилась до XX. Какова концентрация НАДН в растворе? (На длине волны $\lambda = 340$ нм коэффициенты молярного поглощения НАД и НАДН составляют $1 \cdot 10^3$ л/(моль·см) и $6 \cdot 10^3$ л/(моль·см), соответственно).
- 6. Раствор соединения A имеет D_{260} =X и D_{450} =XX. Раствор соединения B имеет D_{260} =Y и D_{450} =YY. 2 мл раствора A смешали с 1 мл раствора B и измерили результирующую оптическую плотность, получили D_{260} =XY и D_{450} =XXY. Имеется ли химическое взаимодействие между A и B?
- 7. Оптическая плотность раствора, содержащего вещество с молярной массой X г/моль в концентрации Y мг/л, составляет XX при длине волны λ =YY нм в кювете толщиной 1 см. Найти молярную концентрацию вещества в растворе и десятичный коэффициент молярного поглощения ε_{YY} данного вещества. Какова частота поглощенного излучения? Какая энергия поглощается 1 молем вещества?
- 8. Взвесили X мг вещества, растворили его в Y мл воды и измерили поглощение полученного раствора. Оказалось, что раствор поглощает XX % падающего света. Какова оптическая плотность раствора? Учитывая, что толщина кюветы 1 см, а молярная масса вещества YYY г/моль, рассчитайте коэффициент молярного поглощения вещества данного вещества. Во сколько раз следует изменить концентрацию вещества, чтобы оптическая плотность раствора стала 0,4?

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

**	T.T.	-	
Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную
требуется		учреждения высшего	программу (с
согласование		образования по учебной	указанием даты и
		дисциплине	номера протокола)
Спектральные	Кафедра	Оставить содержание	Изменение не
методы	биофизики	учебной дисциплины без	требуется
исследования	_	изменения	(протокол №11 от
нанобиоматери			26.04.2021)
алов			
Лаборатория	Кафедра	Оставить содержание	Изменение не
специализации	биофизики	учебной дисциплины без	требуется
«Биофизически	_	изменения	(протокол №11 от
е методы			26.04.2021)
исследования			
наносистем»			

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на	/	учебный год

№ п/п	Дополнения	и изменения	Основание	
11/11				
Vuesi	иза программа парас	емотраца и одобраца	на заселении кафелии	
J 400F	ная программа перес	смотрена и одоорена (протокол	на заседании кафедры № от 202	2_ г.)
Завел	ующий кафедрой			
	ующий кафедрой			
VTRE	ЕРЖДАЮ			
	факультета			