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Lowest order QED radiative effects in polarized SIDIS
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The explicit exact analytical expressions for the lowest order radiative corrections to the semi-inclusive
deep inelastic scattering of the polarized particles are obtained in the most compact, covariant form
convenient for the numerical analysis. The infrared divergence from the real photon emission is extracted
and canceled using the Bardin-Shumeiko approach. The contribution of the exclusive radiative tail is
presented. The analytic results obtained within the ultrarelativistic approximation are also shown.
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I. INTRODUCTION

Nowadays the polarized semi-inclusive deep-inelastic
scattering (SIDIS) plays a crucial role in our understanding
of the internal spin structure of the nucleons. Information on
the three-dimensional structure of the polarized proton and
neutron can be obtained by extracting the quark transverse
momentum distributions from the various single spin asym-
metries measured in SIDIS with polarized particles.
Specifically, the Sivers and Collins contributions can be
selected [1] from the present data on transversely polarized
targets p (e, ¢'z)x in HERMES [2], D(u, u'z)x in COMPASS

[3], and *He(e, e'7)x in JLab [4] which show a strong flavor
dependence of transverse momentum distributions.
Moreover in the near future, highly accurate experiments
are planned at 12 GeV Jlab [5] that will provide unique
opportunities for the breakthrough in the investigation of the
nucleon structure by carrying out multidimensional precision
studies of longitudinal and transverse spin and momentum
degrees of freedom from SIDIS experiments with high
luminosity in combination with large acceptance detectors.

It is well known that one of the important sources of the
systematical uncertainties in SIDIS experiments with and
without polarization of initial particles are the QED
radiative corrections (RC). RC to the threefold differential
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cross section (do/dxdydz, where x and y are the standard
Bjorken variables and the z is the fraction of the virtual-
photon energy transferred to the detected hadron) can be
calculated using the patch SIRAD of FORTRAN code
POLRAD [6] created based on the original calculations in
Refs. [7,8] for unpolarized and polarized particles. The
calculation of RC to the fivefold differential cross section
of unpolarized particles (do/dxdydzdp?de,,, where p, is
the detected hadron transverse momentum and ¢, is the
azimuthal angle between the lepton scattering and hadron
production planes) was performed in Ref. [9]. These
calculations did not contain the radiative tail from the
exclusive reactions as a separate contribution involving the
exclusive structure functions (SF). This limitation was
addressed in Ref. [10] in which the authors explicitly
calculated the exclusive radiative tail and implemented the
exclusive SF using the approach of MAID [11].

In the present paper we consider the general task of
RC calculation when the initial nucleon can be arbitrarily
polarized. The analytical expressions for RC to SIDIS are
obtained for the sixfold cross section with the longitudi-
nally polarized lepton and arbitrarily polarized target,
do/dxdydzdp?dg,dp, where the azimuthal angle ¢
between the lepton scattering and ground planes is intro-
duced to appropriately account for the transverse target
polarization. The contribution of the exclusive radiative
tail to the total RC is also presented. Similar to the previous
analyses we calculated RC in the model-independent
way. These corrections are induced by the unobservable
real photon emission from the lepton leg, leptonic
vertex correction, and vacuum polarization. The model-
independent correction is proportional to the leading
logarithm log(Q?/m?), which is large because of high
transferring momentum squared Q? (>1 GeV?) and small
electron mass m. What is not accounted for in this approach
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is the correction due to the real and additional virtual
photon emission by hadrons including the two-photon
exchange and QED hadronic vertex correction. However,
this correction should not be accounted for in the majority
of cases, e.g., when the used model for SF was extracted
from the experiment in which emission by hadrons had not
been applied in the RC procedure of experimental data.

The Bardin-Shumeiko approach [12] is used for extraction
and cancellation of the infrared divergence coming from the
real and virtual photon emission. In contrast to the widely
used Mo-Tsai approach [13,14] the final expression for RC
within the Bardin-Shumeiko approach does not depend on an
artificial parameter that is introduced in [13,14] for separa-
tion of the photon emission on the hard and soft parts.

In this paper we apply an approach for decomposition of
the initial nucleon and virtual photon polarization as well as
the real photon four-momentum over the respective bases
(the Appendix A). The polarization decomposition is used
for the hadronic tensor representation in a covariant form.
The momentum decomposition is used to simplify integra-
tion over the momentum of the unobserved photon.
Specifically, this allows us to essentially reduce the number
of pseudoscalars occurring after the convolution of the
leptonic tensors of radiative effects with the hadronic tensor
and present the final expressions for RC in a compact,
covariant form convenient for the numerical analysis. All
calculations have been performed in an exact way keeping
the lepton mass at all stages of the calculation. The
dependence of certain terms in the exact final expressions
for RC on the electron mass is quite tricky, and therefore, we
analyze respective contributions in the ultrarelativistic
approximation allowing for extraction of the electron mass
dependence explicitly and classifying all terms in RC as
leading (i.e., containing the leading logarithms), next-to-
leading (i.e., independent of the electron mass), and other
potentially negligible terms (i.e., the terms vanishing in the
approximation of m — 0). Thus the results obtained in the
paper contain both exact formulas for RC and expressions in
ultrarelativistic approximations allowing us to explicitly
control the dependence on the electron mass. Thus, the
analytic expressions for RC are valid for experiments with
muons (e.g., COMPASS [3]) in which the approximation of
the zero lepton mass could not be appropriate.

The rest of the article is organized as follows. The hadronic
tensor, different sets for the SF used in the literature, as well
as the lowest order (Born) contribution to the SIDIS process
are discussed in Sec. II. The calculation of the lowest order
QED RC to the observables in SIDIS as well as the explicit
results for both the semi-inclusive final hadronic state and
exclusive radiative tail contributions are presented in Sec. II1.
The infrared divergence in these calculations are extracted
from the real photon emission with the semi-inclusive final
hadronic state by the Bardin-Shumeiko approach [12] and
then canceled with the corresponding term from the leptonic
vertex correction in such a way that the obtained results are

free from an intermediate parameter k. For the parametriza-
tion of the infrared and ultraviolet divergences the dimension
regularization is used. The results of analyses of the exact
expressions in ultrarelativistic approximation are given in
Sec. IV. Particularly we show that the double leading
logarithms coming from the terms with the soft photon
emission and the leptonic vertex correction cancel in their
sum. A brief discussion and conclusion are presented in
Sec. V. Technical details and the most cumbersome parts of
the RC are presented in four Appendixes. The bases for the
decomposition of the initial target and virtual photon
polarization as well as the real photon momentum are
presented in Appendix A. The explicit expressions for the
real photon emission quantities are presented in Appendix B.
The details of the approach for the infrared divergence
extraction and cancellation are given in Appendix C. The
detailed calculations of the additional virtual particle con-
tributions are presented in Appendix D.

II. HADRONIC TENSOR AND BORN
CONTRIBUTION

The sixfold differential cross section of SIDIS with
polarized particles
e(ky, &) +n(p,n) = e(ka) + h(py) +x(px) (1)

(k3 = k3 =m?, p* =M>, p2=m3) where & (i) is the
initial lepton (nucleon) polarized vector can be described
by the following set of variables:

2

__ e e
2qp’ kip’ rq’
1= (q - ph)zv ¢h7 ¢ (2)

Here g = k| — ko, ¢, is the angle between (ki,k,) and
(q, pn) planes, and ¢ is the angle between (ky, k) and the
ground planes in the target rest frame reference sys-
tem (p = 0).

Also we use the following set of invariants:

S =2pk,, 0> =-¢*, 0, = 0> +2m?,
X=2pky, S,=S-X, S,=S+X,
1
Via =2ki P, V,= E(Vl +Va),
1 1
Vo=5(Vi=Vy) :i(mﬁ—Qz—f)v

S'=2ki(p+q—py)=S-0>=Vy,

X =2k (p+q—py)=X+0Q*=V,,
pi={P+q—pp)? =M +1+(1-2)S,.

g =82 —4M*m?, Ay = S%+4M?Q?,

A= QZ(SX —M2Q2) —m*dy, Am = QZ(Q2 +4m2),
Ny =87 —4m?p3, Xy = X" —4m?p2. (3)
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Noninvariant variables including the energy pj,
longitudinal p;, and transverse p, (k;) three-momenta
of the detected hadron (the incoming or scattering lepton)
with respect to the virtual photon direction in the
target rest frame are expressed in terms of the above
invariants:

8y

w’

2SI AMPV_ ZSE42MP(t+ QP —m3)
Y YN/ P M7, ’

2
pi=\/Pio— P} — m3. k;Z\/f (4)
Y

As a result the quantities V, can be written through
cos ¢, and other variables defined in Egs. (2)—(4) as

Pno =

S pi(SS,+2M?Q?)

Vi= PhOM - M7, —2pk,cos ¢y,
Vo= Dpno % - PI(XS;/[:/E—]YWZQZ) —2p,k, cos ¢,. (5)
The sine of ¢, is expressed as
) 2
sin¢g, = — pft/i_? (6)
where
| =" p ki q, (7)

is the pseudovector with a normal direction to the scattering
plane (kq,k,). Our definitions of ¢, and other kinematic
variables are in agreement with the common convention
introduced in [15].

The lowest order QED (Born) contribution to SIDIS is
presented by the Feynman graph in Fig. 1(a). The cross
section for this process reads

_ (4na)?
2V250°

where the phase space is parametrized as

daB W;wL/;?DdFB ’ (8)

&k, & Dh
(2”)32k20 (2”)32Ph0
1 SS.dxdyde S,.dzdp?dg,

T 42n)? 27 aMp, ©)

dFB = (27‘[)4

(b) (c)

(d) (e)

®) (€9)

FIG. 1. Feynman graphs for (a) the lowest order, (b)—(e) SIDIS,
and (f), (g) exclusive radiative tail contributions to the lowest
order RC for SIDIS scattering.

Since the initial lepton is considered to be longitudinally
polarized, its polarization vector has the form [16]

2,8 2Um
gzm\//l_skl —ﬁp—50+51- (10)

As a result the leptonic tensor is
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v 1 7 A E
L/; = ETI‘[(kz + m)yﬂ(kl + m)(l + y5§)yv]

0°
2 futis + kg - L g
i/le HUpO 2
+ﬁ5 (Ska,kis +2m°q,p,) |- (11)

According to [17] the hadronic tensor for the SIDIS
process y* + n — h 4+ X can be decomposed in the terms of
the scalar spin-independent ng,) and spin-dependent H E;Sb),

structures functions

3
W}w = Z 6/};<a)€1}:(

a,b=0

(e S, 2
(i)

where /) (or /")) and e are the complete set of the
basis vectors for the polarization four-vectors of the virtual
photon and nucleon in the target rest frame. These vectors
can be represented in a covariant form [18] using (Al)
and (A2).

Due to the parity and current conservation, hermiticity as
well as py =0, only the following set of independent SF

Hig,) and Hi‘?i in (12) survives [17]: 5 spin-independent
Hé%), H 2?), Hgg), ReH(()(;), Imng and 13 spin-dependent
s s s s s s s
H (()o)za ReHé&, ImH((n)za ReHéﬁ, ImH<()2)1a ReHézé7 ImH(()2)3,
HY) ReH'S), ImHS), ReH'S), ImHS), HS). All the rest

of the SF have to be set to zero [17].

The hadronic tensor in terms of these SF can be obtained
by substitution (A1) and (A2) into (12) resulting in

=
I
M@

Wi Hi = =G My + Py piHa + i pin M

uv
i

1
+ (P Pioy + PiyPv )Y Ha + Py Phy = PiuPv ) Hs
+ (Pyrny + n,pi ) He + i(prn, = n,pi)Hy
+ (ph”” + nyph,,)Hs
+i(piy,ny = nupy, ) Ho. (13)

Here g/J[u = 9w — qﬂQy/qz and n* = eﬂbpaqypppha- )

The generalized SF H; can be expressed via H,, and
Hg,)i using the decomposition of the nucleon polarized
three-vector n = (1y,7,,73) over the basis (A2) in the
following way:

Hy = ) ﬂzHgg)g,

4
H2 - /12p2 [AYPtZQz(H(()(())) - WZHéf))Z) —‘rﬂ%S/%(H(](:)
Y&t

- ’12H<151)2) - ,12,1Y(H202) - ﬂzHg)z)
~28,23p,0/ 2y (ReH) — ,ReH{) )],
1 0
Hs = F<H$ ) H%z) +’72(sz2 112))
t

2
/Ith

+ p,0\/ay(ReH'Y — n,ReH())).,

0 0 0 s
Hy = 5 (438, (H, H) ) - H(u) + ’72(H(11)2 - Héz)z))

Hs = (ImH) — poImHS)),

20
pt\/_
4M (s) (8)
He = pEEN [Op\/Ay(mReHy; + n3ReH ;)
y Pt
s s
- /13Sx(’11ReH(12)1 + 113ReH§2)3)],

Hy /13/2 ) [OpiV/4 (nllmH(()z)1 + ’73ImH(()2)3)

S
— 238, (nImH ) + nsImH )],

2M s) (s)
Hg = —(I’]IRCH( +I’I3RCH ),
7w D2 121 123
2M s) (s)
Hy =— (mImH( + mImH ;). (14)
Ay 2 121 123
Here 1, = V2 + m?Q?, A3 = V_ + zQ?, and V_ is defined
in Egs. (3).

Finally we find the Born contribution in the form

doB 2SS2 9
of = o ‘ ZHBH,, (15)
dxdydzdp d¢hd¢ 8MQ plﬂS
where 6% = LFwi, /2,

0% = Q> -2m?, 65 =(SX-M*Q?)/2,
08 =(ViVo—m;0%)/2, 605 =(SV,+XV,—-20%S,)/2,

21 Sngh
P =""""="1 9 =-5 ,
5 s 6 p€LDh
5 AS 2 B
07 = 4\/—[le+ SpS:(zQ*+ V). 05 =-2V. e\ py.

08 = S IS(Q SV =i, + V_(SV2=XV))

+2m2(AMP V2 + Aym? — z82(zQ* +2V_))].  (16)

The quantities HES;) and HE;?[ can be expressed through
another set of the SF presented in [19]. Taking into
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account that 7; = cos(¢;
and 73 = S| we find that

— $n)S1, mp = sin(¢y — #;)S 1,

Hy = CiFyy..

HY) = —C(F + iFain),
(11) =C\(Fy COSM" +Fyur)s

HE? = C\(Fyur - Fay' ™).

- B,

’

F;}n(zébh bs) _ l(FzO;¢\ _ on;al/’h_%és)))

W=z

Hiyy = € <F§}““¢"‘ D Fg =i 1 FRT),
Hgh = Cy(Fy = iF ™),

Hg)l =C(- Fsm(3f/1h —s) Fsin((/)/,+¢s) +i Fch;g(m—(/)s))’
Hiy = Ci(=Fy"" +iF ).

H = Cy(Fh ) P ) — pyte ),

HS) = Cy(Fop ™) ) - pih=d) - (17)
where

4Mp,(Q* + 2xM?)

Cl — Q4 (18)
III. LOWEST ORDER
RADIATIVE CORRECTIONS
The six matrix elements shown in Figs. 1(b)-1(g)

contribute to the lowest order QED RC to the cross section
of the base SIDIS process [Fig. 1(a)]. A critical difference
in the graphs 1(a)—1(e) compared to the graphs 1(f) and 1(g)
is the distinct final unobserved hadronic state: continuum of
particles in the former case and a single hadron in the latter
case. The underlying processes are semi-inclusive and
exclusive hadron leptoproduction, respectively. At the level
of RC, both of them include the unobservable real photon
emission from the lepton leg as presented in Figs. 1(b) and
1(c) as well as 1(f) and 1(g). The contribution to RC from
the semi-inclusive process contains also the leptonic vertex
correction and vacuum polarization [Figs. 1(d) and 1(e)].
Thus these two separate contributions to the total RC to the
SIDIS cross section are considered in two separate sub-
sections below.

A. Semi-inclusive contribution

The real photon emission in the semi-inclusive process,

e(ki,&) +n(p.n) = e(ky) + h(pp) +x(ps) +r(k),  (19)

where k is a real photon four-momentum depicted in
Figs. 1(b) and 1(c) is described by the set variables
presented in (2) and three additional quantities,

k
R=2kp, 1= 4. (20)
kp

where ¢, is an angle between (k;,k,) and (k, q) planes.
Its sine in the covariant form is

2e k\/Ay
R\, (Q? +1(S, — tM?))

(21)

sin ¢k =

The contribution of real photon emission from the
leptonic leg is

4ra)? -
;\;;—%Wﬂy RdFR (22)

Here the “tilde” symbol denotes that the arguments of the
hadronic tensor such as 0%, W2, z, t, and ¢,, are defined
through the shifted ¢ — ¢ —k, ie, Q®> = —(q—k)> =
Q? + Rr. The phase space of the considered process has
the form

dGR:

3 3 3
dFR _ (27[)4 d3k d 3k2 d 3Ph , (23)
(27)*2kq (27)°2kz0 (27)°2pjo
where
3
ad’k Rderdgbk (24)

ko 2V 2y

For the representation of explicit results in the simplest
way the leptonic tensor L% in (22) is separated into two
parts:

LI = L% 4 L (25)

The first term includes the part of the leptonic tensor that
contains spin-independent terms and terms containing &,
i.e., the part of the polarization vector (10),

v 1 7 ary 2 \Tv
Lo = —ETT[(kz +m)Dg (ky +m)(1 +y5&)Tk.),  (26)

where
e — ki k3 . riky  ytkyt ,
kk,  kk, 2kk,  2kk,
fu;?a = VOF;TaYO
ki, k vk ke
_ la 2a }/D _ V KYa _ YakY ] (27)
kk,  kk, 2kk,  2kk,

The second term in (25) is proportional only to the residual
part &, of the polarization vector &,

1 1 7 a7 2 v
Lé@l :—ETT[(kz‘I‘m)F% (kl +m)y5§11"Ra]. (28)
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As shown below this part of the leptonic tensor gives a
nonvanishing contribution to RC in the ultrarelativistic
approximation for both the semi-inclusive (72) and the
exclusive (74) final hadronic states.

The convolution of the leptonic tensors Lk, and L, with
the shifted hadronic tensor can be presented as

9 9 ki
W L= i HiLy==2> " H%RI3,
i=1 i=1 j=1
prLRl - N;H/Hi I;QUI —2 Z 61 RJ 3 29)
i=5,7,9 =579 j=1

where i enumerates the contributions of respective SF in
(13). The sum over j represents the decomposition of the
leptonic (26) and (28) and hadronic tensor convolutions
over R. In this decomposition quantities 9?}‘:1 do not
depend on R. Their explicit expressions are presented in
Appendix B. The number of terms is different for different
SF: k; = {3,3,3,3,3,4,4,4,4}.

The lowest order SIDIS process (1) is described by the
four independent four-momenta such us p, ki, ¢, and p,,.
Therefore, the Born cross section contains only one
pseudoscalar &”?p,, p ki,q,. This pseudoscalar contrib-
utes to Hg 6. as it was shown in Egs. (16) and, according to
Egs. (6) and (7), can be expressed in terms of the variables
(2)-(4) as g/”“/"’phﬂpyklpqd =&1Pn = _pt\/)“_lSin ¢h/2
When we deal with real photon emission, the additional
independent four-momentum k appears. As a result the
number of pseudoscalar quantities that can exist in the
expressions for the cross section grows up to five. They are
not independent, and their number can be reduced to two,
namely &, p, and €, k, using the decomposition of the
photonic four-momentum over the basis introduced in
Appendix A by Eqgs. (AS5). As shown in Egs. (A9) the
remaining three pseudoscalars are expressed through the
linear combination of & p;, and ¢ k. The explicit expres-
sion for & k follows from (21):

sin g R\/41 (0 + 7(S, — TM?))
2V '
After substituting (29) into (22)

SJ_k = (30)

dO'R =

Pk dky d®
e 2 :2 :HQURJ 34 ra Ry ph
4 Q Vs = = o kx Pio

B a*SS2dxdydzdp,dg,dpdrdp,dR
647> M p As\/2y Q*

Ean

H0,;RI2, (31)
1

'bxﬁo

1

L j

Where 611 =
i=5,7,9, we found that the term with j =

H?j for i =1-4,6,8 and 0;; = H?j +6’}j for
1 in (31)

contains the infrared divergence at R — 0 that does not
allow one to perform the straightforward integration of dog
over the photonic variable R. For the correct extraction
and cancellation of the infrared divergence the Bardin-
Shumeiko approach [12] is used. Following this method the
identical transformation,

dog = dog — do'R + do'® = dok + do'},  (32)
is performed. Here do is the infrared free contribution and
do'® contains only the j = 1 term in which arguments of
SF are taken for k = 0,

Z H 9,1 d3k d’;kz d’;ph
4”2Q4\/_— R? ko koo Pho.

do® = (33)

This decomposition allows us to perform the treatment of
the infrared divergence analytically since the arguments of
the SF in (33) do not depend on photonic variables. Due to
0;1 = 4FR0% one can find that this contribution can be
factorized in front of the Born cross section

Fr d’k
da}eR = ——d B = ko (34)
where
ki ky\?
Fi = (—1——2) | (35)
21 22

21, = kky,/kp, and the explicit expressions of these
quantities are given in Appendix B [see (B4)].

The term (34) is then separated into the soft o5 and hard
Oy parts,

a
olf =% 35+ o). (36)

by the introduction of the infinitesimal photonic energy
ko — 0O that is defined in the system p + q — py, = O:

B Lk F
_ / o Ok = o).
Pk Fr _
= —— [ E2 R0k — Ko). 7
LRtk (37

The additional regularization with the parameter k,
allows us to calculate 6y for n =4 and to simplify the
integration for d¢ in the dimensional regularization by
choosing the individual reference systems for each invari-
ant variables z; and z, to make them independent of the
azimuthal angle ¢;.

The explicit integration, details of which are described in
Appendix C, results in the final explicit expressions for
these two contributions in the form
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2_
= Z(anLm - l) (PIR + IOg ko)
12

1 1
+ ES/LS/ + EX/LX/ + Sd)’

2 2
Px — M h

= 2(Q%1Lm - 1)10g - : . (38)
2ko/ pi

Here M, is the minimum value of the invariant mass of the
undetected hadrons p, for the SIDIS process, e.g., M,, =
M + m, when the detected hadron is the pion. The symbols
L,, Ly, and Ly are defined in Eq. (C10).

The sum of §5 and 65 does not depend on the separated
photonic energy k, but includes the term representing the
infrared divergence

PR = (39)

1 1
n—4 Taretloey o
as well as the arbitrary parameter v, the mass scale of
dimensional regularization. These two quantities should be
canceled by summing the infrared divergent part with the
contribution from the leptonic vertex correction that is
considered below.

The term S, has the form

+ZS ,+1< 8;log?(|z — zi])

1)(z—23)
(Z - Zz)(Z —24)

S(/):

L (-8 [1og<|z ~ o) tog(lzi - )

— . =z,
_L12<Z Z)D} : (40)
Zj =% =24
where
T log|1 -
Liy(x) = —/Mdy (41)
0
is Spence’s dilogarithm and
1 2p2(0% F /A
Zl,z__/(x,_s,“a(g—:p/))’
VAx -y
S Y a)
VA XV )
/1/ X/(s/ _ X/) _ zp)chZ
Ly = /1—, -1, ld = 2y )
S;={L.1,-1,-1}. (42)

The infrared free contribution doR from (32) integrated
over the three photonic variables reads

3SS2 T k) mdx
d d dR
7R = 64772MP1/15\/_/ T/ e /

Tmin

'11

o H\ | & R
S [ (F-5) + e @
P Q =
where the limits of integration are
R — pi— My
max 1 + T — /,l ’
Sy +Viy
Tmax / min — W (44)

and the quantity u is defined in Eq. (B3).

The additional virtual particle contributions consist of
the leptonic vertex correction [Fig. 1(d)] and vacuum
polarization by leptons and hadrons [Fig. 1(e)]. These
contributions are given by Eq. (8) with the replacement of
the leptonic tensor L% by

v 1 7 A E
Ly =3 Tel(ky +m)Ty(ky + m)(1+ 758)r']

+ %Tr[(l@z +m)y*(ky +m)(1+ysETY],  (45)
where
Ty = A+ T + %5@07“ (46)
and T% = yo[%yq.

The flrst two terms corresponding to the leptonic vertex
correction A, and vacuum polarization by leptons Il I are
calculated analytlcally using Feynman rules while the fit for
the vacuum polarization by hadrons &/, can be taken from
the experimental data [20].

Since A, and Il % contain the ultraviolet divergence while
A, also mcludes the infrared divergent term, the dimen-
sional regularization is used for the calculation of the loop
integrals:

dal
A, =—ie? [ S5
H te /(277.’)"1/’1_4

7/(1(122 - 2 + m)yu (]21
P(2 = 21ky)(P

ie? d'l
Hflxﬂ == 2/ n, n—4
0* ) 2n)v

Tr[(? +m;)y,
) { 2 =)

i=e.u,t

—1+ m)y“®
—21ky) ’

(=g +ml
I=q7 = >}' “7)

a
(
Details of the calculations are presented in Appendix D; A,

and Hﬁ,ﬂ have the following structure:
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a 1 .
A[l = <5\I/Je\1{t(Q2)y/4 - EmLm[Qﬂ 7ﬂ]> 5

27
My = > -6 (0%) g (48)
i=e,u,t

where the second term in A, is the anomalous magnetic
moment. To remove the ultraviolet divergence the standard
on the mass-shell renormalization procedure is used:
oWV (0Q?%) and 8LV (Q?) are substituted by the difference
of these quantities and their values at Q* = 0:

5ven - 5ven(Q2> 593\1‘71(0)
Slae = iy (0%) = 818V (0). (49)
Here 6Y,(0) = 2 — Pyy — 2Pg — 3log(m/v), 8.5 (0) =

4(Pyy +log(m;/v))/3, Pyy = Pr, and the ultraviolet
free terms have the form

3
5vert:_2(Q%an_ 1) (PIR +10gm) -2+ <2Q2+4m2>Lm
12
2 2 2
O </1,,,L2+2L12< /Tm )—”—),
Vo \2 O*+V,) 2
Bhac=> Ol
i=eu,t
2 10 8m
— Z(0*+2m?)Li, 1-2m2Lt
ize,;,,&(Q L5 32 ( ﬂ
(50)

The quantity L,, is defined in (C10) while the expressions
for A%, and L!, are defined by Egs. (D3).

Finally the contribution of the inelastic tail to the sixfold
SIDIS cross section reads

0 (5VR + 5vac + 5vac) B + Gg + GAMM’ (51)

where the sum of the infrared divergent terms,

Oyr =05+ 0y + Oyer

M2
=2(Q%L, - 1)lo gpx ’h+ S'Lg
p? 2
1
+§X’LX/ +8,—2+ <§Q2 +4m2>L

2 71 22 7’
(<A, L% + 2L [ 2 | ==, 52
/—im (2 mtm + 1 <Q2 n /—lm) 2 ) ( )

is free both from the infrared divergent term P appearing
in 65 and .y that are defined by Egs. (38) and (50) and the
arbitrary parameter v. The infrared free contribution ¢% is
defined by Eq. (43).

At last the contribution of the anomalous magnetic
moment coming from the second term in A, given by
Egs. (48) has the form

3.2 2 9
AMM m-SS; AMM
= —L,) 07H, (53
’ 162MQ%p g "= (53)
with
gAMM 6 aAMMf_l_Y
1 0 2 - sz
v V_
OAMM — 0y 2Q_’ 94AMM__2SX<Z+@)’
9AMM:2’18(2S+Sx)SJ_ph
’ VisQ
2,(25+5,)
T =T S(SVam XV =25, 00 +AMEQV),
A
oM = 2\/—Q2(5§(4m2(m%—Z(ZQ2+2V_))+Vlv_)

—4(M?(Q*—4m?)+§*)(m2 0>+ V2)
+20%8,(S,(zQ>+V +V_)+2SV,)+28S,V_V,),
OAMM = gAMM — ), (54)

B. Exclusive radiative tail

The exclusive radiative tail is the process

e(ky, ) +n(p,n) — e(ky) +h(py) +ulp,) +r(k), (55)

where p, is the four-momentum of a single undetected
hadron (p2 = m2) shown in Figs. 1(f) and 1(g). The final
unobserved state contains the photon radiated from the
lepton line and a hadron produced in an exclusive reaction
of y* and p. The process (55) gives a contribution to the RC
in SIDIS because two observed particles in the final state
can have the same momenta as the unobserved particles in
the SIDIS process (1). The square of the invariant mass of
the unobserved state p2=(p+q—p;)>=2k(p+q—p;)+m>
depends on the photonic variables. Emission of the soft
photons would result in p2 = m2. This is beyond the
kinematic region of SIDIS. Therefore, the process (55)
being the contribution to RC to the SIDIS cross section
does not contain the infrared divergence [10].

A description of the exclusive process without the
radiated photon requires only five of the six variables of
SIDIS presented in Egs. (2): x, y, t, ¢, and ¢. The process
with the radiated photon is additionally described by the
three photonic variables R, z, and ¢, introduced above by
Eq. (20). In this case the sixth SIDIS variable z is expressed
through other SIDIS and photonic variables:
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M?>—m2+t—R(1+7—
. m . (Ut+z=p (56)

where p is defined by Eq. (B3). Since we calculate RC to
SIDIS we need to keep z and use this equation in order
to express R in terms of z and two remaining photonic
variables:

p3 —m;
Rex—lﬂ_ﬂ (57)
and therefore to reduce the integration over the photon
momentum to the two-dimensional integral with respect to
variables 7 and ¢;.

The contribution of the exclusive radiative tail in the
form similar to (22) reads

(4ra)?
dofp = %)
N

where the hadronic tensor W4y describes the exclusive
process y* + n — h + u and has the same structure as the
hadronic tensor in Eq. (13) but with the SF dependent only
on Q% W2, and 1 variables. The leptonic tensor LR, and its
convolution with the hadronic structures w’f are the same
as in Egs. (26)—(29).

The phase space of this process is

WELS, ATy, (58)

1 PkdEkdp,dp,
B (2m)® 2k 2k 210 2P w0
x 84 (ky + p—ky = py = pu — k)
2R SSidxdydpdzde,dp;drdd,
 (@4n)f(1 47— wMp/Ashy

The use of the phase space (59) and convolution
of leptonic and hadronic tensors (29) with replacement
H; — 7:[?‘ in (58) and the subsequent integration of the
obtained expression over two photonic variables results in
the contribution of the exclusive radiative tail to the SIDIS
process in the form

(59)

Tmax 2r

3ss2
et dr/dgbk
0

2 Mpias\/Ay

Tmin

ki CHPO,RE R’ 2

9
XZ +T_ (60)

i=1 j:]

ex __ _
GR—

IV. ULTRARELATIVISTIC APPROXIMATION

In Sec. III all contributions to the lowest order RC are
presented by exact formulas. Some of them have a rather
complicated analytical structure. However, due to the
smallness of the leptonic mass compared to other quantities

that describe kinematics of the process it is rather useful
to obtain RC in the ultrarelativistic approximation keeping
the leptonic mass m only as an argument of the logarithmic
function. This allows us to simplify the analytical expres-
sions essentially as well as clarify the leading log behavior
of the obtained results. In other words, the lowest order
QED RC in this approximation has the form

2
oRc:%[Alm+B+O<%)], (61)

where [,, = log Q*/m? and the terms A and B are inde-
pendent of the leptonic mass and represent the lowest order
leading and next-to-leading contributions to the RC to the
cross section, respectively.

The terms in (51) that are factorized in front of the Born
contribution are essentially simplified, resulting in a more
transparent structure after applying the ultrarelativistic
approximation, e.g., the terms (36)

a (P —M3,)?
0}%{:;{( —1)<2P1R+210g —l—logT,”

1 1 s 0*p2\ n?
+§l%n_§10g2?+]-‘12{1_ S’X’ —? () (62)

contain both /,, and [2,. The latter comes from the soft
photon emission whose contribution cancels in the sum
with the leptonic vertex correction:

(P)% - Mtzh)z —|—§l
S'X 2"

s’ AN
—|—L12{1 SSE -T2 (@)

5VR = (lm - 1>10g

1
——log

The vacuum polarization by lepton i (i = e, u, 7) in the
limit Q2 > m? reads

0> 10

i

i
6vac -

- (64)

The ultrarelativistic approximation for the hard photon
emission contribution (43), (60) requires additional care
because of the integration over photonic variables and the
nontrivial dependence of the integrand on the leptonic
mass. Specifically, the integrand contains the terms 1/z;
and 1/z3:

2r
L
{1

0

2n
JES
2
0

222y
V(QP+28) +4m*(c(S, = tM?) + Q%)

27(Q*S, +7(SS, +2M*0?))\/1y
((Q>+18)% +4m>(¢(S, —tM?) + 0%))¥/*
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These have a sharp peaking behavior in the region
7 — 7, = —0?/S due to the smallness of the lepton mass.
The integration of the expressions (65) over ¢ and 7 gives

/ /dm Iy, S+
as ES— ks
Tmax 2n d 2 A’
/dr/#: iy (66)
Zl m
Tmin 0
Since
S+ 52
’LILI'(I) 10g — \/,TST = lm + ]OgW s (67)

the terms containing 1/z; contribute to the leading and
next-to-leading RC. The terms containing 1/z7 also contain

m? in numerators and therefore contribute to the next-to-

leading RC only (the only exception is 62; that is discussed
below). The similar conclusions are true for the terms
containing 1/z, and 1/z3 terms.

Actually the integrand in (66) has to be multiplied by the
SF according to (43) and (60). Therefore, we make the
identical transformation for extraction of the leading and
next-to-leading terms:

VAs+S
Jo / ) 1065 50,0
Tinax 2
dT/d¢kg(T’¢k)_g(Ts’O),
{1
Timin 0
Tmax 2r
m/ /dgbk _2 VAyG(z,.0)
Timin 0
Tmax 27
+ /dr/d¢km2g(T’gbk)Z_zg(TS’O),
1
Tmin O

(68)

where G(z, ¢;) is a regular function of 7 and ¢;. The second
term in the right-hand side of the first transformation does
not include the leading terms, and the second term in the
second equality is proportional to m? and vanishes in the
ultrarelativistic approximation.

The approach of extraction of the leading and next-to-
leading contributions can be illustrated by considering the
terms originated from the convolution of the leptonic tensor
(28) with the hadronic structures Ww/,. Summing up the
terms 0};R/~ in the last expression of Eq. (29) and keeping

the leptonic mass only in the term m?/z3 (in G}j the term
1/73 is proportional to m*) results in

Wi, Ly = —2291 R = —2
<1

0/ (R.7.¢) (69)

with the quantities 0! (R, z,,0) expressed through (16) as

:%9 <k1 <1—§>k1). (70)

The replacement in the brackets is applied for any kin-
ematic variable defined through k;, e.g., S — S—R,
Q*— (1-S/R)Q?% and &, p, — (1 —S/R)e, p,. Note
that R = R, has to be used for the excluswe radiative tail.

The resulting equation for the aR‘ is obtained using the
second equation of (68) with the regular function G(z, ¢),

0! (R,z,,0)

R

Gz, i) =

max

229 (R.t.¢p)H;.  (71)

i=5.79

Therefore, the contribution from the second part &; of the
lepton polarized vector (10) reads

where

28S,(S, — R) +2M?*(RV, —28V_)
2M\/S(4M2Q%(S — R) + S(S, — R)?)
- M3,)/S', (73)

l pu—

and 5'£l is proportional to the A, part of the Born

contribution with the following replacement: m — 0,
S—S—R, 0> > Q*(1-R/S), V{ - V(1 =R/S), and
= ZSx/(Sx - R)

A similar calculation of the exclusive radiative tail
results in

~ex B
ds?);

R¢y) dxdydp,dd,dg’

Gex‘fl — _ aS)ch;xp}veX
R aMp,SS'(S, —

(74)

where

1
2M\/S(4M?Q*(S — R,) + S(S, — R%,)?)
X [(Se — RE)(S(S, —2V_ + m% —m2)
- Rgx(S - Vl)) - Q2(S - Réx)(sx - RfS:x)
+ M*(S(S, —4V_) = R&(S = 2V))]. (75)

sex __
P =
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R:, = S(p2 —m2)/S', and the exclusive Born cross section
reads
doy” @SS,
dxdydp,dd,dd — 647> Q*Mpg
t+M?*—m?
X HEx 08 — 141,
> Mo, (z - )

i=5,7.9

(76)

Finally, we consider the extraction of the leading
and next-to-leading terms in the quantity 62; given in
Appendix B. In contrast to other 9%-, the quantity 923
includes terms 1/z? without factors proportional to m* and
therefore can potentially result in electron mass singularity
~m~? after integration (66). This is, however, not the case
because 923 = 0 at the peak point, i.e., fort = 7, = —Q?/S
(and p = V,/S). Explicit integration in the limit m? — 0,

Tmax 2z
/ dt / dep 0%,
Tmin 0
Zj’eﬂ-pt sin ¢h \/)“_Y

s 02 (SX—M20?)

2
X {4M2Q2(SX—M2Q2) <lm +10gﬁ—3> —l—SZ/IY}
(77)

shows that 62; has a standard form A log(Q?/m?) + B.

The final result for the observed cross section in the
ultrarelativistic approximation is obtained by the following
substitutions in Egs. (51) and (60): (i) oMM =0;
(ii) Egs. (63) and (64) for 8y and &i,.; (iii) m =0 in
the Born cross section [Eq. (15)]; and (iv) ok = 6% + afg
and 6 = 69! + 65, where 65 and 65! are given by
(72) and (74), respectively, and ok and 6! are given by
Egs. (43) and (60) with Q}j =0 and the leptonic mass
keeping only in the coefficients at F5; and F»,.

V. CONCLUSION

Newly achieved accuracies in modern SIDIS experi-
ments in TINAF and CERN require renewed attention to
RC calculations and their implementation in data analysis
software. In this paper we obtained the exact analytical
expressions for the lowest order model-independent part of
QED RC to the SIDIS cross section with the longitudinally
polarized initial lepton and arbitrarily polarized target and
demonstrated how the leading and next-to-leading contri-
butions can be extracted. The model-independent RC
includes (i) the contributions of radiated SIDIS processes
and loop diagrams (51) and (ii) the contribution of the

exclusive radiative tail (60). The methodology developed in
this paper is the extension of the covariant approach for the
RC calculations developed earlier: (i) the method of
covariant extraction and cancellation of the infrared diver-
gence suggested by Bardin and Shumeiko [12]; (ii) the set
of integration variables used in RC calculation to DIS [16];
(iii) RC to unpolarized and polarized SIDIS in the quark-
parton model [6-8], (iv) RC for SIDIS of unpolarized
particles [9], and (v) the calculation of the exclusive
radiative tail for unpolarized SIDIS [10]. The calculations
of RC in SIDIS measurements were performed by the
model-independent way that involves constructing and
using the SIDIS (and exclusive) hadronic tensor containing
the 18 SIDIS and exclusive SF. We obtained the explicit
form of the hadronic tensor using the approaches of [17,18]
and demonstrated that the Born cross section exactly
coincides with that given by [19]. The next step in the
RC calculation includes coding of the formulas and
numeric evaluation of the effects of the RC. However, this
requires models of the SIDIS/exclusive SF that are not
known now. Therefore, a broad discussion and efforts of
theoreticians and experimentalists are required to complete
the evaluation of all SIDIS SF as well as SF in the
resonance region and exclusive SF. Further development
will include development of (i) the iteration procedure with
fitting of measured SF and joining with models beyond
SIDIS measurements at each iteration step, and (ii) tools for
generation of the radiated photon. Such a generator can be
constructed based on a code for RC in SIDIS in the same
way RADGEN [21] is constructed based on POLRAD 2.0.
Generation of semi-inclusive processes based on DIS
Monte Carlo generators can provide only approximate
cross sections, because a part of the SIDIS cross section
involving pure semi-inclusive SF and respective convolu-
tions of the leptonic and hadronic tensors are not presented
in such DIS Monte Carlo generators.
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APPENDIX A: BASES IN THE
FOUR-DIMENSIONAL SPACE

In this Appendix three bases in the four-dimensional
space that are used in our analyses are presented. The first
two are used for the decomposition of the initial target and
virtual photon polarization in the hadronic tensor defined
by (12). The latter allows us to decompose the real photon
momentum in such a way that all five pseudoscalar
quantities appearing in processes (19) and (55) reduce
down to two: &, p;, and € k.
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For the decomposition of the hadronic tensor over the
SF it is convenient to introduce the reference system
(X5, Y1, Z,) in the target rest frame where the two polar
axes are defined as follows: z, is chosen in the virtual
photon three-momentum direction q = k; — k,, and the x,,
along the part of the registrated hadronic momentum that is
transverse to the z, axis. The direction of the rest axial y,
axis is defined as y, = z; X x;,. In this system the complete
basis for polarization vectors can be presented in covariant
form [18] for both the virtual photon

W0 _ 20 |
ey = =Pi>

Y
() _ L Se(mp+(22-1)0° —1) |
Cu — p/’l/d ) 7

Y

JHUPO

62(2) _ 28 pyqpph(f’
PV Ay
3 q

=3 (A1)

o =2t
wy 1 Si(my+ (22 -1)0* - 1)
) = pjy = p|.
HUPO
eZ(Z) _ 28 PvlpPho ’
pt\/E
2M?q, - S,
) = 2 Gu = Sxby (A2)
M\/Zy

_ 2 1
where O = +/0Q~ as well as for any four-vector a; =

a, + aqq,/Q*. Note that the direction of ") (and e’?
as well) is chosen in such a way that the projection of k , on
y;, reads y, -k, =y, -k, = —e"@k; =—e" Pk, = k,sin(¢;,).

The components of these two bases in the reference
system (X, y;, Z,) read

0 1 (0
eﬁ():m(\/l .0,0,5,), el =(1,0,0,0),

etV =(0.1,0,0), e =(0,1,0,0),
Y =(0,0,1,0), en® =(0,0,1,0),

h(3)

1
3
A =53 500V, e =(0.00.1). (a3)

In the rest frame system the virtual photon longitudinal
and transverse polarizations correspond to ¢7(®) and e7(1:2),
respectively, and the left and right circular polarizations are

defined as

el E) — :FL (er(l) + ier(Z))_
V2

To decompose the photonic four-momentum the other
reference system (X;, y;, ;) in the rest target frame has to be
introduced. In this system the polar z; axis has the same
direction as the three-vector q, the other polar x;-axis is
chosen along the incoming or outgoing lepton part that
is transverse to q, and the axial y, axis is defined as
y; = 7; X X;. As a result (x;,y;) is the scattering plane.

In the covariant form this basis reads as

(A4)

y Ay |1 S,0?
ey = /11|:2(klu+k2y)_ iy p;% ’
el(z) _ _Zﬂﬂ
H /21 ’
2M?q, - S,
el = M = OxPu (A5)
M+\/y

Note that the direction of y; is chosen in such a way that the

projection of p, ony, is y; - p, = —e'® p, = —p, sin(¢,).
The two reference systems (X, y,,2;) and (X;,y;,Z;) can
be expressed through each other in the following way:

X, = X;cos(¢,) — y;sin(¢y,).
Y = x;sin(¢y) +y; cos(y),

Z, =1 (A6)

where cos(¢,) and sin(¢,,) are defined by Egs. (5) and (6),

respectively.
It should also be noted that for i =y, h, [

i(a) i(b) yu 4
eﬂ( Jell )gﬂ = g,

ei(a) i(b)

w v "Yab = Guv- (A7)

The photonic four-momentum can be decomposed into
the following way, k = k(u)e<“>, where

R
ki = kel© =
(0) = ke T
o — kel — R(Q%S, + 7(SS, +2M>Q?) — z)4y)
v 22 Ay ’
2e  k
k = —k 1(2) — —J"
BT A
R(S, = 2:M)

ks = —ke!® = (A8)

M Iy

This decomposition for the four-momentum of the real
unobservable photon allows us to express all pseudoscalars
through the linear combinations of two of them, &, p;, and
&€ lk:
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E”D'Mkpphpklp% = (R‘Sj_ph(T(st + ZmZSx) + Q2(4m2 + Q2 - lep))

1
20,
+ &, k(Q*(SVy 4+ XV = z0%S,) —4m?S,(z0* + V_))),

1
ek, Phpds = % (Rey pu(z1dy — Q*S, — 7(SS, + 2M*Q?))
+ & k(S,(20°S, = SV, + XV) =4V _M?Q?)),
1
ek, p Ky, phe = 2 (Re | py(ths +2m?S, + QS — z,(SS, + 2M*Q?))

+e k(2m?>(4V_M? — z82) + S(SV, — XV, — zQ?*S,) + 2V, M?Q?)).

APPENDIX B: EXPLICIT EXPRESSION FOR 6;
For all i = 1-8, the quantities 69 = 4Fg07 and Fig are defined by (B5). The other 6, read

9(1)2 = 47FR,

)y = —4 = 2F 7%,
205, = S,S,F 1 +2m7S,Fy_ +2(S, = 2tM?)Fig — S, Fy,
209, = (4m? + ©(2tM? = S,))F 4 = S, F 1y +4M?,

03, = 2((uV_ —wm}) Fig + V, (um*Fyo_ + V_F, =2V Fy)),

923 = (2Pm? + 1(tm} = uV_))F g = uV , Fy. +2m3,

6% = (SV) = XV,)Fy +m*(uS, + 2V, )Fy_ — 218,V Fy+ ((u — 212)S, + 2V_)Fig,

20, = (8um® + 7((2ez — p)S, — 2V_))Fy — (uS, + 2V, )F, + 428,

2,8
0, = m |:8Lph(2(Sx(Q2 +4m?) 4 27(SX — 2M*(Q* 4 2m?)))Fir + Q*(S, (S, F14 + 2m*F,_)
1V As

ek
— (45X + S)F ) + 2% (m*(Sx(SV2 = XV = 20%S,) +4M*Q*V ., )F,

+ ((Q* +4m*) (4M>V_ — 282) + S, (SV, - le))FlR)} ,

9 =6
5%+ﬂ\/_

+ (S, — 4S) — 2t8%)F,) + 2‘%‘ (2m2(S,(220% + 2V_ + (tz — u)S,) — 4M>(uQ? + 7V _))F,

+ 7(2m2 (282 — 4AMPV_) = 2M2Q*V, + S(25,0* — SV, + XVl))Fd)] ,

. 22,8 k
053 = L Fyy |52 (2(uQ? + V) (SX — M2Q?) + (02 + 28) (2028, — SV, — XV)) — £, py(Q? + 75)2
Mg R
1
O = 24, {ﬂph(@MzQz(Qz +4m?) — S3(Q* — 4m?) — 8Q*SX)(S,Fy, +2m*Fy_ — 1S ,F,)

k
+28,(2t(2M?*(Q* + 2m?) — SX) — S, (Q* + 4m?))Fr) + 25, % (m*(S,(28,0% — SV, + V| X)

—4M2Q*V )Fy_ + ((Q% + 4m?)(28T —4AMPV_) + 5,(XV| = §V5))Fir) |
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1
2/1

+ m*(2t(2M?(Q* 4 2m?) — SX) — S,(Q* + 4m?))Fy_ — Q*S ,Fig + S, (*(S3 + 25X

00 = — |2¢, pu((2Q*(SX — 2M2Q?) — 7S, (S% + 35X — 4m*M?) — (Q? + 2m2)SH)F .,

—2M(Q + 4m%)) +2¢5,(Q° + 2m?) — 4mPQ)F + S, 8%) + ELK (02 + 4m?) (52 — 4M2V)

+ 8, (XVy = SV2)) (S, F 1y +2m°Fy) +2m*(S,(20%S), = SV, + XV) = 4M>Q*V ) Fy,
+ (4(MPQ*(4SV_+ 8, (Vo = V_)) + 28X(SV, = XV ) + 2m?*S ,(4M>V_ — z8x%))

+ (3TSX + 2(Q2 - 2m2))(SV2 - XVI - ZQZSp>Sx + 8(Q2 - Zmz)M2Q2V+>Fd) ’

1

2
ek

+ ; (((Q* +4m*)(4M>V_ = 28%) + S, (SVa = XV |))F 1y +T(4M>Q>V, + S, (SV, — XV, = 20%5,))F4) |,

AeS
27
+ (u—212)8,8, — 28V, + 2XV ) Fir + 7(Q*(2S5,S, —4M?V ) + S (XV| = SV,))F ],

AeS
425
+ 22V, = uS,)Frr 4+ 7(4(S, = 2eM*)V, + S ,((2t2 — p)S, —2V_))F ).

0, = 5o |eLpy(((QF +4m2)S, + 20(SX —2M2(Q? + 2m))F . + 8, (:Q*F — 25.))

9(7)2 = [Q2(4M2V - Z52)F1+ +m (IMY -2 (ZQ2 +V_))F, (2(47M2 -S)Vy

0, = [(S¢(420% +2V_ — uS,) — 8 uM*Q*)F, + 2m>(dutM?* + 2V_ — (u + 212)S, ) F,_

2,8
&, = [((u+272)S, —2V_ —4utM?)F, +t(uS, — 2V )F .

475
1
03, = N [eiph((QQSx(SxVJr —28V,y) = 2V_(24 + Q*SS,))F 1, —2m*(2ul; + QZSpV+)F2—
1

+ Vo (2m?(2¢(2(Q? + 2m*)M? — SX) — (Q* + 4m*)S,)F, + (4m*((3Q? + 4m?)S,
+7(2SX —4(3Q% +2m*)M? — S2)) + Q*(¢(12SX + 52) + 20°(S, — 6tM?)))Fy))

+2v, R (((Q2 +4m?) (283 —AMPV_) + 8, (XV | = 8V,))Fig + m*(S(XV, = SV, +z8,07)

- 4Q2V+M2)F2_)} ,
1
24
=272 (4(Q* + 4m*)V . M? — S ,(SV| + XV3)))F 4 + 2 um?(2t(2(Q? + 2m*)M? — SX) — (Q* + 4m?)S, ) F,_
+ 48,8, V_ =2 um*Q*S ,Fo, + (2t(X*V, — §?V}) + 8m?V_(2tM?* = S,) + Q*(4u(SX — 20°M?)

0%; = [qm((zu(Qz —2m?)Q2S,, +7(2(Q% + 8m?)S,V, + Q2 (uS.S, + 25V, —2XV,))

ek
= S,2V_+uS)))F1y) + 2%«@2 +4m?) (283 — 4MPV_) + S, (XV| = SV))(V_F1, + um’F,_)
+ um?*(S,(25,0% + XV — 8V,) —40°V_ M?*)F,, + (u(Q* —2m*)(40°V M? + S, (SV, — XV,
—28,0%) + (S, S,Va(Vy + Vi) +2V_V, (S, —48)X + 2(30% + 8m*)M?) + zS,(Q*(XV, — SV,)

— (0% +8m*)S,V.))F,)|.
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00, = £ |1 py(((Q* + 4m2)S, + 20(SX = 2(Q% + 2m>)M2))Fy, + S, (tQ*F 4 — 2S,))

22
k
+ % (((Q* + 4m*)(4M>V _ — z8%) + S,(SVy = XV)))Fy, + 7(4Q*V M? + 8, (SV, — XV, — zSsz))Fd) ,
22,8, )
09, = ﬁ (Q°(28:Vy —m}S,) + V_(SVy, = XVy))Fig,
AeS
05, = (0?8 (zV_—m2)F , + m*(Q*(uzS, —2m2) + V_(uS, —2V_))F,_
Vis
+ T(Qz(miSp — S,V )+ V_(XV, =SV )Fy+ 2QV_(2uS = V) + 22(zS,V, — m%Sp)
—u(Vi+V_)S)Fr).
AeS
05; = 2\//TS<(2(2mﬁQ2 +V2) = uS (220% + V_))Fiy + m*(u((202 = p)S, +2V_) — demj) Fy_
—I—M(ZV_,_ _ﬂSp>FIR + 7(21<m%1Sp - ZSXV+) +ﬂSx<V— + Vl) + 2V—<V+ - ZﬂS»Fd)’
AeS
884 = 4\//1_S((2T(2m]21 _/’lZSx> +ﬂ(#Sx - 2V—))F1+ +/’£T(ﬂsp - 2V+>Fd) (Bl)

The quantities Q}j have the form

05, = 0.
2m?A,
| = ﬂl’”ﬁ [ewh(z(zmy + (Q* + 18)(2M2Q? + 55,))Fay — S AyFy, + (20°XS, + 78,(252 — §2)

ek
+AMQY (1S = 07) — 4wy )Fy) + 2557 (8,(25, 07 + XV, = SV3) = 4MPQV, ) (XF, = SFn) |.

L 2m?,
¥ s

k
+2(8* + X)) Fy) + 2% ((2m? (282 = 4MPV_) + 2M?Q*V, + X(XV = SV, — 25,0%))Fy

[g“ph(z((Q2 +2m?)(2tM?* + X) — (2X + 2m?)S)Fy, — AyF 4 + (4m?(S, — 2tM?) +20°S

+ (2m2(4M2V_ - ZS%) + 2M2Q2V] + S(SVZ — XV] — ZQZSX))Fd) .

03 = 0.

0, = % (4M>*(zSV_ — Q*V,) — S2(2z8 + z0* + V) + pdyS)Fy, + (4M*(Q*V . —1XV_)
+ S3(12X + V, — 207) — udyX)F ).

03 = nj% [(2M?(u(Q +28) = 22V, ) + S, ((72 = 2p)S + 2V = 20%) + (4 — 72)S3) F2y
+ M (u(Q* = 7X) + 22V ) + S,((2u — 72)S = 20° = 2V,) — uS3)F ),

0, = nj;f [(2utM? + puX — 128, — V) Fay + (QuetM? + V| — uS — 128, )F ),

ol 42, m*(m2 2y + 4M2\‘;%— 282(z0% +2V_)) Fo
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2m?),
), = M e [2m?(2m3 (2eM? — S,) 4+ 2(zS, =2 uM?)V_ + z(u — 72)S2)F.,
Vs
+ S, (2Q*(uS = Vi) + V_((u+72)S = Vi) = mi(Q* 4 78))Fy
+ (Su((m2 = z2V_)(eX 4+ 30% 4+ 8m?) + (V_ 4 z0?)(V, — uX))
+2(4M> (uV_ = 7mj) + (27 — p)z83)(Q* + 2m?))Fy,
2
A
O3 = n\l//l—e [4m? (mj, + > M? = pzS, ) Fay + (2mj (X — Q%) + Sy (u(ez — p)S = 222V, + pzQ?
S
+uVy) +2V_(Vy = uX))Fy + (u((Q* + 2m?)(5zS, — 4 uM?) + (u — 72)XS,)
—2m3(zS + 30% + 4m?) + S, (2ez2V, — uVy — 2uzm?) +2V_(uS — V1)) F ),
m?2,
Oy = 7 [(u(z2Sy 4 pX = V) = 2emp ) Fay + (u(22S, + Vi = pS) = 20m3)) Fy).
N

The variable y is defined as

_kpu_ a0 | pieM2 =S,

- kp M M2y
(Tmax - T) (T - Tmin)
—2Mp, cos(¢y, + ) ™ - (B3)

The quantities F; (i = d, 1+, 2+, 2—, IR) are expressed
through

kik
1 = ﬁ
0%S, + ©(SS, +2M*Q?*) — 2M /2 cos ¢,
= » ,
kik
Iy = ﬁ
0%S, + t(XS, — 2M?Q?) — 2M /2 cos ¢,
= » ,
Az = (Tmax — 2)(T = Trin) A1 (B4)
in the following way:
1
Foy =Fp+tFy =5+,
2 4
pyo L
2132
Fr= L + 1
21 Ve)
Fir = m*Fy; = (Q* +2m*)F . (B5)

(B2)

APPENDIX C: CALCULATION OF 65 AND 6

The dimensional regularization is used for the calcu-
lation of &g in (37),

d3k/ dn—l k/
2wk
0 0
_ 272"V k3 dkg (1 — x2)" 22 dx
(2mv)"*T(n/2 - 1) '

(C1)

where x = cos @ [0 is defined as the spatial angle between
the photon three-momentum and k (i = 1-3) that are
introduced below] and v is an arbitrary parameter of the
dimension of a mass. The Feynman parametrization of
propagators in Fg,

R2
Frr :m/dy]-'(x,y), (€2)
0
0
where y is the Feynman parameter and
m? m?
F(x.y) = +
Ki(1=xp1)? k(1 — xpy)?
2

(1= xps)?

The energies of the real photon (kj), initial (k},), and final
(ko) leptons are defined in the system p+q—p;, =0
while k3o = yki + (1 — y)ky, and f; = [Ki|/ k.

Then, the substitution of Eqgs. (C1) and (C3) into the
definitions of &g by Eq. (37), the integration over kj, and
the expansion of the obtained result into the Laurent series
around n = 4 result in

55 = SR + 61, (C4)
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where
1 1

1 k
SR = -5 {PIR “Ogﬂ dy / dxF(x,y)  (C5)
0
and

1 1

5% = —%/ dy/dx log(1 —x*)F(x,y). (C6)

0 -1

Here Py is the infrared divergent term defined by Eq. (39).
Since k3, — |K4|> = m? + y(1 — y)Q?, the integration over
x and y variables in SX is performed explicitly:
k
=Gy~ 1)|Prtlog™|. ()
For the covariant analytical integration in 5} we express
the initial and final lepton energies through the invariants:

S X'
ko =——, Ky = ——. C8
10 ) /_Pi 20 ) /_Pi (C8)
As a result,
L=2(0%L, —1)log(2 ! "L 1X’L Cc9
55_ (Qm m= )Og( )+§S S’+§ X’+S¢7 ( )
where the quantities L,,, Ly, and Ly are
L, = ! log - I + O
" N \/ - 0%’
1 S+ /A
Ly = lo 5 y
ST B~ T
X’+ Ay
L C10
A
and
2 Y log -~ Cll1
m g .
{ﬂz(m“ry(l—y)Qz) 1+ (1)

The explicit expression for S, after integration over y is
given in Eq. (40).

For the calculation of 65 we carry out the integration in
the same reference system p +q — p, = 0,

anax/ T 27[
1
By == / ki / sin(8})de), / d¢k R2’ (C12)
% 0 0

where ) is the angle between k and ¢ three momenta, and
¢} is the angle between (k;,k,) and (k, q) planes.

In this system

2k’
i1 = (kllo

2k’
R (

/ /o / / /
ki cos ¢} sin @), — k5 cos 6}),

= kb, — kjcos ¢ sin @), — k)5 cos 0)), (C13)

which allows us to take the first integration in respect to ¢:

kmdx !

5”‘/%’/ n(0) de/{ Q232<¢lc_2 \/1_>

ko
m231 m232
- P - C3/2} (C14)
1 2
Here
B; = Ky — cos(0,)kl5, C; = B? —sin(0))k? (C15)

for i =1, 2.
After the integration with respect to ¢, and the use of the
following replacements:

K= \JH = K = = \ [ — KB — .
2k’lo‘lo +0° i — 2kq0 — O

k|, = (Cl16)

0’ rqp 7 2/t
with g, = k|, — k), the hard contribution &y is expressed
in the form
kg]ﬂx/
dk
5H:2/ QL = 1). (C17)
ko
ko

Since k™' = (p2 — M?,)/2+/ p3, the integration for &y
is finally presented in the form of (38).

APPENDIX D: CALCULATION OF A, AND IT,,

The y-matrix recombination, convolution over a indexes
in Eq. (47) for A, and calculation of the traces for wa in
n-dimensional space result in

Ay = 5 (alln =275 = 40y + ko) +2037]
+ 2}/5[2J5(k1/4 + k2/4) - (n

Hlaﬂ Q2 ( Z {gaﬂ(q{s‘] + m2J J?{i)

i=eu,t

—2)J%) —4ml,},

+ 2']1'(1;4 - qa‘]iu - qy']la}> ’

where
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(2rv)*"d"l
20k (2

1
/= mz,lﬂ/ (P

1 . I;(2v)*"arl
Jy=—51 =L
0T i 1531/ 2(P =21k, ) (% — 21k) "

J 1 . / Isl,(2mv)*"d" 1
=—lim
v P12 =21k, (1

—2lky)

lﬂ,’2 n—4

— L, (ks + kog) (ky, + kZp)}’

L.

in®n—4 | (I?

(2rv)+"adrl
—m) (=) = mD)

Is(2rv)*"d"1 1
(=g =)~ 297

:2_2PUV

Isl,(2mv)*"d" 1
J: —lim 14 6 2
v n54/ = m)(U=a-m) 2 1\°[°

Al Al

+q5qﬂ(40_48PUV —4810g%+ 22 62 {3 +

ot @

— oL, <PIR + log m) AL —— <n2 —4Li,
14

(k5 =+ kas).

—2log
v

2ﬂ;)

2x/’ Vi + Q%)

20 = A, L

m A
- 3—2Pyy —2log == 2m g ]
k) 4 {95;:( uv og 02 ) + 959, 0°

AL
m—@uﬁ

30 m, 64, i
_QJGW+M7>+P_QL4¢_wﬁ
Al

4].)

The infrared divergent Py term is defined by Eq. (39) while the ultraviolet divergent term has the same structure

PU\/:PIRand

n ¢E+¢

A

Ay = Q*(Q% + 4ms). (D3)

After substituting (D2) into (D1) and using nPyy = 4Pyy + 1+ O(n —4) we find the final expressions for A, and

Hé,ﬂ (48).
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