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We consider the U(1) gauged two-component Friedberg-Lee-Sirlin model in 3+1

dimensional Minkowski spacetime, which supports non-topological soliton configu-

rations. Here we found families of axially-symmetric spinning gauged Q-balls, which

possess both electric and magnetic fields. The coupling to the gauge sector gives

rise to a new branch of solutions, which represent the soliton configuration coupled

to a circular magnetic flux. Further, in superconducting phase this branch is linked

to vorton type solutions which represent a vortex encircling the soliton. We discuss

properties of these solutions and investigate their domains of existence.

I. INTRODUCTION

For a long time now, much attention has been paid to the soliton solutions of various clas-

sical field theories. Solitons arise in various areas of theoretical and mathematical physics.

These spatially localized field configurations are widely used in many different contexts in

several directions including condensed matter physics, cosmology, classical and quantum

field theories, nuclear physics and other disciplines. In many cases existence of the solitons

is related with topological properties of the system, their stability is secured by the conser-

vation of the topological number, see [1]. There are soliton configurations of another type, so

called non-topological solitons that appear as global minima in the corresponding classical

action, see e.g [2, 3]. A remarkable class of non-topological solitons commonly referred to

as Q-balls, exist in the field models possessing an unbroken, continuous global symmetry

[4–6]. These configurations carry a Noether charge associated with this symmetry, they are

time-dependent solitons with a stationary oscillating internal phase.

Configurations of this type were introduced by Rosen in 1968 [4], later they were revisited

by Friedberg, Lee and Sirlin in two-component model with symmetry breaking potential [5].

In 1985 Coleman found another realization of Q-balls considering a single complex scalar

field in a model with a non-renormalizable self-interaction potential [6].

The Friedberg-Lee-Sirlin model provides an interesting example of Q-ball solutions in

a simple renormalizable scalar theory with minimal interaction and symmetry breaking

potential. In this model the complex scalar becomes massive due to the coupling with

the real scalar field, since the latter has a finite vacuum expection value generated via a
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symmetry breaking potential. Interestingly, the Q-ball solutions of that model exist also in

the limit of vanishing potential [7, 8]. In such a case the real component of the coupled system

becomes massless, it possess Coulomb-like asymptotic tail, the configuration is stabilized by

the gradient terms in the energy functional.

There has been a lot of interest in recent years in various aspects of Q-balls. In particular

it was found that similar non-topological solitons appear in the curved space-time, the

gravitational interaction may lead to gravitational collapse of the scalar field into the boson

stars, which represent compact, stationary spinning configurations with a harmonic time

dependence [9, 10]. Certain types of boson stars with appropriate non-linear self-interaction

are linked to the corresponding flat space solutions, which represent Q-balls [11–16]. It was

suggested that these mini-boson stars may contribute to various scenario of the evolution

of the early Universe [12, 17, 18]. Further, it was argued that these Q-balls may play an

essential role in baryogenesis via the Affleck-Dine mechanism [19], they also were considered

as candidates for dark matter [20].

Notably, Q-ball configurations in the U(1)-gauged model of complex scalar field with

minimal electromagnetic coupling was considered already in the second of the pioneering

papers of Rosen [4]. Although Coleman expressed his doubts about possible existence of

gauged Q balls [6], existence of the corresponding solitons was confirmed by various authors

[21, 22, 28–33]. Further, a possibility of generation of the magnetic field by the angularly

excited Q-balls was discussed in [34].

Indeed, in the simplest case the Q-balls are spherically symmetric, however there are

generalized spinning axially symmetric solutions with non-zero angular momentum [13, 35,

36]. The energy and the charge density distributions of these rotating Q-balls represent a

torus. An interesting aspect for such Q-balls is that there are two different types of the

axially-symmetric solutions with opposite parity [13–15, 35].

Whereas various spherically symmetric U(1)-gauged Q-balls were investigated before, lit-

tle is known about the properties of the corresponding axially symmetric configurations,

which possess both electric and magnetic field. The main purpose of this work is to extend

the consideration of papers [21, 22, 28–32] by constructing new families of axially-symmetric

stationary rotating Q-balls in the U(1)-gauged Friedberg-Lee-Sirlin model and investigate

dynamical properties of the corresponding configurations. We found that these solutions

possess new properties, which are different from those of the spherically symmetric gauged

Q-balls, featuring interesting pattern of generation of a toroidal magnetic field. Interestingly,

new branch of magnetic Q-balls arise, it corresponds to the non-topological soliton encir-

cled by magnetic vortex. Further, we observe that strong magnetic field may destroy the

supeconducting phase in some region inside the Q-ball. The corresponding configurations

actually represent the vortons [26, 27], circular magnetic vortices stabilized by the angular

momentum of the stationary spinning soliton.

The paper is organized as follows: in the next section we discuss the U(1)-gauged

Friedberg-Lee-Sirlin model, the axially-symmetric ansatz which we apply to parameterize
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the action, the boundary conditions imposed to get regular solution and establish the field

equations. The numerical results are presented in section 3, where we investigate properties

of these gauged spinning Q-balls and determine their domains of existence. We give our

conclusions and remarks in the final section.

II. THE MODEL

We consider the U(1)-gauged two-component Friedberg-Lee-Sirlin model, which describes

a coupled system of the real self-interacting scalar field ψ and a complex scalar field φ,

dynamically coupled to an Abelian gauge field Aµ. The corresponding Lagrangian density

is

L = −1

4
FµνF

µν + (∂µψ)2 + |Dµφ|2 −m2ψ2|φ|2 − U(ψ) , (1)

where Dµ = ∂µ + igAµ denotes the covariant derivative, the Abelian field strength tensor

is Fµν = ∂µAν − ∂νAµ with electric components Ek = Fk0 and magnetic components Bk =

εkmnF
mn, g denotes the gauge coupling constant and m is the coupling constant. The

potential of the real scalar field is

U(ψ) = µ(1− ψ2)2 , (2)

thus, ψ → 1 in the vacuum, the U(1) symmetry is broken inside the Q-ball and the gauge field

Aµ becomes massive. In some sense, the gauged Q-ball behaves like a superconductor [21],

here the component ψ plays the role of the order parameter. The normal phase corresponds

to the case ψ = 0, then the model (1) is reduced to the usual scalar electrodynamics which

does not support non-topological solitons.

Note that the model (1) may be considered as a truncated version of the Witten’s model of

superconducting cosmic strings with U(1)×U(1) local gauge invariance [23]. Such a theory

supports stationary vortex solutions [24, 25], it also admits the vortons, they represent the

vortex rings stabilized by charge, current and angular momentum [26, 27]. As we will see, the

gauged Friedberg-Lee-Sirlin model also supports stationary superconducting circular loops

with non-zero angular momentum.

The parameter µ defines the mass of the real component ψ, the complex field φ becomes

massive due to the coupling with its real partner. The electromagnetic coupling also con-

tributes decreasing the effective mass of the field φ, as the coupling g increases from zero.

In the limit of vanishing mass parameter µ → 0 but fixed vacuum expectation value, the

real scalar field becomes massless and thus long-ranged. Note that the complex component

φ still acquires mass in this limit due to the coupling with the Coulomb-like field ψ.

The model (1) is invariant under the usual local U(1) transformations of the fields. The

following conserved Noether current is associated with this symmetry,

jµ = i(φDµφ
∗ − φ∗Dµφ) , (3)
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with the corresponding charge Q =
∫
d3x j0. This current is a source in the corresponding

Euler-Lagrange equation for the electromagnetic field

∂µFµν = gjν (4)

Variation of the Lagrangian (1) with respect to the scalar fields leads to the equations of

motion

∂µ∂µψ = 2ψ
(
m2|φ|2 + 2µ

(
1− ψ2

))
,

DµDµφ = m2ψ2φ ,
(5)

Notably, the flat-space localized regular solutions of the Friedberg-Lee-Sirlin model (1) exist

in the limit of vanishing scalar potential, µ→ 0, when the vacuum expectation value of the

real component ψ is kept non-zero [7, 8]. They represent gauged Q-balls with a long-range

massless scalar component.

In the opposite limit, µ→∞, the real component of the model (1) trivializes, ψ = 1, and

the massive complex field φ satisfies the usual equations of classical scalar electrodynamics.

Clearly, spatially localized stationary spinning solutions of this equation do not exist in the

flat space.

A. Spinning axially-symmetric gauged Q-balls

We are interested in stationary axially-symmetric solutions of the model (1). The usual

ansatz for the scalar fields is

ψ = X(r, θ) , φ = Y (r, θ)ei(ωt+nϕ) , (6)

where ω is the spinning frequency of field, and n ∈ Z is the azimuthal winding number. In

the static gauge the electromagnetic field can be parameterized as

Aµdx
µ = A0(r, θ)dt+ Aϕ(r, θ) sin θdϕ (7)

Substitution of this ansatz into the definition of the U(1) charge Q yields

Q =

∫
d3x (gA0 + ω)Y 2 , (8)

which is different from the particle number N =
∫
d3x Y 2.

Further, one can expect the usual angular frequency range, which for the ordinary Q-balls

in the decoupled limit g = 0 is determined by the explicit structure of the potential, will be

affected by the electromagnetic interaction.

The stationary spinning axially symmetric configuration possess angular momentum

which is obtained from the T 0
ϕ component of the stress-energy tensor,

J =

∫
d3x T 0

ϕ = 4π

π∫
0

∫ ∞
0

r2 sin θdrdθ

{
(gA0 + ω)(n+ gAφ sin θ)Y 2 + Jem

}
, (9)
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where the contributions of the electromagnetic field is

Jem =
1

r2
∂θA0 (Aφ cos θ + sin θ∂θAφ) + sin θ∂rAφ∂rA0 (10)

The angular moment of the spinning gauged Q-ball is quantized in the units of the electric

charge of the configuration, J = nQ [36].

The total energy of the system becomes

E = 2π

π∫
0

∫ ∞
0

r2 sin θdrdθ

{
X2
r + Y 2

r +
X2
θ

r2
+
Y 2
θ

r2
+

1

r2

(
gAφ +

n

sin θ

)2
Y 2

+ (gA0 + ω)2Y 2 + µ(1−X2)2 +m2X2Y 2 + Eem

}
,

(11)

where Xr,θ ≡ ∂r,θX, Yr,θ ≡ ∂r,θY , and the electromagnetic energy density is

Eem =
1

2

{
(∂rA0)

2 +
1

r2
(∂θA0)

2 +
1

r2
(∂rAφ)2 +

1

r4 sin2 θ
[∂θ(Aφ sin θ)]2

}
The corresponding field equations are(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
+ 2µ2(1−X2)−m2Y 2

)
X = 0 ;(

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
− 1

r2

(
gAφ +

n

sin θ

)2
+ (gA0 + ω)2 −m2X2

)
Y = 0 ;(

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
− 1

r2 sin2 θ
− 2g2Y 2

)
Aφ =

2ng

sin θ
Y 2 ;(

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
− 2g2Y 2

)
A0 = 2gωY 2 .

(12)

Here the last equation represents the Gauss law, it has to be considered as a constraint im-

posed on the system. Setting n = 0 reduces the equations (12) to the spherically symmetric

gauged Q-balls, considered in [22]. Here we mainly focus on the investigation of the axially

symmetric solutions with n = 1, evidently the main difference is that these configurations

possess both electric and magnetic fields. As we will see, the presence of the magnetic field

strongly affects the properties of the Q-balls.

Note that the structure of the system of equation (12) suggests that, similar to the case

of the spinning axially-symmetric Q-balls [8, 13, 14, 35, 36], the solutions of the gauged

Friedberg-Lee-Sirlin model (1) may be either symmetric with respect to reflections in the

equatorial plane, θ → π − θ, or antisymmetric. Here we restrict our consideration to the

case of symmetric parity-even solutions. Further, in our numerical calculations we set m = 1

retaining other parameters of the model (1).
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B. Numerical scheme and the boundary conditions

To find numerical solutions of the coupled partial differential equations (12) we used the

software package CADSOL based on the Newton-Raphson algorithm [37]. The numerical

calculations are mainly performed on an equidistant grid in spherical coordinates r and θ.

Typical grids we used have sizes 70 × 60. In our numerical scheme we map the infinite

interval of the variable r onto the compact radial coordinate x = r/r0
1+r/r0

∈ [0 : 1]. Here r0
is a real scaling constant, that is used to improve the accuracy of the numerical solution.

Typically it is taken as r0 = 2− 6. Estimated numerical errors are of order of 10−5.

The system (12) represents a set of four coupled elliptic partial differential equations with

mixed derivatives, to be solved numerically subject to the appropriate boundary conditions.

As usual, they follow from the condition of regularity of the fields on the symmetry axis and

symmetry requirements, as well as the condition of finiteness of the energy of the system.

Explicitly, at the origin we impose

∂rX
∣∣
r=0,θ

= 0 , ∂rY
∣∣
r=0,θ

= 0 , ∂rA0

∣∣
r=0,θ

= 0 , ∂rAφ
∣∣
r=0,θ

= 0 (13)

while the boundary conditions on spatial infinity are

X
∣∣
r=∞,θ = 1 , Y

∣∣
r=∞,θ = 0 , A0

∣∣
r=∞,θ = 0 , Aφ

∣∣
r=∞,θ = 0 (14)

Finally, to secure the condition of regularity on the symmetry axis we impose there the

boundary conditions

∂θX
∣∣
θ=0,π

= 0 , Y
∣∣
θ=0,π

= 0 , ∂θA0

∣∣
θ=0,π

= 0 , Aφ
∣∣
θ=0,π

= 0 (15)

III. NUMERICAL RESULTS

Spherically symmetric solutions of the gauged Friedberg-Lee-Sirlin model have been stud-

ied before [22]. The general pattern is that the n = 0 gauged Q-balls exist in the restricted

domain of values of the parameters of the system, there is a critical solution with maxi-

mal charge and energy. The repulsive electromagnetic interaction reduces the allowed range

of values of the angular frequency of the spinning gauged Q-ball, in the decoupled limit

the ordinary Friedberg-Lee-Sirlin Q-balls exist for all non-zero values of scaled frequency

ω ∈ [0, ωmax = 1]. Here the upper bound corresponds to the mass of the complex scalar

field, as ω approaches the upper bound, the size of the Q-ball is decreasing and the config-

uration tends to the perturbative spectrum of linearized excitations.

For axially symmetric solutions of the gauged model (1) the frequency ω is also bounded

from above. As we shall see, the electromagnetic coupling affects the lower critical value of

the frequency, which is no longer equal to zero.

To demonstrate the effects of electromagnetic interaction on the spinning solutions, we

exhibit in Fig. 1 the total energy of the parity-even n = 1 gauged Q-balls as a function of
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FIG. 1: The total energy of the parity-even n = 1 gauged Q-balls is shown as function of the

angular frequency ω for some set of values of mass parameter µ at g = 0.1 (left plot) and for some

set of values of the gauge coupling g at µ = 0.25 (right plot) The numbers on the curves on the

left plot correspond to the plots in Figs. 5,6 below.

the angular frequency ω at a given value of the gauge coupling g = 0.1 and some set of

values of the mass parameter µ (left plot) and for some set of values of the gauge coupling

at fixed mass µ = 0.25 (right plot). First, we observe that the solutions exist as the gauge

coupling remains relatively weak, for µ = 0.25 the allowed range of values of the coupling is

restricted as g ≤ 0.15. Indeed, as the gauge coupling increases, the electrostatic repulsion

becomes stronger than the scalar attraction and localized solutions cease to exist. On

the other hand, the critical value of the gauge coupling depends on the value of the mass

parameter, it increases as µ decreases. The upper critical value of the angular frequency still

remains ωmax = 1. Indeed, as r →∞ the system (12) with the boundary conditions (14) is

approaching the usual Laplace equation for all components, the fields become oscillating as

ω > ωmax. Evidently, such a system cannot support localized solutions. However, both the

energy and the charge of the gauged axially symmetric Q-balls do not diverge as ω → ωmax,

see Fig. 1.

The spinning gauged Q-balls smoothly arise as the angular frequency is decreasing below

ωmax, see Fig. 1. Forming a branch of solution, which are similar to the ordinary Q-balls,

these configurations evolve smoothly as the angular frequency is decreasing. The solutions

posses both electric and magnetic field, which is generated by the Noether current jµ (3).

The corresponding toroidal magnetic field encircles the Q-ball, as seen in Fig. 2. Further,

the electric charge of the configuration is vanishing at the center of the spinning gauged

Q-ball, it is pushed outwards.

As the gauge coupling is small enough, the electromagnetic energy of the spinning Q-

ball remains smaller than the other contributions to the total energy (11), further, on that

branch the contribution of the electrostatic energy is much higher that the energy of the

magnetic field of the configuration. We will refer to that branch as ”electric” one. Note that
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FIG. 2: Magnetic field orientation of the gauged n = 1 Q-ball at g = 0.1, µ = 0.25 and ω = 0.85

(electric branch); the magnetic flux in the y−z plane (left plot) and in the x−y plane (right plot).

the U(1) symmetry remains broken inside the Q-ball, so the configurations remains in the

”superconductive” phase.

The characteristic size of the gauged Q-ball increases as the angular frequency is de-

creasing along the electric branch, hence both the current jµ and associated magnetic field,

become stronger. For some critical value of the frequency ωmin the value of the real compo-

nent of the configuration on the x− y plane approaches zero, then the electromagnetic field

becomes massless on a circle in the equatorial plane. As a result, the energy of the magnetic

field becomes higher than the electrostatic energy of the spinning Q-ball.

As the angular frequency increases, the magnitude of the magnetic field increases sig-

nificantly, the second, magnetic branch of solutions extends forward and the energy of the

configuration increases rapidly, see Fig. 1. In other words, strong magnetic field forms a

domain of ”normal” phase inside of a superconductor. Further evolution along this branch,

in general is not monotonous, for small values of the mass parameter µ additional branches

may arise. However, in the presence of the gauge field the angular frequency is not quite

appropriate physical quantity, which is, however, a useful parameter in our numerical simu-

lations. Since for the gauged Q-balls the total energy and the charge decrease and increase

simultaneously, these quantity possess extrema at the same critical values of angular velocity,

the relation holds [31, 40]
∂E

∂Q
= ω

Thus, it is instructive to consider the curves of dependency E(Q), exhibited in Fig. 3. The
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FIG. 3: The total energy of the parity-even n = 1 gauged Q-balls vs the charge Q for some set of

values of mass parameter µ at g = 0.1 (left plot) and for some set of values of the gauge coupling

g at µ = 0.25 (right plot).

cusps on these curves occurs at the minimal values of the charge Q, where the lower (electric)

and upper (magnetic) branch merge [38, 39]. Evidently, existence of two different solutions

with the same value of charge Q indicates that the more energetic configurations on the

upper branch are unstable, the cusps usually indicate the boundary between the regions of

stability of gauged Q-balls. One can expect the magnetic branch could be unstable.

Our simulations show that along the magnetic branch a plateau of zero values of the

real component is formed, the domain of normal phase further extends as the frequency

grows. In Fig. 4 we plotted the profiles of the field components X(r, π/2), Y (r, π/2) on

the equatorial plane for 4 different branches at the same values of the angular frequency

ω = 0.60 and µ = 0.01, the corresponding configurations are labeled by the dots on the

curves in Fig.1. Further, in Figs. 5,6 we exhibit the distributions of the energy density and

the electromagnetic energy density of the corresponding configurations as functions of the

cylindrical coordinates ρ = r sin θ and z = r cos θ.

The magnetic branch exist for all non-zero values of the mass parameter µ, it extends

almost linearly with ω. Further increase of the frequency leads to expansion of the domain

of normal phase in which the real component of the configuration is trivial, ψ = 0, and

both electromagnetic and complex field are massless. Thus, the magnetic field of the vortex

becomes stronger and the circular wall which separates the phases ψ = 0 and ξ = 1,

approaches to the step function as the angular frequency continues to increase.

The situation is different for the spinning gauged Q-balls with long-range component

X(r, θ). This corresponds to the case of vanishing potential U(ψ) (2), however, the vacuum

expectation value of the real massless scalar field still ψ remains nonzero [7]. We observe

that in the limit µ→ 0 the magnetic branch disappear and both the energy and the charge

of the configuration diverge at some critical minimal value of the angular frequency ωmin,

as shown in Fig. 1, left plot. The minimal critical value of the frequency increases with the
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FIG. 4: The profiles of the field components of the gauged Friedberg–Lee–Sirlin Q-balls X (left

plot) and Y (right plot) at θ = π/2 are plotted on four different branches, labeled by dots on the

curves in Fig.1, at ω = 0.60, µ = 0.01 and g = 0.1.

gauge coupling.

IV. CONCLUSIONS

Our investigation confirms the existence of new type of axially-symmetric solutions of

the U(1) gauged Friedberg-Lee-Sirlin model. They exhibit examples of the configurations

with both the electric charge and toroidal magnetic field, which forms a vortex encircling

the configuration. These gauged Q-balls possess a quantized angular momentum, J =

nQ. We observe that the gauged Q-balls exist for relatively small values of the gauge

coupling, increase of the coupling yields stronger electromagnetic repulsion which makes

the configuration unstable. Addressing the frequency dependence of the stationary rotating

Q-balls we we found that the solutions exist only in a frequency range, which is restricted

from below by some critical frequency ωmin. The value of ωmin depends on the strength

of the gauge coupling. A novel feature of the gauged axially symmetric Q-balls is that

the corresponding branch structure is different from the ordinary Q-balls, a new magnetic

branch arises at ωmin, it extends forward as the frequency increases. The contribution of

the magnetic energy is dominating along this branch, strong magnetic field of the vortex

destroys the superconductive phase in some region inside the Q-ball. To our best knowledge,

such vorton type solutions have not been reported in the literature before.

The work here should be taken further by considering the axially symmetric gauged Q-

balls in the single component model with sextic potential [13, 14, 35, 36]. It is intriguing

to find in this model the solutions, which represent magnetic Q-balls, and investigate their

properties. Another interesting direction is to investigate the axially symmetric, rotating

magnetic boson stars and corresponding hairy black holes, presence of the toroidal magnetic
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FIG. 5: The distributions of the total energy density of the gauged parity-even Q-balls on four

different branches at n = 1, µ = 0.01 and ω = 0.60 are shown as functions of the coordinates

ρ = r sin θ and z = r cos θ.

field may lead to new interesting phenomena, in particular in astrophysics and cosmology.

Finally, let us note that on the spacial asymptotic the system of dynamical equations (12)

with the boundary conditions (14) is reduced to the standard harmonic equations, both for

the scalar fields and for the components of the vector potential. Thus, by analogy with the

ordinary Q-balls [13, 14, 35], one can expect existence of two types of solutions, possessing

different parity. In the present paper we restricted our consideration to the n = 1 parity-

even gauged Q-balls, we hope to address the systematic study of parity-odd solutions of the

gauged Friedberg-Lee-Sirlin model in our future work.
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on four different branches at n = 1, µ = 0.01 and ω = 0.60 are shown as functions of the coordinates

ρ = r sin θ and z = r cos θ.

knowledge useful discussions with Emin Nugaev at the first stages of this research. Ya.S.

gratefully acknowledges the support of the Alexander von Humboldt Foundation and from

the Ministry of Education and Science of Russian Federation, project No 3.1386.2017. He

would like to thank Jutta Kunz for kind hospitality at the Department of Physics, Carl von

Ossietzky University of Oldenburg during the completion of this work.

[1] N. S. Manton and P. Sutcliffe, ’Topological solitons’, Cambridge University Press, 2004.

[2] T. D. Lee and Y. Pang, Phys. Rept. 221 (1992) 251

[3] Y.M. Shnir, ’Topological and Non-Topological Solitons in Scalar Field Theories’, Cambridge



13

University Press, 2018.

[4] G. Rosen, J. Math. Phys. 9 (1968) 996, 999

[5] R. Friedberg, T. D. Lee and A. Sirlin, Phys. Rev. D 13 (1976) 2739

[6] S. R. Coleman, Nucl. Phys. B 262 (1985) 263 Erratum: [Nucl. Phys. B 269 (1986) 744].

[7] A. Levin and V. Rubakov, Mod. Phys. Lett. A 26 (2011) 409.

[8] V. Loiko, I. Perapechka and Y. Shnir, Phys. Rev. D 98 (2018) no.4, 045018

[9] D. J. Kaup, Phys. Rev. 172 (1968) 1331.

[10] R. Ruffini and S. Bonazzola, Phys. Rev. 187 (1969) 1767.

[11] R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35 (1987) 3640

[12] R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35, 3658 (1987).

[13] B. Kleihaus, J. Kunz and M. List, Phys. Rev. D 72 (2005) 064002

[14] B. Kleihaus, J. Kunz, M. List and I. Schaffer, Phys. Rev. D 77 (2008) 064025

[15] Y. Brihaye and B. Hartmann, Phys. Rev. D 79 (2009) 064013

[16] J. Kunz, I. Perapechka and Y. Shnir, arXiv:1904.13379 [gr-qc].

[17] P. Jetzer, Phys. Rept. 220 (1992) 163.

[18] T. D. Lee, Phys. Rev. D 35 (1987) 3637.

[19] I. Affleck and M. Dine, Nucl. Phys. B 249 (1985) 361.

[20] A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418 (1998) 46.

[21] K. M. Lee, J. A. Stein-Schabes, R. Watkins and L. M. Widrow, Phys. Rev. D 39 (1989) 1665.

[22] C. H. Lee and S. U. Yoon, Mod. Phys. Lett. A 6 (1991) 1479.

[23] E. Witten, Nucl. Phys. B 249 (1985) 557.

[24] E. J. Copeland, N. Turok and M. Hindmarsh, Phys. Rev. Lett. 58 (1987) 1910.

[25] R. L. Davis and E. P. S. Shellard, Phys. Lett. B 207 (1988) 404.

[26] R. L. Davis and E. P. S. Shellard, Nucl. Phys. B 323 (1989) 209.

[27] J. Garaud, E. Radu and M. S. Volkov, Phys. Rev. Lett. 111 (2013) 171602

[28] A. Kusenko, M. E. Shaposhnikov and P. G. Tinyakov, Pisma Zh. Eksp. Teor. Fiz. 67 (1998)

229 [JETP Lett. 67 (1998) 247]

[29] K. N. Anagnostopoulos, M. Axenides, E. G. Floratos and N. Tetradis, Phys. Rev. D 64 (2001)

125006

[30] I. E. Gulamov, E. Y. Nugaev, A. G. Panin and M. N. Smolyakov, Phys. Rev. D 92 (2015)

no.4, 045011

[31] I. E. Gulamov, E. Y. Nugaev and M. N. Smolyakov, Phys. Rev. D 89 (2014) no.8, 085006

[32] A. G. Panin and M. N. Smolyakov, Phys. Rev. D 95 (2017) no.6, 065006

[33] A. Y. Loginov and V. V. Gauzshtein, Phys. Rev. D 99 (2019) no.6, 065011

[34] T. Shiromizu, Phys. Rev. D 58 (1998) 107301

[35] M.S. Volkov and E. Wohnert, Phys. Rev. D 66 (2002) 085003.

[36] E. Radu and M.S. Volkov, Phys. Rept. 468 (2008) 101.

[37] W. Schönauer and R. Weiß, ”Efficient vectorizable PDE solvers” J. Comput. Appl. Math.

http://arxiv.org/abs/1904.13379


14

1989. V. 27. P. 279

M. Schauder, R. Weißand W. Schönauer, ”The CADSOL Program Package”, Universität

Karlsruhe, 1992. Interner Bericht Nr. 46/92.

[38] T. Tamaki and N. Sakai, Phys. Rev. D 81 (2010) 124041

[39] B. Kleihaus, J. Kunz and S. Schneider, Phys. Rev. D 85 (2012) 024045

[40] E. Nugaev and A. Shkerin, arXiv:1905.05146 [hep-th].

http://arxiv.org/abs/1905.05146

	I Introduction
	II The Model
	A Spinning axially-symmetric gauged Q-balls
	B Numerical scheme and the boundary conditions

	III Numerical results
	IV Conclusions
	 References

