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We study fermion modes localized on the kink in the 1þ 1 dimensional ϕ4 model, coupled to the Dirac
fermions with backreaction. Using numerical methods, we construct self-consistent solutions of the
corresponding system of coupled integral-differential equations and study dependencies of the scalar field
of the kink and the normalizable fermion bound states on the values of the parameters of the model.
We show that the backreaction of the localized fermions significantly modifies the solutions, in particular it
results in spatial oscillations of the profile of the kink and violations of the reflection symmetry of the
configuration.
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I. INTRODUCTION

Many nonlinear physical system support solitons, spa-
tially localized field configurations with various ramifica-
tions for condensed matter physics, nonlinear optics,
nuclear physics, cosmology, and quantum field theory
[1–5]. Perhaps the simplest examples of solitons are the
kinks which appear in models in one spatial dimension with
a potential possessing two or more degenerated minima;
see, e.g., [6,7]. Double well potential corresponds to the
nonintegrable ϕ4 model; another interesting example are
the kinks in the ϕ6 theory [8], kink-antikink collision in this
model has attracted much attention recently [9,10].
A peculiar feature of topological solitons is the relation

between the topological charge of the configuration and
the number of fermion zero modes localized on the soliton.
The Atiyah-Patodi-Singer index theorem [11] yields a
remarkable relation between these quantities.
Fermionic zero modes of the solitons were discussed first

in the pioneering work [12], similar localized states exist on
the vortices [13], domain walls [14], monopoles [15,16],
sphalerons [17,18], and skyrmions [19–22]. The presence
of localized fermion modes leads to some very interesting
phenomena such as monopole catalysis of proton decay
[15,16], possible existence of superconducting cosmic
strings [23], and appearance of fractional quantum numbers
of solitons [13,24].

Fermions bounded by kinks were considered in many
papers [24–28]. However, nearly all of the studies neglected
the backreaction of the fermions on the soliton; moreover,
only zero modes were considered in most cases. There has
however been some attempt to take into account the back-
reaction of the fermion on the kink [29,30], although self-
consistent solution is still missing. One of the main reasons
for that is the enormous computational complexity of the
problem, there is no analytical solution of the corresponding
system of coupled integral-differential equations.
A main objective of this paper is to reconsider this

system consistently. Recently, we developed new numerical
scheme which was successfully applied to examine the
effects of backreaction of localized fermionic modes on
planar skyrmions [31,32]. We have found that there is a
tower of fermionic modes of two different types, localized
by the soliton with one level crossing mode. Furthermore,
in [32], we discussed a novel mechanism of exchange
interaction between the skyrmions and constructed stable
multisoliton configurations bounded by the attractive inter-
action mediated by the chargeless fermionic modes.
In the present paper, we revisit the fermion-kink bounded

system with backreaction. Apart the well-known zero
mode, which does not affect the kink for any values of
the Yukawa coupling, we find various localized fermion
modes with finite energy. The number of these bound
modes increases as the Yukawa coupling becomes stronger,
they are linked to the states of positive and negative
continuum. We find that, as we increase the coupling,
the effects of backreaction of the fermions on the kink
becomes more and more significant. Furthermore, the
localized fermions may give rise to additional exchange
interaction between the solitons.
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This paper is organized as follows. In Sec. II, we present
the ϕ4 model coupled to Dirac fermions via the usual
Yukawa coupling. Numerical results are presented in
Sec. III, where we describe the solutions of the model
and discuss the spectral flow of the localized fermionic
states with backreaction on the kink. Conclusions and
remarks are formulated in the last section.

II. THE MODEL

We consider a coupled fermion-scalar system in 1þ 1

dimensions defined by the Lagrangian

L ¼ 1

2
∂μϕ∂μϕþ ψ̄ ½iγμ∂μ −m − gϕ�ψ −UðϕÞ; ð1Þ

whereUðϕÞ is a potential of the self-interacting scalar field,
ψ is a two-component spinor, andm, g are the bare mass of
the fermions and the dimensionful Yukawa coupling
constant, respectively. The matrices γμ are γ0 ¼ σ1, γ1 ¼
iσ3 where σi are the Pauli matrices and ψ̄ ¼ ψ†γ0. The ϕ4

model corresponds to the quartic potential UðϕÞ ¼
1
2
ð1 − ϕ2Þ2 with two vacua ϕ0 ∈ f−1; 1g.
The field equations of the system are given by

∂μ∂μϕþ gψ̄ψ − 2ϕþ 2ϕ3 ¼ 0;

iγμ∂μψ −mψ − gϕψ ¼ 0: ð2Þ

Using the usual parametrization of a two-component
spinor

ψ ¼ e−iϵt
�
uðxÞ
vðxÞ

�
;

we obtain the following coupled system of static
equations:

ϕxx þ 2guv − 2ϕþ 2ϕ3 ¼ 0;

ux þ ðmþ gϕÞu ¼ ϵv;

−vx þ ðmþ gϕÞv ¼ ϵu: ð3Þ
This system is supplemented by the normalization con-
dition

R
∞
−∞ dxðu2 þ v2Þ ¼ 1, thus the configuration as a

whole could can be characterized by two quantities, the
fermionic density distribution ρf ¼ u2 þ v2 and the topo-
logical density, i.e., the spatial derivative of the profile of
the scalar field of the kink ϕðxÞ.
Note that the first equation in the system of dynamical

equations (3) enjoys the reflection symmetries

x → −x; ϕ → −ϕ; uv → −uv; ð4Þ
while the equations on the spinor components coupled
to the scalar field are invariant with respect to the trans-
formations

x → −x; u → v; v → u: ð5Þ
Consideration of the fermionic modes is usually related

with simplifying assumption that the scalar field back-
ground is fixed [24–28]. In the decoupled limit g ¼ 0, the
ϕ4 model supports a spatially localized static topological
soliton, the kink

ϕKðxÞ ¼ tanhðx − x0Þ ð6Þ
interpolating between the vacua ϕ0 ¼ −1 and ϕ0 ¼ 1. Here
x0 is the position of the center of kink. The antikink
solutions can be found by the inversion x → −x. Clearly,
the kink field is parity odd, it agrees with the symmetry
condition (4). Then the reflection symmetry of the Dirac
equation (5) means that the positive energy fermionic states
localized on the kink are also the negative energy states
localized on the antikink, and vice versa [26]. Further, due
to this symmetry, there is only one zero mode of the Dirac

FIG. 1. Normalized energy ϵ
g of the localized fermionic states as a function of the Yukawa coupling g for several fermion modes at

m ¼ 0 without backreaction (left) and with backreaction of the fermions on the kink (right).
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equation which is always a zero mode independently of the
value of the Yukawa coupling g [24–26],

ψ0 ¼ N0

� e−mx

coshgx

0

�
; ð7Þ

where N0 is a normalization factor. In the special case
of the N ¼ 1 supersymmetric generalization of the
model (1) [33], this mode is generated via the supersym-
metry transformation of the boson field of the static
kink.

FIG. 2. Components of the localized fermionic modes of the types Ak (upper row), Bk (middle row), and the fermion density
distribution of these modes (bottom plot) are plotted as functions of the coordinate x form ¼ 0 and g ¼ 5. Backreaction of the fermions
on the kink is taken into account.
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It was noticed that further increase of the Yukawa
coupling g gives rise to other fermion modes with nonzero
energy, which are localized on the kink [25,26]. Indeed, the
system of two first order differential equations in (3) can be
transformed into two decoupled second order equations for
the components u and v [25],

−uxx þ ððmþ gϕÞ2 − gϕxÞu ¼ ϵ2u;

−vxx þ ððmþ gϕÞ2 þ gϕxÞv ¼ ϵ2v: ð8Þ
They are Schrödinger-type equations, for the fermions in
the external static background field of the kink (6), the
corresponding potential is

Uf ¼ ðmþ g tanh xÞ2 � g
cosh2x

: ð9Þ

In the limit of zero bare mass of the fermions, m ¼ 0, the
potential (9) becomes reduced to the usual Pöschl-Teller
potential, so the equations (8) can be solved analytically
[25,26]. Further, it was pointed out that as the Yukawa

coupling g increases, the potential well becomes deeper
and new levels appear in the spectrum of the bound states.1

For example, there is a bound state solution for the massless
fermions, which appears as the coupling increases above
gcr ¼ 1,

ψ1 ¼ N1

 � ffiffiffiffiffiffiffiffi
2g−1

p
tanh x

coshg−1x
1

coshg−1x

!
; ð10Þ

with eigenvalues ϵ1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g − 1

p
[26,29,34]. Other solu-

tions also can be written in a closed form; see [26].
The corresponding levels can be filled according to the

FIG. 3. The fermion density distributions of the localized modes B1 (upper left plot), A1 (upper right plot), B2 (bottom left plot), and A2

(bottom right plot) are plotted as functions of the coordinate x for m ¼ 0 and several values of the Yukawa coupling g. Backreaction of
the fermions on the kink is taken into account.

1Interestingly, for the given choice of the Yukawa coupling in
(1), the corresponding equations for the fermions on the back-
ground of static kinks of the completely integrable sine-Gordon
model, or for the fermions on the kinks of the ϕ6 model with triple
vacuum [8,9], do not support localized fermion states. However,
the situation changes after an appropriate adjustment of the
coupling [28], or modification of the scalar potential.
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Paulis exclusion principle, hereafter we restrict our con-
sideration to the kink-fermion system with filling factor
equal to 1. We also made the usual assumption that the
negative energy continuum (Dirac’s sea) is filled.
Clearly, as the coupling becomes stronger, the back-

reaction of the bounded modes could significantly affect
the scalar field, so the analytical solution for the fermion
modes bounded by the kink is not quite correct for
relatively large values of g. Indeed, as we will see below,
in such a case the exact self-consistent numerical solutions
of the coupled system of equations (2) become very
different from the analytical results for the fermions in
the external field of the static kink. Our goal here is to
investigate this effect in a systematic way.

III. NUMERICAL RESULTS

We have solved numerically the full system of integral-
differential equation (2) with the normalization condition
on the spinor field using eighth order finite-difference
method. The system of equations is discretized on a
uniform grid with usual size of 5000 points. To simplify

our calculations, we consider only positive semi-infinite
line taking into account the symmetry of the configuration
(4), (5). Further, we map semi-infinite region onto the unit
interval [0,1] via the coordinate transformation x̃ ¼ x

cþx.
Here c is an arbitrary constant which is used to adjust
the contraction of the grid. The emerging system of
nonlinear algebraic equations is solved using a modified
Newton method. The underlying linear system is solved
with the Intel MKL PARDISO sparse direct solver. The
errors are on the order of 10−9.
To obtain numerical solutions of the system (2), we

have to impose appropriate boundary condition for the
spinor field, both at the center of the kink and at the
vacua. For fermions localized on the kink, we have to
impose

ϕj−∞ ¼ −1; ϕj∞ ¼ 1;

uj−∞ ¼ uj∞ ¼ vj−∞ ¼ vj∞ ¼ 0:

First, we consider the normalized fermions with zero
bare mass m ¼ 0. Taking into account the symmetry

FIG. 4. The profiles of the scalar field of the kink, coupled to the localized fermionic modes B1 (upper left plot), A1 (upper right plot),
B2 (bottom left plot), and A2 (bottom right plot) for m ¼ 0 and several values of the Yukawa coupling g.
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properties (5) and the linearized equations (3) for the spinor
field at x ¼ x0 ¼ 0, we can classify the corresponding
solutions according to their parity. Thus, we consider two
types of the boundary conditions for the massless fermions
at the center of the kink,

uxjx0 ¼ 0 vjx0 ¼ 0 or ujx0 ¼ 0 vxjx0 ¼ 0:

We will refer to the modes of the first type to as Ak modes
and to the modes of the second tape to as Bk modes, i.e., the
modes of the type A have symmetric u component and

FIG. 5. Components of the localized fermionic modes of the types Ak (upper row) and Bk (middle row), and the fermion density
distribution of these modes (bottom plot) are plotted as functions of the coordinate x form ¼ 1 and g ¼ 10. Backreaction of the fermions
on the kink is taken into account.
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antisymmetric v component, while the modes of the type B
have antisymmetric u component and symmetric v com-
ponent. Here, the index k corresponds to the minimal
number of nodes of the components; for example, the zero
mode (7) is denoted as A0. Note that for all modes, the
number of nodes of the component u is one node more than
the number of nodes of the component v.
In the decoupling limit, the backreaction of the fer-

mions on the kink is neglected, the pair of the first order
equations on the spinor components in the system (2)
describes the fermion states in the external scalar field of
kink ϕKðxÞ (6). In such a case, the energy spectrum of the
localized fermions is symmetric with respect to inversion
ϵ → −ϵ, apart zero mode A0, each state with a positive
eigenvalue ϵ has a counterpart with reflected antisymmetric
uðvÞ component and a negative eigenvalue −ϵ; see Fig. 1,
left plot.
The situation is very different in the full coupled system

(2) with backreaction, the profile of the kink deforms as a
fermion occupies an energy level. Further, the energy
levels of the bounded fermions move accordingly and
the symmetry between the localized fermion states with

positive and negative eigenvalues ϵ is violated; see Fig. 1,
right plot.
Considering the spectral flow of the localized fermions,

we observe that in the range of values of the coupling
0 < g < 1 there is only one localized zero mode, as seen in
Fig. 1. As the coupling g grows, we obtain an infinite tower
of new solutions of the model (1) which correspond to the
states of deformed ϕ4 kink with different types and filling
factors of localized fermions with nonzero eigenvalues ϵ.
The deformation of the coupled configuration drives the
nonzero eigenvalues ϵ of all modes toward negative energy
continuum; see Fig. 1, right plot.
In Fig. 2, we display the components of a few modes of

both types, localized on the kink with backreaction, and the
corresponding distributions of the fermionic density ρfðxÞ.
In Fig. 3, we plot the fermionic density distributions ρf

of the first four localizing modes A1, A2, B1, B2 with
nonzero energy for several values of coupling constant g.
At small values of the coupling constant g, there is only one
localizing mode A0 which should exists according to the
index theorem. As the coupling g increases, more modes of
both types become localized by the kink.

FIG. 6. The profiles of the scalar field of the kink, coupled to the localized fermionic modes B1 (upper left plot), A1 (upper right plot),
B2 (bottom left plot), and A2 (bottom right plot) for m ¼ 1 and several values of the Yukawa coupling g.
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Further increase of the coupling g yields stronger bound-
ing of the modes, also larger number of localized modes are
extracted from the positive and negative continuum.
The effect of backreaction of the fermions coupled to the

kink is illustrated in Fig. 4. As expected, the massless zero
mode does not distort the kink for any values of the Yukawa
coupling. However, the scalar field is strongly affected by
other bounded modes with nonzero energy. For example, it
is seen in Fig. 4, left upper plot, that the coupling of the
kink to the mode B1 leads to distortion of the profile of
the soliton, which closely resembles the deformation of the
kink due to excitation of its normalizable discrete vibra-
tional mode; see, e.g., [4,7,35]. Clearly, by analogy with
excitations of this internal mode of the kink [36], dynamical
coupling to the fermions may lead to production of the
kink-antikink pairs.
Coupling of the kink to the modes with some number of

nodes is reflected in visible spatial oscillations of the static
scalar field at the center of the kink, where fermion modes
are located; see Fig. 4. In some sense, this configuration can
be thought of as a chain of kink-antikink pairs tightly
bounded by the localized fermions. Clearly, the coupling to
higher fermionic modes yields much stronger deformations
of the kink.
Note that the deformations of the kink caused by its

coupling with higher fermion modes at strong coupling
look similar to the system of iterated kinks in a model with
impurities, considered in [37]. Indeed, in a certain sense,
the Yukawa coupling to the fermions acts like an impurity
in the ϕ4 system.
Next, we consider dependence of solutions on the value of

the fermion bare mass m. In that case, the energy of the
localized fermionic states is restricted as jεj < jg −mj. Note
that, even for the fermions localized on the kink without the
backreaction, the bare mass term violates the reflection
symmetry of the equations (8), the term mþ g tanh x does

not have a definite parity. Indeed, our numerical simulations
confirm that for nonzero values of the bare mass m, both the
scalar field of the kink and fermionic densities of localized
modes are asymmetric; see Figs. 5 and 6 where we display
numerical solution of the system (3) at m ¼ 1 for a fixed
value of the coupling constant g. Further increase of the
fermion mass stronger deforms the configuration, the size of
the deformed area increases.
The massive mode A0 also becomes more localized;

however, corresponding eigenvalue remains zero and there
is no zero-crossing mode in the spectral flow of the massive
fermions coupled to the kink in 1þ 1 dimensional system.
The spectrum of the massive fermions is not very different
from the massless case above; we can see it comparing
Figs. 1 and 7, left plot. For a fixed value of the Yukawa
coupling, the massive modes delocalize at some critical
values of the fermion mass m; see Fig. 7, right plot.

IV. SUMMARY AND CONCLUSIONS

In this paper, we present a novel self-consistent approach
of analyzing fermionic states localized on the kink in the ϕ4

theory taking into account the deformations of the soliton
due to the presence of bounded fermions. The full system
of coupled field equations for the real scalar field and the
Dirac fermions coupled to the kink via the usual Yukawa
coupling is supplemented by the normalization condition
for the localized fermions. For imposing appropriate
boundary conditions both for scalar and spinor fields we
constructed numerical solutions of the resulting system of
integral-differential equations and found the corresponding
energy eigenvalues. Apart the usual zero mode, which does
not affect the kink for any values of the coupling and the
bare mass m, there is a tower of localized states with
nonzero eigenvalues, they are linked to the positive and
negative continuum.

FIG. 7. Normalized energy ϵþmsignϵ
g of the localized fermionic states as a function of the Yukawa coupling g for several fermion modes

at m ¼ 1 (left plot) and the normalized spectral flow ϵ=g of the massive localized fermions as a function of the bare mass m (right plot).
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We have shown that the backreaction of the fermions
strongly affects the spectrum; it breaks the symmetry
between the localized modes with positive and negative
eigenvalues. Further, the refection symmetry of the usual
Dirac equation on static kink background is violated for
the fermions with nonzero bare mass; these spinors do not
possess definite parity.
Localization of the fermions on the kink yields spatial

oscillations of the static scalar field at the center of the kink,
where fermion modes are located. This configuration can be
thought of as a chain of kink-antikink pairs tightly bounded
by the localized fermions; the number of the constituents on
the chain increases for higher fermionic modes.
The work here should be taken further by considering

fermionic states localized on various topological solitons
with backreaction. In particular, it would be interesting to

study the effects of the fermionic modes localized on non-
BPS monopoles and on the Abelian vortices and the
corresponding superconducting strings. Another interesting
question, which we hope to be addressing in the near
future, is to investigate the exchange interaction between
the solitons mediated by the fermions, a first step in this
direction has been made in [32].
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