И. Н. ЛУШАКОВА

ОПТИМАЛЬНЫЕ ПО БЫСТРОДЕЙСТВИЮ ДОПУСТИМЫЕ ПО РЕСУРСУ РАСПИСАНИЯ ДЛЯ ДВУХ НЕЗАВИСИМЫХ ПРИБОРОВ С МИНИМИЗАЦИЕЙ ШТРАФНОЙ ФУНКЦИИ НА ПЕРВОМ ПРИБОРЕ

Рассмотрим задачу календарного планирования для системы независимых приборов с общим ресурсом, которая состоит в следующем [1].

Имеется m приборов. Для каждого прибора определено множество Z_l , $l=\overline{1,m}$, требований, которые необходимо обслужить на этом приборе; $Z_l \cap Z_k = \emptyset$ при $l \neq h$.

Пусть в системе имеется Q единиц ресурса одного вида.

Установим взаимпо однозначное соответствие между множеством требований Z_l и множеством натуральных чисел: $N_l = \{n_{l-1}+1, \ldots, n_{l-1}++n_l\}, l=\overline{1,m}, n_l=|Z_l|, n_0=0.$

Требование $i \in N_l$, $n_{l-1} + 1 \le i \le n_{l-1} + n_l$, обслуживается в течение t_i

единиц времени и использует q_i единиц ресурса.

Процесс обслуживания требований может быть описан заданием совокупности $s = \{s_1(t), s_2(t), \ldots, s_m(t)\}$ кусочно-постоянных непрерывных слева функций $s_l = s_l(t), l = \overline{1, m}$. Каждая функция $s_l(t)$ задана на интервале $0 \le t < +\infty$ и принимает значения из множества $\{0, n_{l-1}+1, n_{l-1}++2, \ldots, n_{l-1}+n_l\}$. Если $s_l(t') = i \ne 0$, то в момент времени t' прибор l обслуживает требование $i \in N_l$. Если $s_l(t') = 0$, то в момент времени t' прибор l простаивает. Совокупность функций s называется расписанием [2].

Расписание обслуживания требований будет допустимо по ресурсу, если суммарное использование ресурса в любой момент времени не пре-

вышает Q.

В работе [1] показано, что задача построения оптимального по быстродействию допустимого по ресурсу расписания при m=3 и всех $t_i=1$ является NP-трудной в сильном смысле. Там же приводится алгоритм сложности $O(n\log n)$ построения оптимального по быстродействию расписания при m=2, произвольных временах обслуживания требований t_i и запрещении прерываний в процессе обслуживания требований.

Рассмотрим следующее обобщение поставленной задачи при m=2. Предположим, что допустимы прерывания в процессе обслуживания требований из множества $N_2 = \{n_1+1, n_1+2, \ldots, n_1+n_2\}$, где $n_2 = |Z_2|$.

Для требований из множества N_1 рассмотрим любую известную (см., например, [2]) полиномиально разрешимую задачу A построения оптимального расписания обслуживания требований одним прибором с некоторыми предположениями относительно моментов поступления требований в очередь на обслуживание, директивных сроков, функции штрафа и характера обслуживания требований. Пусть алгоритм A строит оптимальное расписание для задачи A.

Обобщенная задача B состоит в том, что для системы независимых приборов необходимо построить расписание минимальной длины, которое минимизирует функцию штрафа задачи A, поставленной для требований из множества N_1 . Эту задачу решает алгоритм B.

А π горитм B.

1. Упорядочить требования множества N_2 по невозрастанию вели-

чин q_j .

2. Пусть P_j — подмножество требований из множества N_1 , каждое из которых не может быть обслужено из-за ограничения на потребляемый ресурс вместе с требованием $j \in N_2$, но может быть обслужено вместе с требованием $(j+1) \in N_2$, если требование (j+1) существует.

Положить $P_j = \emptyset$ для всех $j \in N_2$, i = 0.

3. Положить i=i+1, вычислить $k_i=\max\{j:q_i+q_j>Q,\ j\in N_2\}$. Добавить к множеству P_{j_0} требование i из множества N_1 такое, что $j_0=k_i$.

4. Если $i=n_1$, перейти на шаг 5, в противном случае — на шаг 3.

5. Для требований из множества N_4 выполнить алгоритм A, который определит функцию $s_1(t)$.

6. Пусть τ^* — нанболее поздний момент времени, когда $s_1(t) \neq 0$.

Положить $\tau' = 0$, $\tau'' = 0$, $s_1(0) = 0$, $s_2(0) = 0$.

- 7. Если $\tau' = \tau^*$, то перейти на шаг 11.
- 8. Если $s_1(t) = 0$ для всех $\tau' < t \le \tau$ и $s_1(t) \ne 0$ при $\tau < t \le \tau + \varepsilon$, где $\varepsilon > 0$ достаточно малос, то положить $\tau' = \tau$ и выполнить следующее.
 - а) Если $N_2 = \emptyset$, то перейти на шаг 10.
- б) Из множества N_2 выбрать требование j с наименьшим номером (т. е. с наибольшим значением величины q_j).
 - в) Положить $s_2(t) = i$ для всех $\tau'' < t \le \min\{\overline{\tau}, \tau'' + t_i\}$.
- г) Если $\tau''+t_j\leqslant \overline{\tau}$, то выполнить следующее: исключить из N_2 требование j и положить $\tau''=\tau''+t_j$; если $N_2=\varnothing$, то перейти на шаг 10; выбрать из N_2 требование j^* с наименьшим помером, положить $P_{j*}=P_{j*}\cup \bigcup P_j, \, k_i=j^*$ для всех требований i из мпожества P_j .

Если $\tau'' < \bar{\tau}$, положить $j = j^*$ и перейти на шаг 8. в), в противном случае — на шаг 9.

- д) Если $\tau'' + t_j > \bar{\tau}$, то положить $t_j = t_j (\bar{\tau} \tau'')$, $\tau'' = \bar{\tau}$.
- 9) Если $s_1(t) = i$ для всех $\tau' < t \le \overline{\tau}$ и $s_1(t) \neq i$ при $\overline{\tau} < t \le \overline{\tau} + \epsilon$, где $\epsilon > 0$ достаточно малое, то положить $\tau' = \overline{\tau}$ и выполнить следующее.
 - а) Если $N_2 = \emptyset$, то перейти на шаг 10.
- б) Если $k_i = n_1 + n_2$, то положить $s_2(t) = 0$ для $\tau'' < t \leqslant \bar{\tau}$ и перейти на шаг 7. Положить $j = k_i + 1$.
 - в) Положить $s_2(t) = j$ для всех $\tau'' < t \le \min\{\bar{\tau}, \tau'' + t_j\}$.
- г) Если $\tau''+t_j\leqslant \tau$, то выполнить следующее: исключить из N_2 требование j, положить $\tau''=\tau''+t_j$; выбрать из N_2 требование j^* с наименьшим номером такое, что $j^*>j$, для всех требований $\hat{\imath}$ из P_j положить $k_{\widehat{\imath}}=j^*$, $P_{j*}\cup P_j$. Если такого требования j^* не существует, то для всех требований

i из P_j положить $k_{\widehat{\tau}} = n_1 + n_2$; положить $s_2(t) = 0$ для $\tau'' < t \leqslant \widehat{\tau}$ и перейти на шаг 7. Если $\tau'' < \tau$, то положить $j = j^*$ и перейти на шаг 9.в), в противном случае — на шаг 7.

- д) Если $\tau'' + t_j > \tau$, то положить $t_j = t_j (\tau \tau'')$, $\tau'' = \tau$. Перейти на шаг 7.
- 10. Положить $s_2(t) = 0$ для всех $\tau'' < t \le \tau^*$. Алгоритм заканчивает работу.
 - 11. Если $N_2 = \emptyset$, то алгоритм заканчивает работу.
- 12. Выбрать из множества N_2 требование j с наименьшим номером. Положить $s_2(t)=j$, $s_1(t)=0$ для всех $\tau''< t\leqslant \tau''+t_j$. Исключить из N_2 требование j, положить $\tau''=\tau''+t_j$, перейти на шаг 11.

Утверждение. Алгоритм B строит оптимальное расписание для задачи B.

Доказательство. Пусть \bar{t} — самый поздини момент времени, когда $s_1(t) \neq 0$ или $s_2(t) \neq 0$.

Если $s_1(\bar{t}) \neq 0$, то построенное расписание для первого прибора минимизирует некоторую функцию штрафа и является оптимальным по быстродействию расписанием, поэтому расписание $s(t) = \{s_1(t), s_2(t)\}$ будет также оптимально по быстродействию.

Пусть $s_1(\bar{t}) = 0$ и $s_2(\bar{t}) \neq 0$.

Упорядочим требования множества N_1 по неубыванию величии q_i ; k_i имеет тот же смысл, что и ранее, k_0 :=0. Вычислим

$$\Theta = \max \left\{ \sum_{j=k_1+1}^{k_1} t_j + \sum_{i=l}^{n_1} t_i : 1 \leqslant l \leqslant n_1 \right\}.$$

Понятно, что если не рассматривать дополнительные условия для требований из множества N_1 , то нижняя граница длины оптимального по быстродействию расписания будет

$$\max \left\{\Theta, \sum_{j=n_1+1}^{n_1+n_2} t_j\right\}.$$

В [1] ноказано, что это длина оптимального расписания.

Алгоритм B работает так, что каждый раз при выполнении шагов 8.в) и 9.в) на второй прибор назначается требование с наибольшим значением q_j из всех требований, которые могут быть назначены без нарушения ресурсного ограничения.

Если на втором приборе нет простоев, то понятно, что длина опти-

Если на втором приобре n_1, n_2 мального расписания равна $\sum_{j=n_1+1}^{n_1+n_2} t_j$.

Пусть на втором приборе имеются простои и \tilde{t} — наиболее ранний момент времени такой, что $s_2(t)=0$ для всех $\tilde{t} < t \leqslant \tilde{t} + \varepsilon$, где $\varepsilon > 0$ — достаточно малое. Так как каждый раз на второй прибор назначается требование с наибольшим значением q_j среди всех требований, которые могут быть назначены без нарушения ресурсного ограничения, то ни одно требование из множества N_2 , обслуженное после момента времени $\tilde{t}+\varepsilon$, не может быть назначено в интервале $(\tilde{t}, \tilde{t}+\varepsilon]$. Переназначение требований из множества N_2 , обслуженных ранее интервала времени $(\tilde{t}, \tilde{t}+\varepsilon]$, не уменьшит простон на втором приборе. Следовательно, алгоритм минимизирует простон второго прибора, поэтому в данном случае длина построенного расписания будет равна Θ .

Итак, алгоритм строит оптимальное по быстродействию расписание, минимизирующее некоторую функцию штрафа для задачи A, поставленной для требований из множества N_1 .

Отметим, что трудоемкость алгоритма B не превосходит $O(n_2 \log n_2 + n_1 n_2 + f(A))$, где f(A) — трудоемкость алгоритма A.

Список литературы

1. Булгак А. С., Вайнштейн А. Д.// Электронная техника. Сер. 9: Экономика и системы управления. 1985. Вып. 2(55). С. 36.

2. Танаев В. С., Гордон В. С., Шафранский Я. М. Теория расписаний. Одностадийные системы. М., 1984.

Поступила в редакцию 12.10.87.