Физика

УДК 539.189.1

Л. А. БОРИСОГЛЕБСКИЙ, Е. Е. ТРОФИМЕНКО

ВОЛНОВАЯ ФУНКЦИЯ ЛЕГКОГО ПИОННОГО АТОМА С ФЕНОМЕНОЛОГИЧЕСКИМ ПИОН-ЯДЕРНЫМ ПОТЕНЦИАЛОМ

Для описания эффектов сильного взаимодействия в пионных атомах обычно численно решают уравнение Клейна — Фока — Гордона с потенциалом, учитывающим как электромагнитное, так и сильное взаимодействие пиона с ядром [1]. Отправной точкой в таких расчетах служит оптический потенциал Кисслинджера — Эриксонов, который в общем случае содержит девять вещественных параметров. Численное решение уравнения Клейна — Фока — Гордона — сложная задача, а исследование при этом зависимости получаемых результатов от параметров потенциала в значительной степени удлиняет расчеты. Известно [2], что, если представить ядро как равномерно заряженный по объему шар радиусом R, а потенциал пион-ядерного взаимодействия выбрать в виде потенциальной ямы глубиной V и радиусом, равным радиусу распределения заряда ядра, можно, несмотря на значительное несовершенство такой модели, правильно описать основные черты пионных атомов и с достаточной степенью точности получить сдвиги уровней вследствие сильного взаимодействия. Цель предлагаемой статьи, которая является продолжением работы [3], состоит в вычислении волновой функции 1s-состояния легкого пионного атома в рамках сформулированной модели.

Для легких атомов релятивистские поправки малы, поэтому воспользуемся уравнением Шредингера [2]: $H\psi = E\psi$, где

$$H = -\frac{1}{2\mu^2} \nabla^2 + V_h + V_c,$$

$$V_h(r) = -\frac{Z\alpha}{2R} \left(3 - \frac{r^2}{R^2}\right) \theta \left(R - r\right) - \frac{Z\alpha}{r} \theta \left(r - R\right);$$
(1)

 $V_c(r) = V\theta(R-r)$; μ — приведенная масса; α — постоянная тонкой структуры; $\theta(x)$ — тэта-функция. В работе [3] показано, что волновые функции легких пионных атомов можно рассчитать, используя стандартную теорию возмущений (ТВ) Релея — Шредингера. Она в данном случае эквивалентна борновскому приближению искаженных волн в теории рассеяния, и условием ее применимости является выполнение неравенства $\beta = \mu VR^2 \ll 1$.

Таким образом, волновую функцию основного состояния легкого пионного атома находим с помощью предложенного в [4, 5] аналитического метода учета эффектов короткодействующих потенциалов в водородоподобных системах. Выделим в (1) гамильтониан водородоподобного атома с кулоновским потенциалом и будем рассматривать оставшуюся часть как возмущение. Тогда, воспользовавшись результатом работ [4, 5], получаем, что с точностью до членов порядка β^2 , $\beta\lambda$ (здесь ZR/a_0 , a_0 — боровский радиус) волновая функция $\psi(r)$ при $Zr/a_0 \ll 1$:

$$\psi(r) = \left\{ 1 + \left[\beta \left(-1 + \frac{x^2}{3} \right) + \lambda \left(-\frac{3}{4} + \frac{x^2}{2} + \frac{x^4}{20} \right) + \right. \\
+ \beta \lambda \left(\frac{107}{180} + \frac{x^2}{4} - \frac{3x^4}{20} - \frac{13x^6}{1260} + \frac{4}{3} \ln 2\lambda \right) + \beta^2 \left(\frac{5}{6} - \frac{x^2}{3} + \frac{x^4}{30} \right) \right] \theta(R - r) + \left[-\beta \frac{2}{3x} - \lambda \left(\frac{1}{5x} + x \right) + \beta \lambda \left(-\frac{2}{3} + \frac{4}{35x} + \frac{4}{3} \ln 2\lambda \right) \right] \theta(r - R) + \left(\frac{4}{3} \gamma - 2 \right) \beta \lambda \right\} \psi^{(k)}(0), \tag{2}$$

где x=r/R; у — постоянная Эйлера; $\psi^{(h)}(0)$ — значение нерелятивистской кулоновской волновой функции 1s-состояния при r=0. Из (2) следует, что сильное взаимодействие и конечные размеры ядра «исправляют» поведение функции $\psi(r)$ на малых расстояниях: при r < R в ней отсутствуют нечетные степени r, которые присутствуют в разложении кулоновской волновой функции из-за сингулярности кулоновского потенциала.

Приведем также выражение для вероятности нахождения пиона вну-

три ядра

$$P=4\pi\int\limits_{0}^{R}drr^{2}\leftert \psi \left(r
ight)
ightert ^{2}.$$

С помощью (2) легко показать, что

$$P = \frac{4}{3} \lambda^{3} \left\{ 1 - \frac{72}{35} \lambda - \frac{8}{5} \beta + \frac{8}{3} \left(\ln 2\lambda + \frac{8}{3} \gamma - \frac{136}{135} \right) \beta \lambda + \frac{204}{105} \beta^{2} \right\}.$$
 (3)

Сравнение значений $\psi(0)$	в единицах 🕡	$\frac{1}{4\pi} \left(\frac{Z}{a_0}\right)^{3/2}$ и Р
------------------------------	--------------	---

			1	() 4.11 (· · · / /			
Ядра	R (Φ)	ψ(0) (2)	ψ(0) [6]	ψ(0) [8]	P (3)	P [6, 7]	P [8]
6Li	2,36	1,43	1,46	1,53	0,0035	0,0035	0,0038
	2,97	1,53	1,53	1,62	0,0073	0,0075	0,0083
7Li	2,49	1,37	1,42	1,49	0,0038	0,0038	0,0043
	2,97	1,44	1,42	1,53	0,0068	0,0068	0,0076
⁹ Be	2,70	1,36	1,39	1,49	0,0107	0,0110	0,0132
	2,84	1,35	1,39	1,52	0,0125	0,0135	0,0157
10B	2,80	1,25	1,35	1,47	0,0202	0,023	0,0276
	3,07	1,24	1,32	1,49	0,0259	0,0304	0,0369
11B	2,89	1,19	1,29	1,42	0,0207	0,023	0,0289
	3,29	1,24	1,30	1,50	0,0311	0,365	0,0455
12C	2,98	1,30	1,41	1,53	0,0473	0,049	0,0606
	3,12	1,32	1,36	1,54	0,0516	0,0565	0,0697
14N	3,13	1,14	1,30	1,46	0,0592	0,078	0,102
	3,16	1,14	1,23	1,46	0,0608	0,0789	0,104
16O	3,28	1,16	1,33	1,51	0,0966	0,134	0,179
	3,41	1,18	1,26	1,50	0,1109	0,150	0,199
19F	3,47	0,96	1,20	1,43	0,1005	0,182	0,269
	3,57	0,97	1,13	1,43	0,1077	0,200	0,290
²³ Na	3,70	0,74	1,08	1,38	0,0835	0,307	0,523
²⁴ Mg	3,75	0,85	1,12	1,43	0,1416	0,438	0,733
· ·							

В таблице даны значения $\psi(0)$, P, рассчитанные по формулам (2), (3) и найденные в [6, 7] численным решением уравнения Шредингера. Для каждого атома результаты в первой и второй строках получены соответственно при значениях R, вычислениых по формуле $R=1,3~A^{1/3}\Phi$ и определенных из экспериментов по рассеянию электронов на ядрах. Значения V взяты из работ [6, 7]. Для атомов с $A \le 16$ результаты расчетов, проведенных с помощью аналитических выражений (2), (3), хорошо согласуются с результатами численных расчетов. С ростом А увеличиваются в и х, и, следовательно, эффективность применения ТВ уменьшается, так как при этом необходимо учитывать все большее количество членов ряда ТВ. Тем не менее, даже в случае 16О первые два порядка ТВ дают значение $\psi(0)$ с точностью до $\sim 10\%$.

Приведенные в таблице значения $\psi(0)$ и \overline{P} получены Мандельцвейгом [8] в рамках предложенной им в качестве альтернативы численным расчетам «теории возмущений по раднусу». Согласно [8],

$$|\psi\rangle = |\psi^{(k)}\rangle \frac{\langle \psi^{(k)} | \overline{V} | \varphi_0 \rangle}{\Delta E} + G_0 \overline{V} | \varphi_0 \rangle, \tag{4}$$

где φ_0 — волновая функция свободной частицы с нулевой энергией; G_0 функция Грина свободной частицы; ΔE — разность между точным и кулоновским значениями эпергии пионного атома; \overline{V} — короткодействующий внутренний потенциал (кор). Для пионных атомов роль кора играют

эффекты конечных размеров ядра и сильного взаимодействия.

Если пренебречь поправками второго порядка ТВ к величине энергетического сдвига ΔE , можно показать, что, в силу короткодействующего характера потенциала V, соотношение (4) есть уравнение для нахождения волновой функции по стандартной ТВ с точностью до членов первого порядка по параметрам в и д. Поскольку уравнение (4) не учитывает отрицательного вклада в $\psi(0)$ и P членов, пропорциональных $\beta\lambda$, в частности оно не содержит характерного для кулоновского потенциала логарифмического слагаемого, то значения $\psi(0)$ и P по величине больше, чем значения $\phi(0)$ и P, найденные по формулам (2), (3) и определенные численно. Стандартная ТВ имеет ряд преимуществ перед «ТВ по радиусу». Она позволяет получать простые выражения для волновых функций с учетом всех характеризующих взаимодействие параметров, в то время как уравнение (4) содержит энергетический сдвиг ΔE , который должен быть определен независимо.

В заключение отметим, что рассмотренный в работе метод расчета волновой функции 1s-состояния легких пионных атомов может быть использован для учета влияния сильного взаимодействия мезонов на свойства $(\pi\pi)$, (πK) -димезоатомов, в частности для вычисления значения $\psi(0)$, которое играет важную роль при определении времени жизни этих атомов [9].

Список литературы

1. Ким Е. Мезонные атомы и ядерная структура. М., 1975. 2. Кириллов-Угрюмов В. Г., Никитин Ю. П., Сергеев Ф. М. Атомы и мезоны. М., 1980.

3. Борисоглебский Л. А., Кужир П. Г., Трофименко Е. Е. // Докл. АН БССР. 1981. Т. 25. № 2. С. 132.
4. Borisoglebsky L. A., Trofimenko E. E. // Phys. Lett. 1979. V. 81B.

N 2. P. 175.
5. Trofimenko E. E. Ibid. V. 73A. N 5. 6. P. 383.
6. Fulcher L. P., Eisenberg J. M., Le Tourneux J. // Canad. Journ. Phys. 1967. V. 45. N 10. P. 3313.

7. Seki R., Cromer A. H. // Phys. Rev. 1967. V. 156. N 1. P. 93. 8. Mandelzweig V. B. // Nucl. Phys. 1977. V. A292. N 3. P. 333. 9. Неменов Л. Л. // ЯФ. 1985. Т. 41. № 4. С. 980.