§ 10], можем показать, что $k-1+[(n-k+2)^2/4]$ является верхней границей. Далее, построенный при доказательстве леммы 1 пример показывает, что эта граница является достижимой. Теорема доказана.

Список литературы

1. Гантмахер Ф. Р. Теория матриц. М., 1967.

2. Супруненко Д. А., Тышкевич Р. И. Перестановочные матрицы. Минск, 1966.

3. Gustafson W. H. // Journ. Algebra. 1976. V. 42. № 2. Р. 557. 4. Ляттэ В. А. // Весці АН БССР. Сер. фіз.-мат. навук. 1980. № 5. С. 28. 5. Фам Вьет Хунг. Там же. 1987. № 3. С. 110.

6. Schur I. // Journ. Reine Angew. Math. 1905. B. 130. S. 66.

Поступила в редакцию 14.03.88.

УДК 519.7

$M, X, \Phi A X M H$

О ГОМОМОРФИЗМАХ ОДНОЙ АЛГЕБРЫ последовательных функций

В работе [1] полностью описаны конгруэнции на итеративной алгебре Поста и некотором семействе ее подалгебр. Основываясь на этих результатах, в [2] получено описание конгруэнций на P_k . В данной статье показано, что все найденные в [2] конгруэнции, отличные от равенства, определяют гомоморфизмы алгебры \hat{P}_h в итеративную алгебру Поста подходящей значности.

Перейдем к точным определениям и формулировкам.

Пусть X — конечное непустое множество, X^* обозначает полугруппу слов на Х. Последовательностная ограниченно-детерминированная функция $F: X^+ \to Y^+$ может быть описана бесконечной последовательностью функций ($\varphi_F^1 \varphi_F^2 \dots \varphi_F^m \dots$), где $\varphi_E^i : X^i \to Y$ так, что на слове $(a_1 a_2 \dots a_n)$ функция F вычисляется следующим образом:

$$F(a_1 a_2 \ldots a_n) = \varphi_F^1(a_1) \varphi_F^2(a_1, a_2, \ldots, a_n).$$

Пусть $n \ge 1$, $n \in \mathbb{N}$, P_k будет обозначать множество последовательностных функций арности n, которые отображают $(X_n)^+$ в X^+ , т. е. алфавитом входов таких функций является множество всех слоев длины \hat{n} над X, $P_X = \bigcup P_k^n$ — носитель алгебры P_X .

Далее везде предполагается, что $X = \{0, 1, 2, ..., k-1\}$ и $P_X = P_k$. Операции ξ , τ , \triangle , ∇ , * сигнатуры алгебры P_k определяются следующим образом:

$$(\xi F) (p_1 p_2 \dots p_n) = F (p_2 p_3 \dots p_n p_1), (\tau F) (p_1 p_2 \dots p_n) = F (p_2 p_1 \dots p_n), (\Delta F) (p_1 p_2 \dots p_{n-1}) = F (p_1 p_1 \dots p_{n-1}), (\nabla F) (p_1 p_2 \dots p_{n+1}) = F (p_2 \dots p_{n+1}), (F * G) (p_1 \dots p_m \dots p_{m+n-1}) = F (G (p_1 \dots p_m), p_{m+1} \dots p_{m+n-1}),$$

где F, G произвольны; n и m — арность функций из P_k , p_i , $i=1, 2, \ldots$; m+n-1,— слова, поступающие на i-й вход, причем все слова нмеют одну и ту же длину.

Если F — одноместиая функция, то $\xi F = \tau F = \Delta F = \nabla F = F$.

Конгруэнцией на алгебре P_h называется отношение эквивалентности на этой алгебре, сохраняющееся при всех операциях из сигнатуры алгебры.

На алгебре $P_{\scriptscriptstyle R}$ и всех ее подалгебрах, как и на любой алгебре, имеются две тривиальные конгруэнтности χ_0 , χ_1 , где χ_0 совпадает с отношением

равенства, а χ₁ — с тождественным истинным отношением.

Помимо конгруэнций χ_0 , χ_1 , существует на алгебре P_k еще одна конгруэнция $\chi_2:(F,G) \equiv \chi_2 \Longrightarrow$ арность F равна арности G. На P_k также имеется семейство конгруэнций R_m , $(F,G) \equiv R_m \Longrightarrow \phi_F^t = \phi_G^t$ для $i \leqslant m$.

Одним из основных результатов работы [2] является следующая **Теорема**. Множество конгруэнций на P_h совпадает с

$$\{\chi_0, \chi_1, \chi_2\} \cup \{R_m : m \geqslant 1\}.$$

Из мощностных соображений следует, что при любом конечном l P_h/χ_0 не может быть изоморфно вложена в R_l .

Для других конгруэнций на P_k имеет место

Теорема. P_h/χ_1 изоморфно вкладывается в R_1 , $P_h/\chi_2 \cong R_1$; P_h/R_m изоморфно вкладывается в R_{bm} , $m \geqslant 1$.

Доказательство. Рассмотрим вначале конгруэнции χ_1 и χ_2 . Из определения χ_1 следует, что P_k/χ_1 содержит только один класс, этому классу можно поставить в соответствие одноместную функцию из итеративной алгебры R_1 . Очевндно, это соответствие задает изоморфное вложение P_k/χ_1 в R_1 . Для P_k/χ_2 , где χ_2 разбивает P_k на смежные классы, состоящие из последовательностных функций, имеющих одинаковую арность, поставим в соответствие последовательностной функции арности n константу арности n из n. Нетрудно видеть, что это соответствие является изоморфизмом n

По определению конгруэнций \mathbf{R}_m на \mathbf{P}_h $(F;G) \in \mathbb{R}_m \Leftrightarrow \phi_F^t = \phi_G^t$, где $F,G \in \mathbf{P}_k^n$, т. е. имеют одну и ту же арность.

Обозначим через $[R_m]$ отображение, определяемое конгруэнцией R_m , сопоставляющее функциям из P_h их начальные отрезки длины m.

Пусть имеется набор функций $\varphi_F^1, \varphi_F^2, \ldots, \varphi_F^m, F \in \mathcal{P}_k^n$, поставим в соответствие этому набору функцию $F_{\varphi_F^1, \varphi_F^2, \cdots, \varphi_F^m}$ арности n из итеративной алгебры Поста R_{k_m} . Функция $F_{\varphi_F^1, \varphi_F^2, \cdots, \varphi_F^m}$ определяется следующим образом:

элементы E_{k}^{m} рассматриваются как наборы из $(E_{k})^{m}$, т. е. если $\alpha_{i} \in E_{k}^{m}$, то $\alpha = (\alpha(1)...\alpha(m))$, где $\alpha(j) \in E_{k}$, $\alpha(j) = pr_{j}(\alpha)$;

где $(\alpha_i = \alpha_i(1) \alpha_i(2) \ldots \alpha_i(m)), \alpha_i \in E_h$.

Обозначим через $\Gamma_{k,m}$ описанное выше отображение наборов функций $\varphi^1\ldots \varphi^m$ в итеративную алгебру Поста R_{k^m} . Покажем, что композиция отображений $[R_m] \bigcirc \Gamma_{k,m}$ является гомоморфизмом алгебры P_k конечноавтоматных отображений над k-элементным алфавитом в итеративную алгебру Поста R_{k^m} .

Для этого рассмотрим действие операций сигнатуры алгебры P_h на последовательности функций $\phi^1\phi^2\ldots\phi^m\ldots$, определяющих элементы P_h , а также напомним определение соответствующих операций сигнатуры итеративной алгебры Поста.

Пусть $F = \varphi_F^1 \varphi_F^2 \dots$, покажем, как операции ξ , τ , \triangle , ∇ действуют на бесконечных последовательностях функций:

$$\xi(\varphi^{1} \dots \varphi^{m} \dots) = (\Psi^{1}\Psi^{2} \dots \Psi^{m} \dots),$$

$$\Psi^{i} = \Psi^{i}(x_{2}(1)x_{3}(1) \dots x_{n}(1)x_{1}(1), \dots, x_{2}(i)x_{3}(i) \dots x_{n}(i)).$$

$$\tau(\varphi^{1} \dots \varphi^{m} \dots) = (\Psi^{1}\Psi^{2} \dots \Psi^{m} \dots),$$

$$\Psi^{i} = \Psi^{i}(x_{2}(1)x_{1}(1) \dots x_{n}(1), \dots, \dots, x_{2}(i)x_{1}(i) \dots x_{n}(i)).$$

$$\Delta(\varphi^{1} \dots \varphi^{m} \dots) = (\Psi^{1}\Psi^{2} \dots \Psi^{m} \dots),$$

$$\Psi^{i} = \Psi^{i}(x_{1}(1)x_{1}(1) \dots x^{n-1}(1), \dots, \dots$$

$$\begin{array}{c}
\dots, x_1(i)x_1(i) \dots x_{n-1}(i)). \\
\nabla (\varphi^1 \dots \varphi^m \dots) = (\Psi^1 \Psi^2 \dots \Psi^m \dots), \\
\Psi^i = \Psi^i(x_2(1)x_3(1) \dots x_{n+1}(1), \dots, \dots \\
\dots, x_2(i)x_3(i) \dots x_{n+1}(i)).
\end{array}$$

Рассмотрим теперь операцию * из сигнатуры P_k . Пусть $F \in P_k^n$, $G \in P_k^m$ и $F = (\phi_F^1, \ldots, \phi_F', \ldots)$, $G = (\phi_G^1, \ldots, \phi_G', \ldots)$. Тогда последовательностная функция H = F * G, арности m + n - 1, задается последовательностью $(\phi_H^1 \phi_H^2 \ldots \phi_H' \ldots)$, где ϕ_H' вычисляется следующим образом:

$$\varphi_H^r(x_1(1)\ldots x_{m+n-1}(1), \ldots, x_1(r)\ldots x_{m+n-1}(r)) = \varphi_F^r(\varphi_G^1(x_1(1)\ldots x_m(1)), x_{m+1}(1)\ldots x_{m+n-1}(1), \varphi_G^2(x_1(1)\ldots x_m(1), x_m(1))$$

$$x_1(2) \dots x_m(2) \dots x_{m+n-1}(2), \dots, \varphi_G^r(x_1(1) \dots x_m(1), \dots, x_1(r) \dots x_m(r)), x_{m+1}(r) \dots x_{m+n-1}(r),$$

где $r = 1, 2, \ldots$

В сигнатуре итеративной алгебры R_I операция * определяется так: если есть функции $f(x_1 \dots x_n)$, $g(x_1 \dots x_m)$, то

$$h(x_1 \ldots x_m, x_{m+1} \ldots x_{m+n-1}) = (f * g) (x_1 \ldots x_m, x_{m+1} \ldots x_{m+n-1}) =$$

= $f(g(x_1 \ldots x_m), x_{m+1} \ldots x_{m+n-1}).$

Операции $\xi, \tau, \Delta, \nabla$ в сигнатуре R_l действуют аналогично соответствующим операциям сигнатуры P_k . Необходимо доказать следующее:

1.
$$F_{\varphi_{(\xi F)}^1 \varphi_{(\xi F)}^2 \cdots \varphi_F^m} = \widetilde{\xi} F_{\varphi_F^1 \varphi_F^2 \cdots \varphi_F^m}$$
.

$$2.\ F_{\phi_{(\tau F)}^1,\phi_{(\tau F)}^2,\cdots\phi_{(\tau F)}^m} = \widetilde{\tau} F_{\phi_F^1,\phi_F^2,\cdots\phi_F^m}.$$

3.
$$F_{\varphi_{(\Delta F)}^1 \varphi_{(\Delta F)}^2 \cdots \varphi_{(\Delta F)}^m} = \widetilde{\Delta} F_{\varphi_F^1 \varphi_F^2 \cdots \varphi_F^m}$$
.

4.
$$\mathbf{F}_{\varphi_{(\nabla F)}^1 \varphi_{(\nabla F)}^2 \cdots \varphi_F^m} = \overset{\sim}{\nabla} \mathbf{F}_{\varphi_F^1 \varphi_F^2 \cdots \varphi_F^m}$$

5.
$$F_{\varphi_{(F*G)}^1 \varphi_{(F*G)}^2 \cdots \varphi_{(F*G)}^r} = F_{\varphi_F^1 \varphi_F^2 \cdots \varphi_F^r} \widetilde{*} F_{\varphi_G^1 \varphi_G^2 \cdots \varphi_G^r}$$

Для примера докажем равенство 5. Остальные доказываются существенно проще.

Для упрощения записи введем следующие обозначения: $\alpha = \alpha_1 \alpha_2 \dots$ α_{m+n-1} , $\alpha_m = \alpha_1 \alpha_2 \dots \alpha_m$, $\alpha = \alpha_{m+1} \alpha_{m+2} \dots \alpha_{m+n-1}$, тогда $(F_{\phi_F^1 \dots \phi_F'} * F_{\phi_G^1 \dots \phi_G'}) (\alpha_1 \alpha_2 \dots \alpha_m \dots \alpha_{m+n-1}) = F_{\phi_F^1 \dots \phi_F'} (F_{\phi_G^1 \dots \phi_G'} (\alpha_1 \dots \alpha_m),$ $\alpha_{m+1}, \dots, \alpha_{m+n-1}) = F_{\phi_F^1 \dots \phi_F'} (\phi_G^1 (pr_1 \alpha_m) \phi_G^2 (pr_1 \alpha_m, pr_2 \alpha_m) \dots \phi_G' (pr_1 \alpha_m, pr_2 \alpha_m) \dots \phi_G' (pr_1 \alpha_m) + \phi_G^2 (pr_1$

$$\varphi_G^i(pr_1\overset{\leftarrow}{\alpha}_m,\ldots,pr_i\overset{\leftarrow}{\alpha}_m)pr_i\overset{\rightarrow}{\alpha}_m)\ldots \varphi_F^r(\varphi_G^1(pr_1\overset{\leftarrow}{\alpha}_m)pr_1\overset{\rightarrow}{\alpha}_m\ldots\ldots,\varphi_G^r(pr_1\alpha_m,\ldots,pr_r\overset{\leftarrow}{\alpha}_m)pr_r\overset{\rightarrow}{\alpha}_m).$$

С другой стороны, имеем

$$F_{\phi_{(F*G)}^{1}\dots\phi_{(F*G)}^{r}}(\alpha_{1}\dots\alpha_{m+n-1}) = F_{\phi_{H}^{1}\dots\phi_{H}^{r}}(\alpha_{1}\dots\alpha_{m}\dots\alpha_{m+n-1}),$$
где $H = F*G$, $= \phi_{H}^{1}(pr_{1}\alpha)\phi_{H}^{2}(pr_{1}\alpha, pr_{2}\alpha)\dots\phi_{H}^{l}(pr_{1}\alpha, \dots, pr_{1}\alpha)\dots$
 $\dots \phi_{H}^{r}(pr_{1}\alpha, \dots, pr_{r}\alpha) = \phi_{F}^{1}(\phi_{G}^{1}(pr_{1}\alpha)pr_{1}\alpha_{m})\phi_{F}^{2}(\phi_{G}^{1}(pr_{1}\alpha_{m})pr_{1}\alpha_{m},$
 $\phi_{G}^{2}(pr_{1}\alpha_{m}, pr_{2}\alpha_{m})pr_{2}\alpha_{m})\dots\phi_{F}^{l}(\phi_{G}^{1}(pr_{1}\alpha_{m})pr_{1}\alpha_{m}, \dots, \phi_{G}^{l}(pr_{1}\alpha_{m}, \dots, pr_{r}\alpha_{m})pr_{1}\alpha_{m}, \dots, pr_{r}\alpha_{m})pr_{r}\alpha_{m})\dots\phi_{F}^{r}(\phi_{G}^{1}(pr_{1}\alpha_{m})pr_{1}\alpha_{m}, \dots, \phi_{G}^{r}(pr_{1}\alpha_{m}, \dots, pr_{r}\alpha_{m})pr_{r}\alpha_{m})\dots\phi_{F}^{r}(pr_{r}\alpha_{m})pr_{r}\alpha_{r}\alpha_{m})pr_{r}\alpha_{r}\alpha_{m})pr_{r}\alpha_{r}\alpha_{m}$

Из доказанного выше вытекает, что фактор-алгебра $m{P}_h/R_m$ изоморфно вложена в итеративную алгебру Поста $\dot{m{R}}_{k^m}.$

Теорема доказана.

Автор выражает благодарность В. В. Горлову за ценные советы и помощь, оказанную при работе.

Список литературы

1. Мальцев А. И. // Алгебра и логика. 1966. Т. 5. № 2. С. 5. 2. Dassow J. // Coll. Math. Soc. Janos Bolya I. 1979. № 28. Р. 161. 3. Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М., 1985.

Поступила в редакцию 29.06.88.

УДК 539.3

Ю. В. ВАСИЛЕВИЧ

термоупругое состояние ортотропного тела, вызванное стационарным температурным полем

Пусть ортотропное полупространство, обладающее прямолинейной тепловой анизотропией, занимает область $D^+(z{>}0)$, ограниченную плоскостью S(z=0). Плоскость S перпендикулярна к одному из трех главных направлений теплопроводности тела, параллельных осям декартовых координат х, у, z, которые образуют правую тройку. Будем считать, что рассматриваемое тело однородно и внутри его отсутствуют источники тепла. Положим, что термоупругое состояние полупространства вызывается неравномерным распределением стационарного температурного поля T(x, y) на поверхности S.

В области D^+ температура T(x, y, z) удовлетворяет уравнению теплопроводности

$$k_1 \frac{\partial^2 T}{\partial x^2} + k_2 \frac{\partial^2 T}{\partial y^2} + k_3 \frac{\partial^2 T}{\partial z^2} = 0, \tag{1}$$

где k_i (i=1, 2, 3) — коэффициенты теплопроводности в главных направлениях упругости тела.

Запишем граничные условия для T:

$$T = T_0(x, y) \text{ B } S_1; T = 0 \text{ B } S_2,$$
 (2)

где S_1 — некоторая конечная односвязная область в S, $S_2{=}S{-}S_1;$ $T_0(x,y)$ — заданная функция. Решение задачи (1) — (2) имеет вид

$$T(x, \overline{y}, \overline{z}) = \frac{1}{2\pi} \iint_{S_1} \frac{\overline{z} T_0(\alpha, \beta) \, d\alpha d\beta}{[(x-\alpha)^2 + \overline{(y-\beta)^2} + \overline{z^2}]^{3/2}},$$
 (3)

тде $\overline{y}=\overline{\mu}y,\ \overline{z}=\overline{\lambda}z,\ \overline{\mu}=\sqrt{\overline{k_1/k_2}},\ \overline{\lambda}=\sqrt{\overline{k_1/k_3}},\ \alpha,\ \beta$ — параметры интегрирования.