
ORE Open Research Exeter

TITLE

Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

AUTHORS

Hartmann, RR; Saroka, VA; Portnoi, ME

JOURNAL

Journal of Applied Physics

DEPOSITED IN ORE

02 April 2019

This version available at

http://hdl.handle.net/10871/36706

COPYRIGHT AND REUSE

Open Research Exeter makes this work available in accordance with publisher policies.

A NOTE ON VERSIONS

The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of
publication

http://hdl.handle.net/10871/36706


Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

R. R. Hartmann,1 V. A. Saroka,2 and M. E. Portnoi3, 4, a)

1)Physics Department, De La Salle University, 2401 Taft Avenue, 0922 Manila,

Philippines

2)Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11,

220030 Minsk, Belarus

3)Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL,

United Kingdom

4)ITMO University, St. Petersburg 197101, Russia

(Dated: 25 March 2019)

1

ar
X

iv
:1

90
3.

10
54

4v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
5 

M
ar

 2
01

9



Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

We use the robust nearest-neighbour tight-binding approximation to study on the

same footing interband dipole transitions in narrow-bandgap carbon nanotubes and

graphene nanoribbons. It is demonstrated that curvature effects in metallic single-

walled carbon nanotubes and edge effects in gapless graphene nanoribbons not only

open up bang gaps, which typically correspond to THz frequencies, but also result

in a giant enhancement of the probability of optical transitions across these gaps.

Moreover, the matrix element of the velocity operator for these transitions has a

universal value (equal to the Fermi velocity in graphene) when the photon energy

coincides with the band-gap energy. Upon increasing the excitation energy, the tran-

sition matrix element first rapidly decreases (for photon energies remaining in the

THz range but exceeding two band gap energies it is reduced by three orders of mag-

nitude), and thereafter it starts to increase proportionally to the photon frequency.

A similar effect occurs in an armchair carbon nanotube with a band gap opened

and controlled by a magnetic field applied along the nanotube axis. There is a di-

rect correspondence between armchair graphene nanoribbons and single-walled zigzag

carbon nanotubes. The described sharp photon-energy dependence of the transition

matrix element together with the van Hove singularity at the band gap edge of the

considered quasi-one-dimensional systems make them promising candidates for ac-

tive elements of coherent THz radiation emitters. The effect of Pauli blocking of

low-energy interband transitions caused by residual doping can be suppressed by

creating a population inversion using high-frequency (optical) excitation.

Keywords: carbon nanotubes; graphene nanoribbons; interband transitions; THz

radiation
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Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

I. INTRODUCTION

Creating reliable and portable coherent sources and sensitive detectors of terahertz (THz)

radiation is one of the most formidable tasks of modern device physics.1 Potential applica-

tions of THz spectroscopy range from medical imaging and security to astrophysics and

cosmology. The unique position of the THz range, in the gap between the parts of elec-

tromagnetic spectrum, which are accessible by either electronic or optical devices, leads to

an unprecedented diversity in approaches to bridging the gap.1–10 One of the latest trends

in THz technology is to employ carbon nanomaterials as building blocks of high-frequency

devices.11 In particular, there are a growing number of proposals using carbon nanotubes

for THz applications including several schemes12–17 put forward by some of the authors of

the present work.

Within the frame of a simple zone-folding model of the π-electron graphene spectrum,

all single wall carbon nanotubes (CNTs) that satisfy the condition n = 3p + m, where p

is an integer, are metallic (see Refs.3,18 for classification of CNTs). However, first principle

and numerical tight-binding calculations show that only armchair CNTs (n = m) are truly

metallic.19–21 All other tubes from the specified category have a small curvature-induced

band gap that ranges from ≈ 2 − 50 meV depending on the tube diameter and chirality.

Thus, CNTs characterized by the indices n = 3p + m are commonly referred to as quasi-

metallic CNTs, and the presence of the band gap in quasi-metallic CNTs has been detected

by scanning tunneling microscopy and electrical transport measurements.22,23

Many THz/far-infrared spectroscopy experiments have been performed on CNTs.24–38

Several groups observed a broad terahertz absorption peak, the origin of which was at-

tributed to interband absorption in quasi-metallic CNTs with curvature-induced gaps.25,31,32,39

However, an alternative explanation where absorption was attributed to collective electron

excitations such as plasmon resonances29,30,34,35,37,38,40 was also put forward. With over a

decade of scientific argument and many reports of controversial and contradictory results

from different groups, it seems that the prevailing consensus is that at high carrier densities

the THz peak is due to collective intraband effects rather than single electron interband

optical transitions.

Despite the enormous attention curvature effects have received in relation to the electronic

band structure of nanotubes, the role of curvature in regards to their optical properties has
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garnered considerably less attention, with notable exceptions including proposals for THz

radiation emitters.14,16 Interband transitions in quasi-metallic tubes in the THz regime are

allowed even in the absence of curvature effects. However, these transitions are very weak at

low frequencies, owing to the fact that the matrix element of velocity is proportional to aν,14

where a is the graphene lattice constant and ν the frequency of excitation. In what follows,

it is shown that the same curvature effect in quasi-metallic CNTs which opens the gap in

the nanotube energy spectrum also allows strong interband transitions in the THz range.

These transitions are several orders of magnitude larger then those previously considered

in a model, which neglected curvature.14 This is because the inclusion of curvature effects

results in the matrix element of velocity becoming equal to vF; which means the optical

transitions in the vicinity of the Dirac point are as strong as allowed optical transitions

between more distant subbands. We also show that the Aharonov-Bohm effect reported

previously for tubes without taking into account curvature41,42 results in the splitting of the

THz peak associated with curvature. Furthermore, controlling the strength of the magnetic

field directed along the nanotube axis allows the position of the THz peaks to be tuned.

Graphene nanoribbons (GNRs) represent another type of quasi-one-dimensional carbon

nanostructures and can be imagined as narrow stripes cut from a single layer graphene sheet.

Just as how the rolling of the tube determines its optical and electric properties, the manner

in which the ribbon is cut is equally as important. The highest symmetry nanoribbons are

formed by “cutting” along parallel lines to form either zigzag or armchair edges, whence

the origin of their names. These ribbons are specified by the number of carbon atoms pairs

N , or equivalently by the number of “zigzag lines” for zigzag or “dimer lines” for armchair

nanoribbons. The most simple tight-binding model shows that all zigzag ribbons (ZGNR)

are metallic, whereas only armchair ribbons (AGNRs) with N = 3p+2, where p is an integer,

are gapless. The low-energy dispersion of electrons in metallic AGNRs is linear and similar

to that of metallic CNTs, while the electron dispersion of ZGNRs is dominated by edge

states.43–45 However, in actuality, both types of the metallic ribbons are quasimetallic. The

electron dispersion of ZGNR edge states is strongly modified by electron-electron interaction,

whereas for AGNR the energy dispersion is influenced by the change of C-C bonds at the edge

of the ribbon compared to bonds in the ribbon interior. In both cases the outcome is a small

band gap opening of the order of 50 meV. In what follows we consider only quasimetallic

AGNRs, for which the edge effects lead to more prominent interband transitions between the
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closest valence and conduction subbands than for ZGNRs.46 As in the case of quasi-metallic

CNTs, the interband matrix element of velocity of narrow-gap AGNRs is equal to the Fermi

velocity at the band gap edge. This, coupled with the van-Hove singularity in the joint

density of states makes both quasi-metallic CNTs and AGNRs promising candidates as the

building block of high-frequency devices.

II. CARBON NANOTUBES

A. The band structure of narrow-gap CNTs with curvature

The rolling of a graphene sheet to form a carbon nanotube has three main consequences:47

C-C bond length contraction, the rotation of the 2pz orbitals and the rehybridization of the

π and σ orbitals. All of the aforementioned effects result in the modification of the hopping

parameters of the tight-binding Hamiltonian.48–50 In the present study we focus on the effect

of bond length contraction.

The tight-binding Hamiltonian of a graphene-like 2D crystal can be written as:

H (k) =

 0 f (k)

f ∗ (k) 0

 , (1)

where f (k) =
∑

i ti exp (ik ·Ri), k is the charge carrier’s wavevector, Ri are the nearest

neighbor vectors, and ti are their associated hopping integrals,18 which for graphene are

equivalent i.e., ti = t ≈ −3 eV. For a pristine graphene sheet the nearest neighbor vectors

are defined as R1 =
(

a√
3
, 0
)

, R2 =
(
− a

2
√
3
,−a

2

)
and R3 =

(
− a

2
√
3
, a
2

)
, where a =

√
3aCC

and aCC is the nearest neighbor distance between two carbon atoms which is given as 1.42 Å.

The Hamiltonian, Eq. (1), acts on the basis (|ψA〉 , |ψB〉)T , where |ψA〉 and |ψB〉 are the tight-

binding wavefunctions associated with the two sub-lattices, to yield the eigenvalues ξj = s|f |,

where s̃ = +1 for the conduction band and s̃ = −1 for the valence band. Upon “rolling”

a graphene sheet to form a nanotube it is convenient to rotate the coordinate system such

that the x-axis lies along the chiral vector defined as Ch = na1 +ma2, where a1 = R1−R2

and a2 = R1 − R3 are the primitive lattice vectors of graphene and that the y-axis lies

along the nanotube axis. The nearest neighbor vectors in the rotated frame can be written
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FIG. 1. (a) A carbon nanotube as an unrolled graphene sheet, represented by the set of effective

nearest neighbor vectors R̃i, i = 1, 2, 3. (b) A quasi-metallic zigzag CNT.

as (RCi
, RTi), with the components given by the expressions:

RCi
=Rxi cosφ + Ryi sinφ,

RTi =−Rxi sinφ + Ryi cosφ,
(2)

where Rxi and Ryi are the Cartesian components of the ith nearest neighbor vector, and

cosφ =
√

3 (n+m) a/(2 |Ch|) and sinφ = (n−m) a/(2 |Ch|). We shall denote the com-

ponent of the wavevector which lies along the circumference (that which is quantized) and

the component of the wavevector which lies along the nanotube axis (that which is free) as

kC and kT respectively. Applying the periodic boundary condition to the circumferential

wavevector yields kC = 2πl/ |Ch|, where l is an integer and plays the role of the particles

angular momentum. For a quasi-metallic tube we set l = s (n−m) /3, where s = ±1,

and in the absence of curvature the crossing of the conduction and valance bands occurs at

s2π(n + m)/(
√

3 |Ch|). It should be noted that we allow both positive and negative values

of n and m, whereas traditionally they are both chosen positive.

Let us now consider the role of curvature. In rolling a graphene sheet to form a carbon

nanotube one decreases the length of the nearest neighbor vectors. This is because the new

distance is given by the chord between the two sites:√
4r2 sin2

(
RCi

2r

)
+R2

Ti
, (3)

where r is the radius of the nanotube given by r = a
√
n2 +m2 + nm/2π. To understand the

effects of including curvature, one can imagine the nanotube as an unrolled graphene sheet
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(see Fig. 1 (a)), defined by the modified set of lattice vectors ã1 = R̃1−R̃2 and ã2 = R̃1−R̃3,

where R̃i are the modified nearest neighbor vectors, defined as:

R̃i =

(
2r sin

(
RCi

2r

)
, RTi

)
, (4)

and therefore the new effective chiral vector is defined as C̃h = nã1 +mã2, and the quanti-

zation wavevector changes from kC = 2πl/ |Ch| to kC = 2πl/
∣∣∣C̃h

∣∣∣. In the nearest-neighbor

tight binding approximation the influence of a magnetic field is accounted for by adding the

number f = Φ/Φ0 (here Φ is the magnetic flux through the polygons cross section rather

than the original circular cross-section and Φ0 = h/e is the magnetic flux quantum) to the

angular momentum quantum number l.51 For example, one can see from Fig. 1 (b) that upon

rolling a quasi-metallic zigzag nanotube, |R1| remains unchanged whereas the magnitude of

R2 and R3 are reduced in comparison to that of a planar graphene sheet.

The effect of curvature is to break the symmetry between the nearest neighbor vectors,

therefore breaking the former equivalency of t1, t2 and t3. The probability of hopping

between sites is inversely proportional to the distance squared between hoping sites,52 i.e.

ti ∝ |Ri|−2, therefore the modified matrix elements of hopping, t̃i, are related to the original

elements, ti, by the simple expression:

t̃i
ti

=

 |Ri|∣∣∣R̃i

∣∣∣
2

.

In the presence of curvature and applied magnetic field the modified electron energy spec-

trum for a quasi-metallic nanotube is given by:

ξ = s̃

∣∣∣∣∣
3∑
i=1

t̃i exp
(
ik̃ · R̃i

)∣∣∣∣∣ , (5)

where k̃ is the charge carrier’s wavevector of the effective graphene sheet, hence k̃ · R̃i =

kCR̃xi + kT R̃yi , where kC = 2π [f + s (n−m) /3] /
∣∣∣C̃h

∣∣∣ and R̃xi and R̃yi are the Cartesian

components of the effective graphene sheet given in Eq. (4).

Explicit expressions for the dispersion relations can be obtained for both zigzag quasi-

metallic and armchair nanotubes. Let us first consider the case of zigzag quasi-metallic

tubes defined by (n,−n) where n is a multiple of three. It should be noted that this is

equivalent to a zigzag tube defined by (n, 0) with l = s2n/3. By symmetry, the hopping
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FIG. 2. Detailed view of the gap for (a) a (12, -12) CNT and (b) a (15, 3) CNT, with (red and

blue lines, corresponding to s = +1 and s = −1 respectively, for the case of B = 5 T) and without

(black line) an external magnetic field along the CNT axis. The dashed grey line corresponds to

zero field and no curvature. ∆k = s2π(n+m)/(
√

3 |Ch|)
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parameter t1 does not change, i.e. t1 = t, while t2 and t3 are modified in the same way. In

the presence of curvature and applied magnetic field the modified electron energy spectrum

for a quasi-metallic zigzag CNT is given by:

ξ = s̃ |t|

√√√√(ξg
2t

)2

+ 4λz sin2

(√
3

4
akT

)
, (6)

where λz = −2 cos
(
π
n
f ± 2π

3

)
t̃2/t, ξg = 4~vF |1− λz| / (3aCC) and vF =

√
3a |t| / (2~) is the

Fermi velocity of graphene. With the inclusion of curvature the spectrum is no longer linear

near the crossing point (see Fig. 2) and a band gap of ξg has appeared, whose size can

be tuned by the strength of the applied magnetic field. For large radius tubes the band

gap is given by ξg ≈ ~vFaCC

∣∣∣ 1
16R2 + s 4√

3a2CC

sin
(
π
n
f
)∣∣∣. It should be noted that assuming

a different power dependence of the transfer integral on the bond length results in the

same dependence of the gap size with radius48,49 however, the magnitude of the gap varies

by a geometric factor. In the absence of an applied magnetic field the energy spectrum

is degenerate in l, this degeneracy is broken for any size magnetic field hence an applied

magnetic field results in two separate bandgaps. For a (12,−12) CNT in zero field this gap

corresponds to ≈ 6.2 THz and in the presence of a 5 T field the two gaps are ≈ 6.8 THz and

≈ 5.7 THz which correspond to s = 1 and s = −1 respectively. The low energy spectrum

takes the form

ξ = s̃

√(
ξg
2

)2

+ λzv2F~2k2T . (7)

Eq. (7) is similar in form to that of a one dimensional, massive, relativistic Dirac fermion,

and in the limit that t̃2 → t2 (i.e. neglecting the effects of curvature) Eq. (7) restores the

linear disperision of the simple zone-folding model of π-electron graphene spectrum.

For an armchair nanotube defined by (n, n) the low-energy spectrum in a magnetic field

becomes

ξ = s̃

√(
ξg
2

)2

+ λav2F~2κ2, (8)

where κ = kT ∓ 2 arccos
[
t̃1 cos

(
π
n
f
)
/
(
2t̃2
)]
/a, the ∓ sign corresponds to the two different

valleys, λa = 4
3

(
t̃2/t

)2 − 1
3

(
t̃1/t

)2
cos2

(
π
n
f
)

and

ξg =
4~vF
3aCC

∣∣∣∣ t̃1t sin
(π
n
f
)∣∣∣∣ . (9)

Due to symmetry, curvature alone does not open up a gap.48 However, curvature effects do

result in the shifting of the crossing points, and an applied magnetic field also shifts the
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minimum and opens the gap equally for both valleys. It should be noted that in the limit

that t̃1 → t, Eq. (9) restores the result obtained in Refs.15,16,53

For a chiral quasi-metallic tube, the effect of curvature is to open a band gap. Also their

minima deviate from the crossing points obtained in the absence of curvature effects. Much

like zigzag quasi-metallic CNTs, when a magnetic field is applied along the nanotube axis,

the band gaps for each valley are modified differently from one another (see Fig. 2 (b)).

B. Optical selection rules

In the dipole approximation, the spectral density of spontaneous emission, Iν , is given

by14

Iν =
8πe2ν

3c3

∑
i,f

|e · 〈ψf |v̂|ψi〉|2

× fe (ki) fh (kf ) δ (ξf − ξi − hν) ,

(10)

where ψi and ψf are the eigenfunctions of the electrons in the initial and final states, ξi

and ξf are their associated energies, and ki and kf are their associated wave vectors, fe

and fh are the distribution functions of electrons and holes, v̂ is the velocity operator, e is

the polarization of the excitation which we take to be propagating along the nanotube axis

and ν is the frequency of the excitation. Using the velocity operator in commutator form:

v̂ = i
~

[
Ĥ, r

]
, where Ĥ is the tight-binding Hamiltonian of the modified graphene sheet54

described by the vectors R̃i, allows the the matrix element e · 〈ψf |v̂|ψi〉 to be written as55

e · <

 f̃ ?k

~
∣∣∣f̃k∣∣∣

3∑
i=1

t̃ie
ik·R̃iR̃i

 . (11)

The same result can also be obtained within the gradient approximation.56 Eq. 10 and Eq. 11

are sufficient to generate the spectral density of spontaneous emission for all quasi metallic

tubes, with and without an applied magnetic field. For the case of zig-zag quasi-metallic

CNTs, Eq. 11 admits simple analytic expressions, in the presence of curvature and an applied

magnetic field:
aCC

8
ωif +

2v2F
3aCCωif

(
1− λ2z

)
(12)

Which at the band gap edge becomes ≈ vF for experimentally attainable magnetic fields

and typical nanotube diameters, and in the absence of an applied magnetic field is zero as

10
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t̃2 → t. Curvature not only opens the gap in the quasi-metallic zigzag CNT spectrum, but

also allows dipole optical transitions at the bandedge between the highest valence subband

and the lowest conduction subband. Indeed, in the THz regime the results obtained for zig-

zag quasi metallic tubes, hold true across the entire class of quasi-metallic CNTs, differing

only by geometrical factors. In Fig. 3 we show how the matrix element of the dipole optical

transitions polarized along the CNT axis are modified in the presence of a magnetic field.

As we discussed above, for an (n, n) armchair nanotube curvature alone is insufficient to

open the gap. However, a longitudinal magnetic field applied along the nanotube axis not

only opens a bandgap but gives rise to strong optical transitions at the band edge. The

velocity operator in this instance is given by the simple analytic expression

8v2F
3
√

3aCCωif

(
t̃1
t

)2

sin
(π
n
f
)√( t̃2

t̃1

)2

− 1

4
cos2

(π
n
f
)
, (13)

and at the band edge Eq. 13 is ≈ vF for experimentally attainable magnetic fields with a

typical nanotube diameter.

The spectral density of spontaneous emission for a zigzag quasi-metallic CNT taking into

account curvature effects and applied magnetic field is obtained by substituting Eq. (12)

into Eq. (10) then performing the necessary summation. In the THz regime one obtains the

expression:

Iν = Lfe (ki) fh (kf )
π3e2a2CC [12t2 (1− λ2z) + h2ν2]

2

3c3h4vF

√
λz
(
h2ν2 − ξ2g

) , (14)

where L is the tube length. In the absence of an applied magnetic field, the electronic (hole)

energy spectrum near the bottom (top) of the conduction (valence) band is no longer linear

due to curvature effects, and the van Hove singularity in the joint density of states leads to

a very sharp absorption maximum near the band edge and correspondingly to a very high

sensitivity of the photocurrent to photon frequency, see Fig. 4. In the presence of an applied

magnetic field, the absorption peak associated with curvature-induced transitions is split,

the two absorption maxima corresponding to s = 1 and s = −1 (see Fig. 4), respectively.

These results hold true across the whole class of quasi-metallic tubes.

With the knowledge of the curvature-induced or magnetic-field-induced gap and strength

of the associated transitions, we must review the earlier proposed scheme for THz radiation

generation by hot carrier recombination in narrow-gap CNTs.14 In fact the injection scheme

does not require high voltage since the overlooked band-edge-transitions are strongly allowed.
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Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

FIG. 3. Dependence of the dipole matrix element for the transition between the top valence and

lowest conduction subbands on the 1D wave vector kT for (a), across the Brillouin zone and (b),

in the region close to the band gap edge, for a zigzag quasi-metallic tube defined by (12,-12) for

B = 0 T (black line) and B = 5 T (red and blue lines, corresponding to s = 1 and s = −1

respectively) applied along the CNT axis. The dashed grey line corresponds to zero field and no

curvature, while the dotted horizontal line is a visual aid highlighting the maximal value of the

matrix element of velocity attained at the band gap edge.

One must only overcome the Zener breakdown voltage which is used for the electric injection

of carriers into the nanotube conduction band.

Another, fully-optical scheme for the observation of strong band-edge transitions in

narrow-gap CNTs can be proposed. We must stress that we do not question the origin

of the broad THz absorption peak observed in spectroscopy experiments being of plasmonic

12
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FIG. 4. The calculated photon emission spectra for a (12,-12) CNT in zero magnetic field (black

curve) and a magnetic field of B = 5 T, where the red and blue curves correspond to s = 1 and

s = −1 respectively, for (a) frequencies of the order of the band gap and (b) for a broad range of

frequencies.

nature. Indeed any spurious doping results in the suppression of curvature induced interband

absorption because of the absence of empty states near the edge of the nanotube conduc-

tion band (Pauli blocking). Therefore, we suggest that the band-edge transitions should be

observed in THz emission experiments rather than absorption ones. To detect the reported

feature one can create a population inversion, for example, by optical pumping (see Fig. 5).

It can be seen from Eq. (14) that at optical frequencies, the transition probability is pro-

portional to the cube of frequency. Therefore using a broad range of optical frequencies will

lead to the effective promotion of many electrons into the conduction band, and the creation

of holes in the valance band. The photoexcited electrons and holes quickly thermalize with

the lattice due phonon scattering (τph ∼ 3 ps).57 As a result of this process the holes move

up to the top of the valence band, creating a population inversion, and the excited electrons

join the Fermi sea contributing to the increase of the non-equilibrium quasi Fermi level in

the conduction band. The emission of photons of the band-gap frequency will occurs with

an extremely high probability, since the optical matrix element is maximal at the band gap

edge and the density of states diverges. Therefore, this effect can be used for the generation

of a very narrow emission line having the peak frequency tunable by the applied magnetic

field. The emission output can be maximized by putting an array of narrow-gap CNTs into

a microcavity similar to what has been done for semiconducting CNTs.58,59 THz mirrors

with low losses should be carefully designed60 to achieve gain in this case. The analysis of
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FIG. 5. A schematic illustration of (a) the high frequency optical excitation (b) non-radiative

electron relaxation due to the electron-phonon scattering and (c) the population inversion in an

n-doped narrow gap CNT or GNR. The red-dashed line depicts the non-equilibrium quasi Fermi

level, ξeF, in the conduction band.

losses in such a system will be reported elsewhere. It should be noted that the absorption

by free carriers in the sample can be minimized by the proper choice of structure length,

since the plasmonic resonance is a geometrical one and depends strongly on the structures

longitudinal size.34,35 Since semiconducting tubes are transparent to THz radiation, there

is no need to separate the semiconducting from the quasi-metallic CNTs. However, ideally

samples should be enriched with narrow-gap nanotubes.

III. GRAPHENE NANORIBBONS

The band structure of AGNRs can be obtained from that of graphene by a technique

similar to that used with CNTs. The periodic boundary condition applied to the tube,

kT ·Ch = 2πl, is replaced with the so-called “hard wall” or “fixed ends” boundary condition,

kT · L = πl, where L is the ribbon’s width and kT is the electron’s transverse momentum.

It should be noted that these two types of boundary conditions match if L = Ch/2, this

occurs for example for AGNR(N) and zigzag CNT(N+1, 0).61,62 For these specifically chosen
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FIG. 6. (a),(c) selected bands from the electronic band structure and (b),(d) the velocity operator

matrix elements normalized by vF of an AGNR(11) and zigzag CNT(12,−12), respectively. Tran-

sitions between the closest valence and conduction subbands (thick black), the lowest and highest

subbands (dashed dotted, light gray), and for the subbands, for which matrix element of velocity

attains the maximum possible value (dashed, gray) are shown. The insets (a) and (c) show the

zoomed in region close to the Dirac point where the band gap is present. On the right side the

atomic structures are shown. In both cases the hopping integral, t = 3 eV and the edge correction

for the ribbon is 0.05t.

structures the electronic properties are almost identical. At low energies, the band spectra

of these tubes are almost an exact replica of that of the ribbons, the only difference is that

the tubes bands are double degenerate, whereas the ribbons bands are not. However, at

higher energies the band structures deviate from one another, and the spectrum of tubes

contains some higher energy bands which are absent in the ribbons. The edge effect in

armchair ribbons can be incorporated into the tight-binding model as corrections to the

hopping integrals at the ribbon edges.63

In Fig. 6 (a), (c) we show selected bands from the electronic band structure of a AGNR

and a zigzag CNT for the case of N = 11, taking into account the edge effect in the ribbon

and the curvature effect in the tube. It can be seen from the figure that the described

equivalence of the low energy band spectra is held throughout the whole band structure.

This equivalence extends to optical transitions selection rules. Our calculations, presented
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in Fig. 6 (b), show that the edge effect for quasimetallic armchair GNRs results in a peak

similar to that in Fig. 6 (d). As was the case with narrow-gap CNTs the peak has the same

characteristic height, equal to the vF the bandgap edge. This coupled with the presence of

the Van Hove singularity gives rise to a large interband transition probability rate. Thus like

narrow-gap CNTs, AGNR are promising candidates for the active element in THz emitters.

Their emission frequency can be tuned by applying an in-plane electric field.64,65 It should

be noted that synthesis techniques for such structures are developing at a fast pace, for

example AGNRs of the metallic family can already be produced with atomically smooth

edges.66 Therefore, there is much promise that ideal samples are on the horizon.

It is worth emphasizing that the equivalence between the optical properties of tubes and

ribbons reported herein is not trivial. Although the curvature effect in tubes and the edge

effect in ribbons both represent an intrinsic strain, the former is a homogeneously distributed

over the tube surface, while the latter is localized at the ribbon edges. Finally, it should be

noted that the band gap of metallic AGNRs are also influenced by third order nearest neigh-

bours terms (3NN).61 Within the framework of the analytical model proposed Gunlucke,67 it

can be shown that the inclusion of the 3NN hoping integrals in the consideration of metallic

AGNRs results in a peak in the transition probability similar to the 1NN model. However,

the Gunlycke model reproduces only transition probabilities between highest valence and the

lowest conduction subbands of the Zheng model63 giving qualitatively different transition

probability rates of higher energy transitions. The two pictures are yet to be reconciled.

IV. EXCITONIC EFFECTS

The results presented in Sec. II and III are based on a single electron picture. In this

section, will shall discuss the role of excitonic effects in narrow-gap CNTs and GNRs. Many-

body (excitonic) effects, are known to dominate the optical properties of semiconducting

CNTs68–71 and result in extremely low optical quantum yields. The suppression of photolu-

minescence is due to the presence of dark excitonic states, these non-radiative states have

a significantly lower energy than the radiative bright excitonic states.72–75 Therefore, bright

excitons relax towards the dark state, and consequently non-radiative decay dominates over

the radiative.76,77 Several methods have been proposed to enhance the luminescence effi-

ciency in semi-conducting tube,78,79 including the use of a microcavity80–82 and magnetic
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brightening.71,83,84 In quasimetallic CNTs and ANGRs the exciton binding energy has been

shown to never exceed the bandgap for both long-range53,85 and short-range interaction po-

tentials.85,86 Therefore, unlike semi-conducting tubes, the electron-hole pairs should be fully

ionized at room temperature. Hence, the aforementioned undesirable effects due to dark ex-

citons, should not dominate the optical processes in narrow-gap nanotubes. However, carrier

interaction is still important. In quasi-one-dimensional semiconductors, the introduction of

coulomb interaction between carriers results in the absence of the singularity associated with

band edge transitions in the absorption spectrum.87 Initial studies of quasi-one dimensional

narrow-gap structures show that both long-range and short-range interaction models85 also

result in the suppression of the van Hove singularity.

In THz absorption experiments, the combination of the van Hove singularity suppression,

Pauli blocking caused by spurious doping, and a fast reduction in the interband transition

matrix element away from the band gap edge results in the absorption peak being purely

plasmonic in nature. However, the situation becomes different for the optically-induced

population inversion scheme discussed at the end of Section II (see Fig. 5). Since the screen-

ing is much weaker in one-dimensional systems compared to bulk or even two-dimensional

materials, the excitonic peak should persist in the presence of free carriers. A possible con-

sequence could be two close THz emission peaks (which will be arguably difficult to resolve

given the current state of THz spectroscopy). The very narrow peak at a lower energy

will be produced by an optically active excitonic state below the band gap86; whereas, the

higher-energy broader peak should occur slightly above the band gap edge - it results from

the combination of the band-edge van Hove singularity suppression and the decay of the

matrix element with increasing photon energy. The in-depth study of both the van Hove

singularity suppression and excitonic transitions in ultra-relativistic quasi-one-dimensional

systems remains a subject of current research.

V. CONCLUSIONS

In the absence of curvature or edge effects, optical interband transitions near the crossing

points of the valence and conduction bands of metallic CNTs and AGNRs are vanishing with

reducing frequency. The effects resulting in the opening of a gap, which is typically in the

THz range, also lead to a drastic change of the wavefunctions near the band gap edges which

17



Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons

in turn allows optical transitions. These transitions are very strong at low frequencies and

their matrix elements are several orders of magnitude larger then those previously calculated

in a model which neglects curvature.14 Furthermore, the frequency peaks in the spectral

density of emission in narrow-gap CNTs can be tuned by the application of a magnetic field

directed along the nanotube axis. For both quasi-metallic CNTs and GNRs the edge optical

transition frequency can be modified by an in-plane electric field via the Franz-Keldysh effect:

this field can be induced, e.g., by a split back-gate below the substrate underneath the CNT

or GNR array. Appropriately arranged arrays of CNTs or GNRs should be considered

as promising candidates for active elements of amplifiers and generators of coherent THz

radiation. In nanotube arrays, all quasi-metallic CNTs with the same chirality will emit in

a similar fashion, whereas semiconducting and armchair nanotubes (in the absence of an

applied magnetic field) will be optically inactive in the THz and mid-infrared range. In

addition, the discussed effects provide a spectroscopic tool allowing to differentiate between

quasi-metallic and true metallic quasi-one-dimensional carbon nanostructures.
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