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Abstract. We set up a correspondence between solutions of the Yang–Mills equations on R × S3 and
in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are
rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number
of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of
increasing complexity. We illustrate our method with some nontrivial examples.

1. Conformal equivalence of dS4 to I×S3 and two copies of R1,3
+

Four-dimensional de Sitter space is a one-sheeted hyperboloid (of radius `) in R1,4 3 {Z0, Z1, . . . , Z4}
given by

−Z2
0 + Z2

1 + Z2
2 + Z2

3 + Z2
4 = `2 (1)

Constant Z0 slices are 3-spheres of varying radius, yielding a parametrization of dS4 3 {τ, ωA} as

Z0 = −` cot τ and ZA =
`

sin τ
ωA for A = 1, . . . , 4

with τ ∈ I := (0, π) and ωAωA = 1 .

(2)

The Minkowski metric
ds2 = −dZ2

0 + dZ2
1 + dZ2

2 + dZ2
3 + dZ2

4 (3)

induces on dS4 the metric

ds2 =
`2

sin2τ

(
−dτ2 + dΩ2

3

)
with dΩ2

3 for S3 , (4)

showing that dS4 is conformally equivalent to a finite cylinder I × S3.
The Z0+Z4<0 half of dS4 is also conformally related to future Minkowski space R1,3

+ 3 {t, x, y, z},

Z0 =
t2−r2−`2

2 t
, Z1 = `

x

t
, Z2 = `

y

t
, Z3 = `

z

t
, Z4 =

r2−t2−`2

2 t

with x, y, z ∈ R and r2 = x2 + y2 + z2 but t ∈ R+ ,

(5)

since t ∈ [0,∞] corresponds to Z0 ∈ [−∞,∞] but Z0+Z4 < 0. In these Minkowski coordinates,

ds2 =
`2

t2
(
−dt2 + dx2 + dy2 + dz2

)
. (6)
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One may cover the entire R1,3 by gluing a second dS4 copy and using the patch Z0+Z4 > 0.
We shall employ the direct relation between the cylinder and Minkowski coordinates:

cot τ =
r2−t2+`2

2 ` t
, ω1 = γ

x

`
, ω2 = γ

y

`
, ω3 = γ

z

`
, ω4 = γ

r2−t2−`2

2 `2
(7)

with the convenient abbreviation

γ =
2 `2√

4 `2t2 + (r2 − t2 + `2)2
(8)

Since t = −∞, 0,∞ corresponds to τ = −π, 0, π, the cylinder gets doubled to 2I × S3, and full
Minkowski space is covered by the cylinder patch ω4 ≤ cos τ . The cylinder time τ is a regular smooth

Figure 1. An illustration of the map between a cylinder 2I×S3 and Minkowski space R1,3. The
Minkowski coordinates cover the shaded area. Its boundary is given by the curve ω4 = cos τ . Each
point is a two-sphere spanned by ω1,2,3, which is mapped to a sphere of constant r and t.

function of (t, x, y, z), but more useful will be

exp(i τ) =
(`+ it)2 + r2√

4 `2t2 + (r2 − t2 + `2)2
. (9)

The following is a rendition of the our publication [1].

2. The correspondence
Yang–Mills and Maxwell theory are conformally invariant in four spacetime dimensions. Therefore, we
may solve their equations of motion on the cylinder 2I × S3 rather than directly on Minkowski space
R1,3. The cylinder parametrization has the advantage that it makes manifest a hidden SO(4) covariance.

The gauge potential taking values in a Lie algebra g can always be chosen as

A =

3∑
a=1

Xa(τ, ω) ea on 2I × S3 (10)

where Xa ∈ g, and {ea} is a basis of left-invariant one-forms on S3. There is no dτ component because
we picked the temporal gauge Aτ = 0.
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Yang–Mills or Maxwell solutions are translated from 2I×S3 to R1,3 simply by the coordinate
change (7). The behavior at the boundary cos τ = ω4 yields the fall-off properties at t → ±∞. To
become explicit, we need the Minkowski-parametrization of the one-forms e0 ≡ dτ and ea, which are
subject to

dea + εabc e
b ∧ ec = 0 and eaea = dΩ2

3 . (11)

In terms of the S3 coordinates (a, i, j, k = 1, 2, 3) they are

ea = −ηaBC ωB dωC where ηijk = εijk and ηij4 = −ηi4j = δij . (12)

A slightly lengthy computation yields the Minkowski-coordinate expressions,

e0 =
γ2

`3

(
1
2(t2 + r2 + `2) dt− t xkdxk

)
ea =

γ2

`3

(
t xadt−

(
1
2(t2 − r2 + `2) δak + xaxk + ` εajkx

j
)

dxk
)
,

(13)

with the notation

(xi) = (x, y, z) and (for later) (xµ) = (x0, xi) = (t, x, y, z) . (14)

The simplest Yang–Mills solutions are most symmetric. To obtain them, let us impose SO(4)
symmetry by setting Xa(τ, ω) = Xa(τ). The Yang–Mills equations then become ordinary matrix
differential equations [2, 3],

d2

dτ2
Xa = −4Xa + 3 εabc [Xb, Xc]−

[
Xb, [Xa, Xb]

]
and

[
d
dτXa, Xa

]
= 0 . (15)

For g = su(2), these equations admit some analytic solutions [4, 5],

Xa(τ) =
(
1 + 1

2q(τ)
)
Ta with

d2q

dτ2
= −∂V

∂q
for V (q) = 1

2q
2(q+2)2 , (16)

where {Ta} is an su(2) basis normalized to obey [Ta, Tb] = 2εabcTc. Notice the identification of Lie-
algebra and spatial indices. So the Yang–Mills problem has been reduced to a Newtonian particle in
a double-well potential V (q). Its prominent trajectories are (a) the vacua q(τ) ≡ −2 or 0, (b) the
sphaleron q(τ) ≡ −1 and (c) the bounce q(τ) =

√
2sech(

√
2(τ−τ0)) − 1. The corresponding gauge

potential takes the form

A =
(
1 + 1

2q(τ)
)
g−1dg for g : S3 → SU(2) . (17)

The sphaleron gives the only nontrivial static homogeneous solution (on the cylinder), i.e. A = 1
2Tae

a =
1
2g
−1dg, which translates to a finite-action homogeneous color-magnetic Yang–Mills solution on dS4 [6]

(see also [7]).
In addition, there exist analytic Abelian symmetric solutions,

Xa(τ) = X̄a(τ) T3 with
d2X̄a

dτ2
= −4 X̄a . (18)

Obviously, these are solutions to Maxwell’s equations, taking g = R, so we can drop the matrix T3 and
consider just real-valued functions X̄a(τ). Let us drop the bar and consider Xa ∈ R from now on. The
general solution to (18) is an oscillation with frequency two,

Xa(τ) = ca cos
(
2(τ−τa)

)
. (19)
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The task is to transfer the oscillatory cylinder solutions to Minkowski space (x ≡ {xµ}),

A = Xa(τ(x)) ea(x) = Aµ(x) dxµ yielding Aµ(x) with At 6= 0 , (20)

dA =
d

dτ
Xa e

0 ∧ ea − εabcXa e
b ∧ ec = 1

2Fµν dxµ ∧ dxν yielding Fµν(x) . (21)

From this, we obtain electric and magnetic fields Ei = Fi0 and Bi = 1
2εijkFjk. For the computation

it is helpful to recognize that exp(2iτ) is a rational function of t and r.
We may always choose a frame where X3 = 0 and τ2 = 0. The overall amplitude is irrelevant as all

equations are linear, and solutions can be superposed at will. Specializing to c1 = c2 = −1
8 and τ1 = π

2 ,

X1(τ) = −1
8 sin 2τ , X2(τ) = −1

8 cos 2τ , X3(τ) = 0 , (22)

the result of short computation (putting ` = 1) yields

~E + i ~B =
1(

(t− i)2 − r2
)3
 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2 (x− iy) (t− i− z)

 . (23)

This is the celebrated Hopf–Rañada electromagnetic knot [8, 9]. Our approach also yields its gauge
potential.

3. Construction of electromagnetic solutions
In the following, we are interested only in Maxwell solutions. The linearity of the equations then will
allow us to solve for a general (not SO(4)-symmetric) potential. Therefore, let us admit arbitrary non-
symmetric configurations Xa = Xa(τ, ω) but capture the ω-dependence in an SO(4)-covariant fashion.
The main ingredients are the left-invariant vector fields generating right multiplication,

Ra = −ηaBC ωB
∂

∂ωC
⇒ [Ra, Rb] = 2 εabcRc , (24)

and the right-invariant ones generating left multiplication (by the inverse),

La = −η̃aBC ωB
∂

∂ωC
⇒ [La, Lb] = 2 εabc Lc . (25)

They mutually commute, [Ra, Lb] = 0, and the right translations are dual to our left-invariant one-forms,
e.g. ea(Rb) = δab . Hence, an arbitrary function Φ on S3 obeys

dΦ(ω) = eaRaΦ(ω) . (26)

The space of functions on S3 decomposes into irreps of su(2)L ⊕ su(2)R labelled by a common
spin j ∈ {0, 1

2 , 1,
3
2 , . . .}. To make contact with standard physics notation, we define hermitian “angular

momenta”

Ia := i
2 La and Ja := i

2 Ra ⇒ [Ia, Ib] = i εabc Ic and [Ja, Jb] = i εabc Jc . (27)

A basis of hyperspherical harmonics

Yj;m,n(ω) with m,n = −j,−j+1, . . . ,+j and 2j = 0, 1, 2, . . . (28)
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is specified by the relations

I2 Yj;m,n = J2 Yj;m,n = j(j+1)Yj;m,n ,

I3 Yj;m,n = mYj;m,n and J3 Yj;m,n = nYj;m,n .
(29)

For an explicit construction, one introduces two complex coordinates

α = ω1 + iω2 and β = ω3 + iω4 subject to ᾱα+ β̄β = 1 . (30)

The angular momenta generators in those terms read

I+ = (β̄∂ᾱ − α∂β)/
√

2 , J+ = (β∂ᾱ − α∂β̄)/
√

2 , (31)

I3 = (α∂α + β̄∂β̄ − ᾱ∂ᾱ − β∂β)/2 , J3 = (α∂α + β∂β − ᾱ∂ᾱ − β̄∂β̄)/2 , (32)

I− = (ᾱ∂β̄ − β∂α)/
√

2 , J− = (ᾱ∂β − β̄∂α)/
√

2 . (33)

The normalized hyperspherical harmonics are represented as

Yj;m,n =

√
2j+1

2π2

√
2j−m(j+m)!

(2j)! (j−m)!

2j−n(j+n)!

(2j)! (j−n)!
(I−)j−m(J−)j−n α2j (34)

and are homogenous polynomials of degree 2j in {α, ᾱ, β, β̄}.
To set up a left-invariant and right-covariant formulation, we parametrize the general Maxwellian

gauge potential on 2I × S3 as

A = X0(τ, ω) dτ +Xa(τ, ω) ea (35)

The temporal and Coulomb gauge allows us to impose

X0(τ, ω) = 0 and JaXa(τ, ω) = 0 . (36)

Maxwell’s equations then are nothing but coupled wave equations:

−1
4 ∂

2
τXa = (J2+1)Xa + i εabcJbXc (37)

A more transparent rewriting employs the famiiar complex linear combinations

X± = (X1 ± iX2)/
√

2 , (38)

which provides a partial decoupling of the components,

−1
4 ∂

2
τX+ = (J2 − J3 + 1)X+ + J+X3 ,

−1
4 ∂

2
τX3 = (J2 + 1)X3 − J+X− + J−X+ ,

−1
4 ∂

2
τX− = (J2 + J3 + 1)X− − J−X3 ,

(39)

to be supplemented by the gauge condition

0 = J3X3 + J+X− + J−X+ . (40)

Since the Xa live on S3, we naturally expand in our basis of hyperspherical harmonics,

Xa(τ, ω) =
∑
jmn

Xj;m,n
a (τ)Yj;m,n(α, β) (41)

From the form of the equations it is obvious that
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• the equations are diagonal in j and m, so these may be kept fixed
• they only couple triplets (Xj;m,n

3 , Xj;m,n+1
+ , Xj;m,n−1

− ), so X± ∝ J±X3 for X3 ∝ Yj;m,n
• the ansatz Xj;m,n

a (τ) = eiΩj;n
a τ cj;na gives a linear system for Ωj;n

a and cj;na
The frequencies turn out to be integral,

Ωj;n
a = ±2(j+1) or ± 2j , (42)

which produces two types of basis solutions:

• type I : j≥0 , m = −j, . . . ,+j , n = −j−1, . . . , j+1 , Ωj = ±2(j+1) ,

X+ =
√

(j−n)(j−n+1)/2 e±2(j+1)iτ Yj;m,n+1 ,

X3 =
√

(j+1)2 − n2 e±2(j+1)iτ Yj;m,n ,

X− = −
√

(j+n)(j+n+1)/2 e±2(j+1)iτ Yj;m,n−1 ,

(43)

• type II : j≥1 , m = −j, . . . ,+j , n = −j+1, . . . , j−1 , Ωj = ±2j ,

X+ = −
√

(j+n)(j+n+1)/2 e±2j iτ Yj;m,n+1 ,

X3 =
√
j2 − n2 e±2j iτ Yj;m,n ,

X− =
√

(j−n)(j−n+1)/2 e±2j iτ Yj;m,n−1 .

(44)

Of course, a generic solution is some linear combination of the above. Due to the linearity of the
equations, the overall scale of a solution is arbitrary.

4. Some properties of the solutions
Each complex solution yields two real ones, real part and imaginary part. For fixed spin j we get
2(2j+1)(2j+3) type-I solutions (j≥0) and 2(2j+1)(2j−1) type-II solutions (j>0). They add up to
4(2j+1)2 solutions for j>0 and 6 solutions for j=0, which is the correct number for the dimension of a
spin-j representation of SO(4). Constant solutions (Ω=0) are not allowed; the simplest ones (Ω=2) are
the three complex j=0 type I and three complex j=1 type II basis configurations (j;m,n) = (0, ?, 0)
and (1, ?, 0) with ? = −1, 0,+1, respectively. The Hopf–Rañada solution is a real combination of
(0,+1, 0) and (0,−1, 0). The classification (43) and (44) shows a general parity relation map between
(j;m,n) type I and (j+1;n,m) type II. Electromagnetic duality is realized via shifting |Ωj |τ by ±π

2 ;
this maps A 7→ AD.

The main technical task is to transform a chosen solution on 2I × S3 to Minkowski coordinates
(t, x, y, z), which is straightforward due to the explicit formulæ for all ingredients and will produce only
rational functions. Conserved (in time) quantities are helicity and energy,

h = 1
2

∫
R3

(
A ∧ F +AD ∧ FD

)
and E = 1

2

∫
R3

d3x
(
~E2 + ~B2

)
. (45)

Their common scale is determined by the amplitude of the solution, but their ratio is fixed for the basis
configurations. Both quantities are best computed in “sphere frame” at t = τ = 0,

F = Ea ea ∧ e0 + 1
2Ba ε

a
bc e

b ∧ ec , (46)

giving, for example,∫
R3

d3x ~E2 =
1

`

∫
S3

d3Ω3 (1−ω4) EaEa and
∫
R3

d3x ~B2 =
1

`

∫
S3

d3Ω3 (1−ω4)BaBa , (47)

by exploiting the orthogonality properties of the hyperspherical harmonics.
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5. Examples
Finally we shall present two cases for illustrative purposes. For the first example, let us take the real
part of the (j;m,n) = (1; 0, 0) type-I basis solution. Combining e4iτ+e−4iτ = 2 cos 4τ and reading off
Y1;0,? from (43), we have

X+ = −
√

3
π αβ cos 4τ , X3 =

√
6
π (ββ̄ − αᾱ) cos 4τ , X− = −

√
3
π ᾱβ̄ cos 4τ . (48)

This solution has h = 12 and E = 48/` and takes the explicit form

(E+iB)x =
−2i

((t− i)2 − x2 − y2 − z2)
5 ×

×
{

2y + 3ity − xz + 2t2y + 2itxz − 8x2y − 8y3 + 4yz2

+ 4it3y − 6t2xz − 8itx2y − 8ity3 + 4ityz2 + 10x3z + 10xy2z − 2xz3

+ 2(itxz + x2y + y3 + yz2)(−t2 + x2 + y2 + z2) + (ity − xz)(−t2 + x2 + y2 + z2)2
}
,

(E+iB)y =
2i

((t− i)2 − x2 − y2 − z2)
5 ×

×
{

2x+ 3itx+ yz + 2t2x− 2ityz − 8x3 − 8xy2 + 4xz2

+ 4it3x+ 6t2yz − 8itx3 − 8itxy2 + 4itxz2 − 10x2yz − 10y3z + 2yz3

+ 2(−ityz + x3 + xy2 + xz2)(−t2 + x2 + y2 + z2) + (itx+ yz)(−t2 + x2 + y2 + z2)2
}
,

(49)

(E+iB)z =
i

((t− i)2 − x2 − y2 − z2)
5 ×

×
{

1 + 2it+ t2 − 11x2 − 11y2 + 3z2 + 4it3 − 16itx2 − 16ity2 + 4itz2

− t4 − 2t2x2 − 2t2y2 − 2t2z2 + 11x4 + 22x2y2 + 10x2z2 + 11y4 − 10y2z2 + 3z4

+ 2it(t2 − 3x2 − 3y2 − z2)(t2 − x2 − y2 − z2)− (t2 + x2 + y2 − z2)(−t2 + x2 + y2 + z2)2
}
.

Figures 2 and 3 below show t=0 energy density level surfaces and a particular closed magnetic field line
for this example. For the second example, a concrete

(
3
2 ; 1

2 ,
3
2

)
type-I solution, t=0 energy density level

surfaces are displayed in Figure 4.

6. Summary and discussion
• Rational electromagnetic fields with nontrivial topology have been investigated since 1989
• We introduced a new construction method based on two insights:

– the simplicity of solving Maxwell’s equations on a temporal cylinder over a three-sphere
– the conformal equivalence of a cylinder patch to four-dimensional Minkowski space

• A = Xν(τ, ω) eν = Xν(τ(x), ω(x)) eνµ(x) dxµ

• Only finite-time τ ∈ (−π,+π) dynamics is required on the cylinder
• Our solutions have finite energy and action, by construction
• A complete basis was discovered for sufficiently fast spatially and temporally decaying fields
• The non-Abelian extension couples different j components ofXa and is expected to be much harder
• The method may be useful for a numerical study of Yang–Mills dynamics in Minkowski space
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[8] Rañada A R 1989 Lett. Math. Phys. 18 97
[9] Arrayás M, Bouwmeester D and Trueba J L 2017 Phys. Rept. 667 1

Figure 2. Energy density level surfaces at t=0 for the (1; 0, 0) solution (49).
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Figure 3. A particular magnetic field line for the (1; 0, 0) solution (49).

Figure 4. Energy density level surfaces at t=0 for a particular
(

3
2 ; 1

2 ,
3
2

)
solution.


