Подсчитаем оценки, позволяющие судить о целесообразности перехода к доводке. Процедура доводки завершает работу алгоритма построением непрерывного оптимального управления. Процедура доводки состоит в следующем. Построим квазнуправление $\omega = (\omega(t), t \in T)$:

$$\omega(t) = -1$$
 при $\psi'(t)b + c(t)\alpha(t) < -c(t); \ \omega(t) = 1$ при $\psi'(t)b + c(t)\alpha(t) > c(t); \ \omega(t) = \alpha(t) + \psi'(t)b/c(t)$ при $|\psi'(t)b + c(t)\alpha(t)| \le c(t), \ t \in T;$ (4)

квазитраекторию $\kappa = (\kappa(t), t \in T)$: $\kappa = A\kappa + b\omega, \kappa(0) = \kappa_0$; решение $\omega_{\text{on}} = (\omega_i = \omega(t_i), i = 1, m)$ уравнения:

$$F(\overline{\omega}_{on}) = \sum_{i=1}^{p} \left(\int_{\underline{t}_{j}}^{\underline{\tau}_{j}(\overline{\omega}_{on})} p(t)(\omega(\underline{t}_{j}) - \alpha(t)) dt - \int_{\underline{t}_{j}}^{\overline{\tau}_{j}(\overline{\omega}_{on})} p(t)(\omega(\overline{t}_{j}) - \alpha(t)) dt - \int_{\underline{t}_{j}}^{\overline{\tau}_{j}(\overline{\omega}_{on})} p(t)(\omega(\overline{t}_{j}) - \alpha(t)) dt + \int_{\underline{t}_{j}(\overline{\omega}_{on})}^{\overline{\tau}_{j}(\overline{\omega}_{on})} p(t) \psi'(t; \overline{\omega}_{on}) b/c(t) dt - \int_{\underline{t}_{j}}^{\overline{t}_{j}} p(t) \psi'(t) b/c(t) dt \right) = g - G \kappa(t^{*}),$$

$$(5)$$

где $\psi(t;\overline{\omega_{\text{оп}}}), t \in T$, — решение системы (2) при $y' = (c(t_i)(\overline{\omega_i} - \alpha(t_i)), t = 1, m)'P^{-1}; \overline{\omega} = (\underline{\omega}(t), t \in T)$ — квазнуправление (4), построенное по $\psi(t;\overline{\omega_{\text{оп}}}), t \in T; \overline{t_j}, \overline{t_j}, j = \overline{1}, p$, — левые и правые концы особых отрезков квазнуправления $\omega(|\psi'(t)b + c(t)\alpha(t)| \leq c(t), t \in [t_j, \overline{t_j}], j = \overline{1}, p); \overline{\tau_j(\overline{\omega_{\text{оп}}}), \overline{\tau_j(\overline{\omega_{\text{оп}}})}, \overline{j=1}, p}$ — левые и правые концы особых отрезков квазнуправления $\omega; p$ — число особых отрезков. Уравнение (5) решим методом Ньютона.

Алгоритм является конечным: существует число $N < +\infty$, что для любого v > 0 для построения управления u, $\|g - Gx(t^*)\| \leq v$, $|I(u) - I(u^0)| \leq v$, требуется не более N интегрирований прямой и сопряженной систем.

Список литературы

1. Лубочкин А.В. Метод первого порядка решения выпуклой квадратичной сспарабельной задачи / Редкол. журн. «Весці АН БССР, Сер. фіз.-мат. навук». Минск. 1986. Деп. в ВИНИТИ 15.10.86. № 7258-В86. 10 с.

2. Габасов Р., Кириллова Ф. М. Конструктивные методы оптимизации.

Ч. 2: Задачи управления. Минск, 1984.

Поступила в редакцию 18.04.87.

УДК 519.1

А. Н. ИСАЧЕНКО, МУХИБУЛЛА АБДУЛЛА

МНОГОГРАННИК ЗАДАЧИ КВАДРАТИЧНОГО БУЛЕВОГО ПРОГРАММИРОВАНИЯ

Некоторые проблемы технико-экономического содержания сводятся к следующей задаче квадратичного булевого программирования:

$$(x, Ax^T) + (b, x^T) + d \rightarrow \text{extr}, x \in \{-1, 1\}^n.$$
 (1)

Здесь $A-(n\times n)$ -матрица; b-n-вектор; d-скаляр. Запишем для задачи (1) эквивалентную задачу линейного программирования. Для этого введем в рассмотрение новые переменные $y_{ij}=x_ix_j$, $i, j=\overline{1, n}$. Тогда задача (1) примет вид:

$$(D, Y) + c \rightarrow \text{extr},$$
 (2)

$$Y \in \{-1, 1\}^{n \times n}, \ y_{ij} = y_{ii} \cdot y_{jj}, \ i, \ j = \overline{1, n}, \ i \neq j,$$
 (3)

где $D-(n\times n)$ -матрица с элементами $d_{ij}=a_{ij};\ i,\ j=\overline{1,\ n},\ i\neq j;\ d_{li}=$

$$=b_i,\ i=\overline{1,\ n};\ c=d+\sum_{i=1}^n a_{ii};\ (D,\ Y)$$
— скалярное произведение матриц.

Пусть S_n — множество $(n \times n)$ -матриц, удовлетворяющих условию (3), а P_n = conv S_n . Задача (1) эквивалентна задаче линейного программирования с целевой функцией (2) и условием $Y \in P_n$. Для применения алгоритмов линейного программирования к полученной задаче необходимо задать P_n системой линейных уравнений и неравенств. Последнее связано с рядом принципиальных трудностей, возникающих при переходе от комбинаторной формы задания допустимой области NP-трудных задач к их граневой структуре [1]. В настоящей статье исследуются свойства многогранника P_n . Основные определения и обозначения, используемые в статье, можно найти в [2].

Теорема 1. vert $P_n = S_n$.

Доказательство. Для любой пары матриц $Y, Z \in S_n, Y \neq Z$, выполняется неравенство $(Y, Z) < (Y, Y) = n^2$, т. е. каждая гиперплоскость $H(Y) = \{Z \in \mathbb{R}^{n \times n} \mid (Y, Z) = n^2\}, Y \in S_n$, является опорной к P_n н $P_n \cap H(Y) = Y$.

Теорема 2. dim $P_n = (n+1)n/2$.

Доказательство. В силу (3) многогранник P_n принадлежит пересечению n(n-1)/2 гиперплоскостей, определяемых уравнениями $y_{ij}-y_{ji}=0$, $i=1,\ n-1,\ j=i+1,\ n$. Следовательно, $\dim P_n\leqslant (n+1)n/2$. Пусть O_n — нулевая $(n\times n)$ -матрица; $E_{ii}=(n\times n)$ -матрица с единственным ненулевым элементом, равным 1 и расположенным на позиции (i,i), $1\leqslant i\leqslant n$; $E_{ij}=(n\times n)$ -матрица с двумя ненулевыми элементами, равными 1 и расположенными на позициях (i,j) и (j,i), $1\leqslant i\leqslant n-1$, $i+1\leqslant j\leqslant n$; K(i,j) — множество матриц из S_n с единицей в позиции (i,j). Име-

$$\text{em } O_n = \frac{1}{2^n} \sum_{Y \in S_n} Y, \quad E_{ij} = \frac{1}{2^{n-1}} \sum_{Y \in \mathcal{K}(t,\,j)} Y, \quad \text{t.} \quad \text{e.} \quad O_n \in P_n, \quad E_{ij} \in P_n,$$

 $1 \le i \le n$, $i \le j \le n$. Множество (n+1)n/2+1 матриц O_n , E_{ij} , $1 \le i \le n$, $i \le j \le n$, является аффинно независимым, что и доказывает теорему. Следствие 1. O_n = relint P_n .

По аналогии с доказательством теоремы (2) можно показать, что $-E_{ij} \in P_n$, $1 \le i \le n$, $i \le j \le n$. Легко видеть, что E_{ij} , $-E_{ij}$, $1 \le i \le n$, $i \le j \le n$, являются вершинами (n+1)n/2-мерного куба с центром во внутренней точке O_n .

Следствие 2. Двойственный к P_n многогранник задается в $R^{n\times n}$ системой линейных равенств $x_{ij} = x_{ji}$, i = 1, n-1, $j = \overline{i+1}, n$, и неравенств

 $(Y, X) \leq 1, \ \forall \ Y \in S_n.$

Справедливость следствия вытекает из того факта, что O_n \equiv relint P_n и, следовательно, двойственный к P_n многогранник совпадает с полярой к P_n .

Теорема 3. diam $P_n = 1$.

Доказательство. Пусть Y, $Z \in S_n$, $Y \neq Z$. Определим матрицу M с элементами

$$m_{ij} = \left\{ egin{array}{ll} 1, \; ext{если} \; y_{ij} = z_{ij} = 1, \\ -1, \; ext{если} \; y_{ij} = z_{ij} = -1, \\ 0, \; ext{в остальных случаях} \end{array}
ight.$$

и обозначим через l число ее ненулевых элементов. Тогда (M, Y) = (M, Z) = l. Возьмем любую матрицу $X \in S_n$, $X \neq Z$, $X \neq Y$. Существует хотя бы одна позиция (l, j) такая, что

$$y_{ij} = z_{ij}, \ x_{ij} \neq y_{ij}, \ x_{ij} \neq z_{ij}. \tag{4}$$

Действительно, так как $X \neq Y$, то для некоторого i, $1 \leq i \leq n$, имеет место неравенство $x_{ii} \neq y_{ii}$. Если $y_{ii} = z_{ii}$, то $x_{ii} \neq z_{ii}$ и искомая позиция есть (i, i). Если $y_{ii} \neq z_{ii}$, то $x_{ii} = z_{ii}$ и, так как $X \neq Z$, получаем, что для неко-

торого $j \neq i$, $1 \leqslant j \leqslant n$, выполняется $x_{jj} \neq z_{jj}$. При $x_{jj} \neq y_{jj}$ искомая позиция есть (j, j). В противном случае выполняется (4). В силу (4), $(M, X) \leqslant \le l-1$. Следовательно, уравнение (M, X) = l определяет гиперплоскость, опорную к P_n и имеющую в пересечении с P_n отрезок [Y, Z].

Под гипергранью многогранника будем понимать его собственную грань максимальной размерности. Следующая теорема даст необходи-

мые условия гиперграней P_n .

Теорема 4. Для того чтобы гиперплоскость $H = \{X \subseteq \mathbb{R}^{n \times n} \mid (A, X) = b\}$ определяла гипергрань многогранника P_n , $n \geqslant 2$, необходимо, чтобы $b \neq 0$

и хотя бы для одной позиции (i, j), $i \neq j$, элемент $a_{ij} \neq 0$.

Доказательство. Первое условие $b\neq 0$ вытекает из следствия 1. Доказательство второго условия проведем от противного. Пусть $a_{ij}=0$ для $i=\overline{1, n}, j=\overline{1, n}, i\neq j$. Рассмотрим отображение $e:R^{n\times n}\rightarrow R^n$, определяемое по правилу $e(X)=(x_{11}, x_{22}, \ldots, x_{nn})$. Тогда $e(P_n)=n$ -куб,

а уравнение $\sum_{i=1}^n a_{ii} \, x_i = b$ определяет в R^n гиперплоскость \overline{H} , опорную к $e(P_n)$. Для любой точки $x \in e(P_n) \cap \overline{H}$ хотя бы одна координата $x_i = 1$ или -1. Пусть $x_i = 1$. Так как e — биективное отображение для множеств vert P_n , vert $e(P_n)$, то для любой матрицы $X \in P_n \cap H$ имеет место равенство $x_{ii} = 1$, что влечет из (3) выполнение условий $x_{ij} = x_{jj}$, $j = \overline{1}$, n, $i \neq j$. Следовательно, $\dim P_n \cap H \leqslant n(n-1)/2$, что при $n \geqslant 2$ приводит к противоречию с предположением теоремы.

Список литературы

1. Jünger M. Polyhedral combinatories and the acyclic subdigraph problem. Berlin 1985

2. Емеличев В. А., Ковалев М. М., Кравцсв М. К. Многогранники, графы, оптимизация. М., 1981.

Поступила в редакцию 12.03.87.