ПРИМЕНЕНИЕ АБСТРАКТНЫХ МОДЕЛЕЙ ДЛЯ ПРЕДСТАВЛЕНИЯ ДАННЫХ. 1. СТРУКТУРА И ПОИСК

Применение вычислительных машин в качестве интеллектуальных помощников человека невозможно без управления и манипулирования большими объемами данных. Общая эффективность образуемой в этом случае системы пользователь — ЭВМ определяется способом представления данных в памяти вычислительной машины. Модели данных [1] обеспечивают широкие возможности представления благодаря соединению данных со смысловой интерпретацией. Однако для использования в системах искусственного интеллекта, а также в качестве основы всякого процесса обработки данных необходимо придать им большую гибкость, достаточную для многоцелевого приложения в широком диапазоне задач.

Рассмотрим способ представления данных на абстрактных моделях, отличающийся возможностью фрагментарного описания предметной области задачи и паличием универсальной процедуры сборки фрагментов в единую модель. Способ ориентирован на аппаратурную поддержку, обеспечивающую его эффективную реализацию.

Пусть $X = \{x_1, \ldots, x_n\}$ — множество выделенных объектов в рамках предметной области; $I = \{i_1, \ldots, i_m\}$ — множество классов объектов; $f: X \to I$ — интерпретирующее отображение. Интерпретацией объекта $x \in X$ на множестве I классов объектов предметной области назовем двойку v = (x, i) такую, что f(x) = i. Соответствие $\Phi = \{(v', v'') \mid v', v'' \in V, v' = (x', i'), v'' = (x'', i''), i' = i''\}$ в этом случае является эквивалентностью на множестве интерпретаций объектов V.

Определение 1. Абстрактной моделью предметной области называется тройка $z=(V, \Gamma, \Pi)$, где V — множество интерпретаций объектов; Γ — определяющее соответствие в V такое, что $\Gamma^k \cap \Delta_V = \emptyset$, k=1, 2 (здесь $\Gamma^k - k$ -я степень соответствия Γ ; Δ_V — диагональ в V [2]); Π — определяемое соответствие в V такое, что $\Pi = \Gamma^{-1}$.

В общем случае абстрактная модель составляется экспертным методом на основе профессионального представления пользователя о предметной области и на необходимом для решения задачи уровне детализации (уровень абстракции). Естественным для пользователя является фрагментарное формирование и манипулирование моделью предметной области. Для случая представления данных на абстрактных моделях всякий фрагмент предметной области также описывается абстрактной моделью. Подмоделью абстрактной модели $z = (V, \Gamma, \Pi)$ назовем абстрактную модель $z' = (V', \Gamma', \Pi')$, для которой $V' \subseteq V$, $\Gamma' = \{(v', v'') | v', v'' \in V', (v', v'') \in \Gamma\}$, $\Pi' = (\Gamma')^{-1}$. Для манипулирования абстрактной моделью используются подмодели специального вида — выражения. Выражением называется абстрактная модель $z = (V, \Gamma, \Pi)$ в том случае, если $\Gamma^k \cap \Delta_V = \Phi$, $k \in N$, где N — множество натуральных чисел. В выражении отсутствует циклическое взаимоопределение объектов, возможное для абстрактной модели общего вида. Это и определяет их использование.

Реальные объекты, отношения, категории, связи и свойства, выделяемые в рамках предметной области решаемой задачи, представляются в абстрактной модели абстрактными объектами.

Определение 2. Абстрактным объектом, принадлежащим абстрактной модели $z = (V, \Gamma, \Pi)$, называется тройка $q = (v, \Gamma_q, \Pi_q)$, где $v \in V$; $\Gamma_q = \{(v, v') | v' \in V, (v, v') \in \Gamma\}$; $\Pi_q = \{(v, v') | v' \in V, (v, v') \in \Pi\}$.

Если абстрактная модель z имеет множество абстрактных объектов Q, то будем писать z::Q. Эквивалентность Ψ на множестве абстрактных объектов Q определяется рекурсивно: $\Psi = \{(q', q'') | q', q'' \in Q, \}$

 $q'=(v',\,\Gamma_{q'},\,\Pi_{q'}),\,q''=(v'',\,\Gamma_{q''},\,\Pi_{q''}),\,(v',\,v'')$ \in Φ , существует биективное соответствие A из $\Gamma_{q'}$ в $\Gamma_{q''}$ такое, что, если $\gamma'\in\Gamma_{q'},\,\gamma''\in\Gamma_{q''},\,A(\gamma')=\gamma'',\,\gamma'=(v',\,\hat{v}'),\,\gamma''=(v'',\,\hat{v}''),\,\hat{q}'=(\hat{v}',\,\Gamma_{\hat{q}},\,\Pi_{\hat{q}}),\,\hat{q}''=(\hat{v}'',\,\Gamma_{\hat{q}},\,\Pi_{\hat{q}}),\,\hat{q}''=(\hat{v}'',\,\Gamma_{\hat{q}},\,\Pi_{\hat{q}}),\,\hat{q}''=(\hat{v}'',\,\Gamma_{\hat{q}},\,\Pi_{\hat{q}})$, то $(\hat{q}',\,\hat{q}'')$ \in Ψ и существует биективное соответствие B из $\Pi_{q'}$ в $\Pi_{q''}$ такое, что, если $\pi'\in\Pi_{q'},\,\pi''\in\Pi_{q''},\,B(\pi')=\pi'',\,\pi'=(v',\,\hat{v}'),\,\pi''=(v'',\,\hat{v}''),\,\hat{q}''=(\hat{v}'',\,\Gamma_{\hat{q}'},\,\Pi_{\hat{q}'}),\,\hat{q}''=(\hat{v}'',\,\Gamma_{\hat{q}'},\,\Pi_{\hat{q}'}),\,\hat{q}''=(\hat{v}'',\,\Gamma_{\hat{q}''},\,\Pi_{\hat{q}''})$, $\pi''=(v'',\,\pi'')$,

Пусть для абстрактной модели $z=(V,\,\Gamma,\,\Pi),\,z:\,Q$, дана подмодель $z'=(V',\,\Gamma',\,\Pi'),\,z':\,Q'$. Подобъектом абстрактного объекта $q\in Q,\,q=(v,\,\Gamma_q,\,\Pi_q)$ такого, что $v\in V'$, называется абстрактный объект $q'\in Q',\,q'=(v,\,\Gamma_{q'},\,\Pi_{q'})$. Из определения подмодели следует, что $\Gamma_{q'}\subseteq \Gamma_q,\,\Pi_{q'}\subseteq \Pi_q$. Абстрактный объект и его подобъект представляют в абстрактной модели один и тот же объект предметной области, но с разной степенью детализации.

Эквивалентность Υ на множестве абстрактных моделей Z устанавливается через эквивалентность абстрактных объектов: $\Upsilon = \{(z', z'') | z', z'' \in Z, z' :: Q', z'' :: Q'', \text{ существует биективное соответствие E из } Q'$ в Q'' такое, что, если $q' \in Q', q'' \in Q'', E(q') = q'', \text{ то } (q', q'') \in \Psi\}$.

Обозначим $W = \{w_1, w_2, w_3\}$ множество операций над абстрактными объектами, где w_1 — поиск; w_2 — добавление и w_3 — удаление абстрактного объекта.

Определение 3. Предложением называется двойка s=(z,t), где z-выражение, z:Q; $t:Q\to W$ — отображение, для которого существует один и только один абстрактный объект $q\in Q$ такой, что $t(q)\in W$. Предложения называются вопросительными $(t(q)=w_1)$, утвердительными $(t(q)=w_2)$ или отрицательными $(t(q)=w_3)$.

Пусть дано предложение s=(z,t), в котором для абстрактного объекта $q \in Q$, z:Q, выполняется $t(q) \in W$. Связь объекта q с остальными объектами выражения задается проекцией выражения по абстрактному объекту.

Определение 4. Проекцией выражения $z = (V, \Gamma, \Pi), z :: Q$, по абстрактному объекту $q = (v, \Gamma_q, \Pi_q)$ называется четверка $p = (q, V_p, \Gamma_p, \Pi_p)$, где q— проектируемый объект, $q \in Q$; $V_p = \{v\} \cup \left[\bigcup_{k=1}^{|V|} (\Gamma_p^k \cup \Pi_p^k)\right](v); \Gamma_p = \bigcup_{j=1}^{|V|} \widetilde{\Gamma}_j; \Pi_p = \bigcup_{j=1}^{|V|} \widetilde{\Pi}_j; \widetilde{\Gamma}_1 = \Gamma_q; \widetilde{\Pi}_1 = \Pi_q; \widetilde{\Gamma}_j(j \geqslant 2) = \{(v', v'') | v' \in [\widetilde{\Gamma}_{j-1} \cup \widetilde{\Pi}_{j-1}](V), (v', v'') \in \Gamma/\bigcup_{n=1}^{j-1} (\widetilde{\Pi}_n)^{-1}\}; \widetilde{\Pi}_j(j \geqslant 2) = \{(v', v'') | v' \in [\widetilde{\Gamma}_{j-1} \cup \widetilde{\Pi}_{j-1}](V), (v', v'') \in \Pi/\bigcup_{n=1}^{j-1} (\widetilde{\Gamma}_n)^{-1}\}.$

Пусть для выражения z::Q построена проекция $p=(q,V_p,\Gamma_p,\Pi_p)$. Проекцией абстрактного объекта $q', q'\in Q, q'=(v',\Gamma_{q'},\Pi_{q'})$, называется подобъект $q''=(v',\Gamma_{q''},\Pi_{q''})$, для которого $\Gamma_{q''}=\{(v',\hat{v}')\,|\,\hat{v}'\in V_p,(v',\hat{v}')\in \Gamma_p\}$, $\Pi_{q''}=\{(v',\hat{v}')\,|\,\hat{v}'\in V_p,(v',\hat{v}')\in \Pi_p\}$. В описанной проекции, таким образом, объекты предметной области представляются проекциями абстрактных объектов. Если проекция p имеет множество проекций абстрактных объектов Q, то будем писать p:Q.

Эквивалентность Λ на множестве проекций выражений P устанавливается через эквивалентность проекций абстрактных объектов: $\Lambda = \{(p',p'') \mid p',p'' \in P,p'::Q',p''::Q'',\text{ существует биективное соответствие H из <math>Q'$ в Q'' такое, что, если $q' \in Q', q'' \in Q'', \text{ H}(q') = q'', \text{ то }(q',q'') \in \Psi\}.$

Теорема 1. В проекции $p: Q, p = (q, V_p, \Gamma_p, \Pi_p)$, выражения z для всякого $q' \in Q, q' \neq q, q' = (v', \Gamma_{q'}, \Pi_{q'})$, существует один и только один $q'' \in Q, q'' = (v'', \Gamma_{q''}, \Pi_{q''})$ такой, что $(v'', v') \in \Gamma_p \cup \Pi_p$.

Следствие 1. Для проекции $p: Q, p = (q, V_p, \Gamma_p, \Pi_p)$, выражения z существует, по крайней мере, один $q' \in Q, q' = (v', \Gamma_{q'}, \Pi_{q'})$ такой, что $\Gamma_{q'} = \emptyset$, $\Pi_{q'} = \emptyset$.

Теорема 2. Для существования в составе абстрактной модели z'

абстрактного объекта q', имеющего подобъект q'', $(q'', q') \in \Psi$, $s = (z, t), z :: Q, q \in Q, t(q) \in W$, необходимо и достаточно наличие в z' подмодели z'', имеющей проекцию p'' такую, что $(p'', p) \in \Lambda$, где p = (z, t)

 $=(q, V_p, \Gamma_p, \Pi_p).$

Пусть задана абстрактная модель $z'=(V',\ \Gamma',\ \Pi')$ и предложение $s=(z,\ t),\ z::Q,\ q=(v,\ \Gamma_q,\ \Pi_q),\ q\in Q,\ t(q)=w_1,\ p=(q,\ V_p,\ \Gamma_p,\ \Pi_p).$ Требуется отыскать в z' абстрактный объект q', представляющий тот же самый объект предметной области, что и абстрактный объект q в составе выражения z. Поиск осуществляется при помощи алгоритма 1, основанного на теоремах 1 и 2.

Алгоритм 1. Положить для множества Σ , $\Sigma = \varnothing$.

Список литературы

- 1. Цикритзис Д., Лоховски Ф. Модели данных. М., 1985.
- 2. Кон П. Универсальная алгебра. М., 1968.

Поступила в редакцию 14.05.86.